Practical
System
Skills -

Fall 2019 edition
Leonhard Spiegelberg
Ispiegfal@g;s.brow

=5

CS6 Practical System Skills
Fall 2019

Leonhard Spiegelberg Ispiegel@cs.brown.edu

18.01 History of Javascript

= created by Brendan Eich in 1995 for
Netscape Navigator

= positioned originally as web "companion”
for Java, though there is no connection

]avaript
between Java and Javascript
= scripting language for webpages

—> typically used to manipulate documents on the client-side,
l.e. javascript allows client-side computing.

—> also used for server-side scripting (hode.js + more)
3/42

18.02 The big picture

HTML CSS Javascript
content presentation behavior
specify content with rules to style the run logic to change
tags, e.g. content content/presentation
dynamically
<p>this 1is a p { color: red; } alert ("Hi'!"™);
bold
statement</p>

4142

18.02 Why bother to learn another language?

JavaScript 67.8%

HTML/CSS 63.5%

sQL 54.4%

Python 41.7% I

Java 41.1% T
Bash/Shell/PowerShell 36.6% [

c# 31.0% I
PHP 26.4% [Javascript is among

Co+ 235 (I the most popular
TypeScript 21.2% [languages

C 20.6% I

Ruby 8.4% [l
Go 8.2%
Assembly 6.7%
Swift 6.6%

Kotlin 6.4%

R 5.8%

Stackoverflow 2019 survey
https://insights.stackoverflow.com/survey/2019#overview

Score

® Qe
® Q
Qe
Qe
Q
nJavaScnpt @
il c# ® (= O}

IEEE Spectrum 2019 survey

https://spectrum.ieee.org/computing/software/the-top-pro

gramming-languages-2019

5/42

https://insights.stackoverflow.com/survey/2019#overview
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019

18.02 Resources for Javascript

Book:

Duckett, Jon, Gilles Ruppert, and Jack Moore.

development. Indianapolis, IN: Wiley, 2014. Print. 4%CRIPT '

JavaScript & jQuery : interactive front-end web

Today: Chapters 1-8

Web:

developer.mozilla.org/en-US/docs/Web/JavaScript

javascript.info

6/42

https://developer.mozilla.org/en-US/docs/Web/JavaScript

18.02 How to work with Javascript

= Chrome/Firefox/Safari have a built-in Javascript console that
can be used to execute/develop code in a REPL:

Mac Win
Chrome Cmd + Opt + J Ctrl + Shift + J
Firefox Cmd + Opt + K Ctrl + shift + K
Safari Cmd + Opt + C

= very useful for developing small snippets are online services like
jsfiddle.net or codepen.io/pen/

7142

https://jsfiddle.net/
https://codepen.io/pen/

18.02 Basic Javascript

= Javascript is a weakly typed dynamic language similar to Python
= C-like statements (optionally) terminated with ;

= boolean expressions with true/false and &&/ | |

= increment ++ and decrement -- operators

= C-like comments using // or /* .. */

1T+ 3

4 % (5 - 3) ** 3

"There are " + 26 + " letters”" <———— no casting of 26 to string necessary
true && ("hello" > 'world')

10 & 3 8/42

18.02 Hello world in Javascript

= To write Javascript code as part of a HTML page,
you have the following options:
1. embedded, write (similar to style tags for CSS) code
within <script>....</script> tags

2. external scripts, i.e. put JavaScript code into a separate file
and include it via <script src="<path"></script>

Note: code within tags will be ignored if src is given... /

= you can add as many script tags to a HTML page as you like!

9/42

18.02 Where to place javascript file?

= script tag can be placed

1. In the head section
2. In the body section
3. after the </body> tag (i.e. before </html>)

= position of the script tags in the document determines
when the script is executed.

—> Best practice: Include scripts in head,
page specific code in body

10/42

18.02 Hello world in Javascript

= we can output "Hello world" via document .write (.. .)

