
CS6
Practical
System
Skills
Fall 2019 edition
Leonhard Spiegelberg
lspiegel@cs.brown.edu

19 Databases
CS6 Practical System Skills
Fall 2019
Leonhard Spiegelberg lspiegel@cs.brown.edu

19.01 What is a database?

actually a very broad term, in the end

⇒ a (very large) collection of (inter)related data

DBMS = Database Management System

⇒ a software system that can be used to store, manage, retrieve
and transform data from a database

→ often the term database / DBMS are used interchangeably

⇒ Brown offers several database courses: CS127, CS227, CS295

3 / 28

19.02 Why should we use a database?
⇒ storing, updating and retrieving data

→ becomes difficult when multiple users, clients,
 connections, nodes, … are involved.

→ fault-tolerance, i.e. a good database is resilient towards node
 failures, connection drops, …

→ retrieving specific records efficiently, indexing data.

⇒ data security, rights management for accessing data.

⇒ data integrity, ensuring data follows one format.

⇒ data analytics, information aggregation.
4 / 28

19.02 When to use a database?

⇒ at their core, databases provide two core functionalities:

→ persistence: keeping data, tolerant to all sorts of events. I.e.

 non-volatile storage of state.

→ data access: adding and extracting data easily.

5 / 28

19.02 When to use a database?

When to use a database…?

… use one if your project needs to
access/update many (small) records
(for multiple users) with different
access patterns!

6 / 28

19.03 When to NOT use a database
KISS = Keep it simple stupid

⇒ a database usually provides a lot of functionality and
 might have a large memory footprint.

⇒ Does your project really need a database?

Examples where a database might be a bad choice:
- static website like a blog / API documentation
- log files
- statistical analysis over small datasets (< 1 GB) or large datasets (> 50GB)
- storage of few and/or large and/or rarely changing records like
 videos/images/mp3s/... 7 / 28

Database -
 yes or no?

19.04 Classification of databases OLAP/OLTP

⇒ databases can be classified according to their primary purpose

OLTP = Online transaction processing

→ primary objective is data processing, not analysis.
→ high volume of transactions, usually many small inserts/updates

OLAP = Online analytical processing

→ primary objective is data analysis, i.e. data warehousing
→ low volume of transactions, complex queries with aggregations

8 / 28

Today

next week

19.04 Classification of databases - model

⇒ Another way of classifying databases is by their data model

1. Relational databases (SQL-databases)
⇒ data is stored in tables
⇒ based on the relational data model

2. Non-relational databases (NoSQL-databases, NoSQL = not
only sql)
⇒ do not follow traditional, relational data model
⇒ models include Key/Value-Stores, Document-Stores,
 Graph-databases, ...

9 / 28

there are many more ways to classify
databases ⇒ CS127

Relational databases

19.06 Relational databases

11 / 28

⇒ Store data in tables,
 query data using SQL = Structured Query Language

⇒ popular relational databases include

open source commercial

MySQL* / MariaDB
PostgreSQL ⇐ we'll be using this

SQLlite
...

MySQL
SAP Database

Oracle Database
Microsoft SQL Server
IBM DB2 Database

VoltDB
...

19.06 Tables in relational databases

12 / 28

name year country

Wu Tang Clan 1992 USA

Notorious BIG 1992 USA

Ice Cube 1989 USA

Beatles 1960 United Kingdom

⇒Data is stored in tables which consist of columns(attributes) and rows(tuples).

→ order of columns(attributes) does not matter.

Row(tuple)

Column(attribute)

19.06 Tables in relational model
⇒ we can create multiple tables and relate them using keys (id fields).

⇒ A primary key is a column which must not be NULL and contains a unique
value for each row (i.e. a unique ID)

⇒ A foreign key is a column which references a primary key of another table

13 / 28

Pokemon

id name type

100 Bulbasaur Grass,
Poison

120 Charmander Fire

130 Squirtle Water

Trainer

id name

99 Leonhard

100 Shriram

captures

pokemonID trainerID

120 99

100 100

Note: Keys can also consist of multiple columns/attributes

19.07 How to work with a database
⇒ There are typically two ways how to interact with a database:

1. Database shell

Nearly all databases come with a shell providing a REPL to issue

 SQL commands to query data or perform other administrative tasks.

2. Database connectors/adapters

Libraries available for multiple programming languages which allow

 to issue queries and retrieve/store data.

14 / 28

19.08 PostgreSQL
⇒ free and open-source relational DBMS, evolved from Ingres project at
UC Berkeley (Michael Stonebraker, A.M. Turing Award 2015)

⇒ "The World's Most Advanced Open Source Relational Database"

⇒ Resources:

postgresql.org

postgresqltutorial.com

15 / 28

http://www.postgresqltutorial.com/

19.08 PostgreSQL shell
⇒ start via psql <db-name> or run command directly
 via psql -c '<cmd>' <db-name>

⇒ You can also execute SQL commands stored in a file via psql -f <file>

⇒ github.com/browncs6/DBIntro holds examples of this lecture

⇒ you can use the shell to directly issue SQL statements
 (e.g. creating, modifying tables and retrieving/storing data)

⇒ A database administrator typically works in the database shell.

→ shell is useful to develop/test database queries!

16 / 28

19.08 A first SQL query - Creating a table

⇒ a new table can be created using CREATE TABLE command
⇒ column_constraint can be NOT NULL, UNIQUE, PRIMARY KEY, CHECK,
REFERENCES
⇒ instead of defining constraints on columns, they can be also defined as table
constraints on multiple columns at once, e.g.
PRIMARY KEY (role_id, role_name)
⇒ TYPE must be one of the supported datatypes of the database. For a complete
list see http://www.postgresqltutorial.com/postgresql-data-types/

17 / 28

CREATE TABLE table_name (
 column_name TYPE column_constraint,
 table_constraint
);

http://www.postgresqltutorial.com/postgresql-data-types/

19.08 Creating a table - example

Tip:
When you create your application use a file setup.sql (or so)
where you add all the CREATE TABLE statements required to
setup your database. Helps to setup things when deploying!

18 / 28

CREATE TABLE pokemon(name
VARCHAR(128) NOT NULL, height_ft
DECIMAL NOT NULL, weight_lbs DECIMAL
NOT NULL, category VARCHAR(128) NOT
NULL, PRIMARY KEY (name));

name category height_ft weight_lbs

19.08 More SQL
SQL offers many powerful commands which can be used to write a query.

 As a start, you should get comfortable using

CREATE TABLE
INSERT INTO
SELECT
UPDATE
DELETE

⇒ demo time, Jupyter notebook!

19 / 28

19.09 Transactions
⇒ Sometimes we want to run multiple statements at once, but they should be
atomic with respect to other users.

⇒ PostgreSQL supports ACID transactions
ACID = Atomic, Consistent, Isolated, Durable

Atomicity: Multiple statements behave as single unit,
 i.e. either all succeed or none.

Consistency: Transaction does not violate any database rules.
Isolation: No transaction will be affected by any other transaction.
Durability: Once transaction is committed, it's persisted.

⇒ typical usage: start a new transaction, execute SQL statements, COMMIT

20 / 28

19.09 Transactions in PostgreSQL

BEGIN;

…

COMMIT;

21 / 28

you can also use BEGIN TRANSACTION or BEGIN WORK

you can also use COMMIT TRANSACTION or COMMIT WORK

put all SQL commands you want to treat as single UNIT (i.e. one
ACID transaction) here.

Tip: Via ROLLBACK you can undo your last
transaction.

Connecting to a database using
Python

Python Database adapter

23 / 28

⇒ so far we worked in the database shell, good to develop queries and

manipulate data within the database

⇒ How can we use a database in an application/script?

⇒ There are libraries which allow us to interact with a PostgreSQL database!

⇒ We'll be using psycopg (Version 2)

→ pip3 install psycopg2

→ http://initd.org/psycopg/docs/

http://initd.org/psycopg/docs/

Psycopg2

⇒ demo time

→ Jupyter notebook

24 / 28

Flask & databases

Object - relational mapping

26 / 28

⇒ You can use a python-database adapter like psycopg2 directly in your

 Flask application if you want.

⇒ to use a database, you need to write queries and define how to map python

 data to relational data → Object-relational mapping

⇒ Problem: You might want to exchange the database and avoid wasting too

 much time on defining the mapping/common queries.

⇒ Solution: There exist high-level libraries like SQLalchemy which allow to map

 python data structures to a relational database (schema)

SQLalchemy

⇒ following slides are based on Chapter 5, Flask book.

⇒ we'll be using flask-sqlalchemy, which integrates sqlalchemy
with a flask application

→ pip3 install flask-sqlalchemy

⇒ demo!

27 / 28

End of lecture.
Next class: Tue, 4pm-5:20pm @ CIT 477