<!DOCTYPE html>
<html lang="en" dir="1tr">
<head>
<meta charset="utf-8">
<title>Hello world with Javascript</title>
<script type="text/javascript"> 4 ™

document.write("Hello world"); Vou often see
</;é:g:lpt> type="text/javascript" or

language="javascript". Not

<body> necessary anymore though, default
</body> scripting language is JavaScript.
</html>

11/42

18.03 Javascript variables

= you can define variables using the following keywords in Javascript:

1. let message = "Hello world"

2. const message = "Hello world" (constant)

3. var message = "Hello world" (old style, don't use)

4. message = "Hello world" (implicit global, don't use)

= variable names must only contain alphanumeric characters, $ or _. The first

character must not be a digit.

—>l.e. $ = 20 is legal JavaScript! We'll see this when working with jQuery.

12 /42

18.04 Javascript functions

= Functions are first-class objects in Javascript. They can be declared using the
function keyword or as lambda/anonymous functions , e.g. via =>.

function sum(a, b) {
return a + b;

}

// function expression, assign to diff identifier
let diff = function(a, b) { return a - b; }

// you can either use an expression or a sequence of statements in { ... }
let pow = (a, b) => a **x b

let x = 10
const y = 42

document.write(sum(x, sum(y, 1) + diff(y, x) * pow(2, 3)))
13142

18.05 var vs. let

= Prefer to use 1et. There's a subtle difference in var/let: let declares block
variables, i.e. they can be only accessed in the scope where they were declared.
var declares global variables at function-level. (details e.g. on https:/javascript.info/var).

{
let message = "hello world";
Y
document.write(message); // Uncaught ReferenceError: message is not defined
{
var message = "hello world";
Y

document.write(message) // works

14 /42

https://javascript.info/var

18.06 Control structures

= JavaScript has C-like control structures: for/while/if

for(let i = 0; 1 < 5; i++) {
document.write(i * i + '
")

}

let counter = 0;

while(counter < 10) {
console.log(counter) < output to console
counter += 2

}

if(counter == 10)
document.write('counter is 10")
else
document.write('counter is not 10")

15/42

18.07 String formatting in Javascript

= There's no builtin sprintf / format, however you can create
strings using Javascript's implicit string conversions or via the
toString method for each object.

= to convert a string object to int or float type use

parselnt / parseFloat or constructors Boolean /Number

16 /42

18.08 Arrays in Javascript

= Arrays can be declared using [...] similar to Python.

let arr = [1, 2, 3, 4, 5, 'hello']

arr.length

arr[3] // 0, ..., length-1 indices are allowed
arr[1] = 42

arr.concat([1, 2, 3])

17142

18.09 Javascript Objects

= Everything in Javascript is an object. An object can have one or more
properties to which a value can be assigned to.

let hotel = new Object(); // create new, empty object

hotel.name = 'Quay’
hotel.rooms = 40

hotel.booked = 25

hotel.checkAvailability = function() { return this.rooms -
this.booked; }

hotel.rooms // access rooms via . syntax
hotel[' rooms'] // or via [key]

delete hotel.name // remove property from object

hotel.stars = 5 // add new property
hotel['stars'] = 5 // alternative 18/ 42

18.09 Javascript Objects

= Instead of assigning properties in statements, Objects can be
also constructed using literal syntax:

let user = {name: 'Tux',
profession: 'penguin’,
age:. 30}

Note: This also works with functions!

19/42

18.09 Javascript Objects - Constructor

= to define custom structures/objects, a constructor syntax can be used:

function
this

this
this

s

Hotel(name, rooms, booked) {

.name = name;
this.
.booked = booked;
.checkAvailability = function() {
return this.rooms - this.booked;

rooms = rooms,

// use constructor
let quayHotel = new Hotel('Quay', 40, 25);

let parkHotel

new Hotel('Park', 120, 77);

20/42

DOM manipulation

18.10 DOM manipulation using Javascript

DOM = Document Object Model, every element in a HTML page is
represented as Object that can be manipulated

= the objects are organized as nodes in a tree, the DOM-tree
= via Javascript nodes can be added, altered, removed

= root node iIs document

22142

18.10 DOM tree example

<html>
<head>
<title>DOM Model</title>
</head>
<bo dy g . . [Element:]
<h1>DataFlair’s Tutorial</h1> <head>
<p>DOM Tree</p>
<p id = "text">This is a text
element in the DOM tree.</p> e
</body> [<title>]
</html>

Text:
Dom Model

Example taken from: https://data-flair.training/blogs/javascript-dom/

Document

Root element:
<html>

Element:
<body>

p
Element
<hp

~

Element: Element:
<p> <p>

o

p
Text: Text: .
DataFlair's Text: Thisisatext | | Attribute
I Dom Tree element in the “id”
tutorla L il

23142

https://data-flair.training/blogs/javascript-dom/

18.10 Basic DOM manipulation

= Javascript provides several functions to create & place nodes

Example:

let paragraph = document.createElement("p");

let content = document.createTextNode("This is some text the
paragraph contains....");

paragraph.appendChild(content);

// append paragraph tag after body tag
document.body.appendChild(paragraph);

24142

18.10 Javascript DOM functions

accessing/finding elements

creating

elements/manipulating

element

manipulating the tree

document.getElementById (id)
document. getElementsByTagName (name)
document.querySelector (selector)

document.querySelectorAll (selector)

document.createElement (name)
parentNode. appendChild (node)
element.
element.
element.
element.

element.

innerHTML
style.left
setAttribute ()
getAttribute ()

addEventListener ()

parentNode. appendChild (node)
parentNode.remove Child (node)
parentNode.replace Child (old,

new)

A great resource for this is: https:/developer.mozilla.org/en-US/docs/Web/APl/Document_Object_Model/Introduction

251/42

https://developer.mozilla.org/en-US/docs/Web/API/Element/getElementsByTagName
https://developer.mozilla.org/en-US/docs/Web/API/Document/createElement
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/style
https://developer.mozilla.org/en-US/docs/Web/API/Element/setAttribute
https://developer.mozilla.org/en-US/docs/Web/API/Element/getAttribute
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Node/appendChild
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

18.11 Javascript event handlers

= Nodes in the DOM tree can have event handlers to specific events assigned.
l.e. if a certain event happens, some code is executed.

= The general syntax is <element event="some code">
—> element is some HTML tag
—> event Iis one specific event type, e.g. onload, onclick,

= complete list of events is available at
https://developer.mozilla.org/en-US/docs/\Web/Events

= alternatively, an event handler can be assigned directly via e.g.
node.onload = ..orviaaddEventListener

26 /42

https://developer.mozilla.org/en-US/docs/Web/Events

18.11 Javascript DOM events example

<button id="btn" onclick="click_btn();">Click me!</button>
<p id="btn-target"></p>
Some text...

<script type="text/javascript”>
function click_btn() {
let p = document.getElementById("btn-target");
p.textContent = "You clicked a button, awesome”

}

// add event listener to span elements
let span = document.querySelector('span')
span.addEventListener('mouseover', function() {
this.style.backgroundColor = "#ffeeee"; });
span.addEventListener('mouseout', function() {
this.style.backgroundColor = "#06ff00"; });
</script>

27142

JQuery

18.12 What is jQuery?

= "write less, do more" library

-

= makes life easier by helping with
- HTML/DOM manipulation
- CSS manipulation
- HTML DOM events
- AJAX (requests!)

| |
= >25% of all websites use jQuery (still). l u E‘

29/42

18.12 Why do we need a library?

= Problem: Browser incompatibility. Versions/Vendors/Devices/...

= There is not one javascript standard, different browsers
support and provide different functions.

= jQuery to provide standard interface across browsers.

30/42

18.12 Basic jQuery

Basic Usage: $ (' #btn-target') .addClass ('highlight')

A

|

CSS like selector
find element

special variable to
access nodes

N

function on node,
here adding a CSS
class highlight to
the element

31/42

18.12 Where to put jQuery code

= Loading a website might take a while. However, often adding event listeners or
manipulating the DOM makes only sense when the website is fully loaded.

= jQuery provides a special . ready () method which will execute its argument
when the document is "ready"”

S(document) .ready(function() {
// write all code here...

1)

// alternative:
S(function() {
// write all code here

1)

32142

18.13 Basic jQuery methods

= .html () allows to retrieve the html of the first matched element,
.html (...) allows to set the html of the first matched element

= .text () / .text (...) returns the text content of the element and its children.
= .before()/.after () allow to insert content before/after an element
= .prepend ()/.append () insert content inside the element

= .attr (name) retrieves value of attribute name .attr (name, value) allows
to update the attribute name with value

= .addClass (cls) / .removeClass (cls) add/remove CSS class to element.

= .css(...) allows to get or change css rules. o

Passing data

18.14 Backend vs. Frontend

Backend: what happens on the server side
Frontend: what happens on the local machine (i.e. in the browser)

= We've seen that we can manipulate the DOM tree with Javascript on
the client side, i.e. all logic runs in the browser once the script is

downloaded.

= How can we pass data from the backend to the frontend?
= How can we request data from the backend?

= |In which format shall we pass data?

35/42

18.14 Backend meets Frontend and vice versa

= How can we pass data from the backend to the frontend?

HTTP requests! GET/POST/... to an URI and process the
response or via templating when generate the intially
requested page.

= How can we request data from the backend?
issue HTTP requests via Javascript and process the response

= |In which format shall we pass data?

Good question...

36 /42

18.14 Serialization and Deserialization

= To pass data between two actors, we need to exchange it in some

format because each side
- may have a different representation
- has the data scattered in main memory (not in one location)

= |deally, both actors can convert their representation quickly to the
format (serialization) and convert the format quickly to their representation
(deserialization)

= Javascript brings a default serialization format called JSON =
Javascript Object Notation to the table

37142

18.14 JSON = JavaScript Object Notation

= details under https://www.json.org/

= encode data similar to python

dictionaries as

{"key" : value, ...}

= Arraysvia [...]

= can be nested

(

Note: In JSON keys are always
strings. Strings need to be always
quoted with "! (escape " via \")

Example:
{
"color"” : "purple”,
"id" : 210,
"composition" : {
"R" . 70,
"G" : 39,
"B" : 89
}
"names" : ["violet", "lilac"]
}

38/42

https://www.json.org/

18.14 JSON in Javascript/Python

= Javascript and python both have support for JSON already built in

Javascript

let msg = {name: "tux", profession: "penguin", location: 'antarctica'}
// serialize

// yields "{"name":"tux", "profession
let str = JSON.stringify(msg)

:"penguin”, "location" :"antarctica"}"

// deserialize
// yields {name: "tux", profession: "penguin", location: 'antarctica'}
JSON.parse(str)

Python

import json

msg = '{"name":"tux", "profession”:"penguin", "location":"antarctica"}"'

yields {'name': 'tux', 'profession': 'penguin', 'location': 'antarctica'}
user = json.loads(msg)

yields '{"name": "tux", "profession": "penguin", "location": "antarctica"}'

json.dumps(user)

39/42

18.14 Connecting via Ajax Requests

Ajax = asynchronous javascript and xml

= allows to make HTTP requests via JavaScript whose response
can be used to alter the webpage after the request succeeded.

= easiest to do with jQuery which provides $.get (...) and
S.post (...) functions to perform GET or POST requests.

= Often, requests are made to endpoints which return JSON data
(MIME: application/json).

= Next lecture: RESTful APIs/design - usually based on JSON.

40/42

Demo

Examples from today available under github.com/browncs6/JSExamples

41

End of lecture.
Next class: Tue, 4pm-5:20pm @ CIT 477

