
CS6
Practical
System
Skills
Fall 2019 edition
Leonhard Spiegelberg
lspiegel@cs.brown.edu

Recap

Last lecture: Version Control Systems ⇒ git

⇒ 3 areas

⇒ creating commits, checking out old commits

⇒ working with remotes

⇒ pull/push

⇒ working with branches

⇒ merging branches via git merge
2 / 46

Recap quiz

Fill out the following graphic:

3 / 46

? ? ?

?

?

?

?? ?

Recap quiz

Fill out the following graphic:

4 / 46

Working directory Staging Area .git directory
(Repository)

stage files

commit files

checkout files

staged filesunmodified/modified files committed files

15 More on Git
CS6 Practical System Skills
Fall 2019
Leonhard Spiegelberg lspiegel@cs.brown.edu

Master and feature branches

⇒ Typically, there's a master branch in the repo

→ don't use it for development, rather store "releasable"
 version of your code/assets on it

→ content on the master branch should work, i.e. no errors.

⇒ DON'T BREAK THE MASTER!

⇒ In a couple slides: Typical git workflows.

6 / 46

Rebasing

15.01 git merge vs. git rebase
⇒ To join branches, git rebase is an alternative to git merge

⇒ If you don't know how to rebase properly, things can go wrong badly

Recap:

8 / 46

rebasing merging

15.02 git rebase

⇒ to rebase a branch on another, run git rebase. Assuming
 you're on branch feature, then you can rebase
 onto the master via:
git rebase master

rebasing feature on master general syntax:

git rebase master feature (will checkout feature)
9 / 46

branch on which to base on

15.03 Golden rule of rebasing
⇒ NEVER, NEVER, NEVER rebase the master onto a feature branch.

→ Only rebase feature on master OR

→ featureA on featureB

I.e., don't run the following commands:

git checkout master && git rebase feature

git rebase feature master

10 / 46

15.03 Golden rule of rebasing

⇒ If you rebased the
master on your feature,
you would create a
confusing history.

11 / 46

15.04 Rebase example

12 / 46

git init &&
echo -e "# README\n" > README.md &&
git add . &&
git commit -m "initial commit" &&
echo "This is a readme file." >> README.md
&&
git commit -a -m "updated readme" &&
git checkout HEAD~1 &&
git checkout -b feature &&
echo "feature branch. " >> README.md &&
git commit -a -m "feature update."

setup

git rebase master

First, rewinding head to replay your work on top of
it...
Applying: feature update.
Using index info to reconstruct a base tree...
M README.md
.git/rebase-apply/patch:8: trailing whitespace.
feature branch.
warning: 1 line adds whitespace errors.
Falling back to patching base and 3-way merge...
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
error: Failed to merge in the changes.
Patch failed at 0001 feature update.
The copy of the patch that failed is found in:
.git/rebase-apply/patch

Resolve all conflicts manually, mark them as
resolved with
"git add/rm <conflicted_files>", then run "git
rebase --continue".
You can instead skip this commit: run "git rebase
--skip".
To abort and get back to the state before "git
rebase", run "git rebase --abort".

15.05 Resolving conflicts in rebase

⇒ resolve conflicts on individual files using the 3 options:
1.) git checkout --ours
2.) git checkout --theirs
3.) manual merge

⇒ add resolved files via git add. (you can also edit the commit
message via git commit --amend)

⇒ after conflict resolution run git rebase --continue

⇒ git rebase --abort stops the rebase!

13 / 46

15.06 Completing the rebase of feature on master

⇒ After rebasing on the master, feature branch can be "cleanly"
merged to master (i.e. a fast-forward merge)

⇒ git checkout master && git merge feature

14 / 46

git merge places the
commits of feature on top of
the commits of the master

More on rebasing

15.07 interactive rebase & squashing commits

16 / 46

⇒ often you work on a separate branch but don't want to put all commits
on the master or only a subset

⇒ git rebase -i starts rebase in interactive mode, which allows for
more efficient history manipulation.

⇒ interactive mode allows to squash multiple commits into one (first
commit must be pick / p though)

Tip:
Use git config rebase.abbreviateCommands true
to force git to use shortcuts only instead of pick, squash, ...

More on conflict resolution

15.08 Visual merge tools

18 / 46

⇒ manual conflict resolution can be done in the console or via an
 IDE (most IDEs provide built-in support for merging)

⇒ there are many visual merge tools available, e.g.
- vimdiff
- meld
- GitKraken

⇒ to start merging via a tool, run git mergetool
→ configure it via git config merge.tool meld
→ per default, git creates .orig backup files. Disable via

 git config mergetool.keepBackup false

Stashing

15.09 Stashing

20 / 46

⇒ sometimes you work on a branch and have to switch to another one,
but you don't feel like committing yet.

→ git stash saves changes away onto a temporary stack and
 reverts your local working copy

⇒ use git stash to save local changes

⇒ git stash pop to apply previously stashed changes

15.09 Stashing
⇒ to keep changes in stash and to apply them, use git stash apply

→ Can be used to apply changes to multiple branches

⇒ git stash list displays overview of stashed changes

→ pop n-th stash via git stash pop stash@{n}

→ remove n-th stash via git stash drop stash@{n}

→ clear stash via git stash clear

⇒ you can add a note to a stash, by using git stash save "note"

21 / 46

15.10 Cleaning the repo

⇒ sometimes you accumulate a lot of temporary / ignored files in
your repository.

→ git clean -n to list what files would be removed

→ git clean -f to remove untracked files

→ git clean -xf to remove untracked and ignored files

22 / 46

15.11 Discarding local changes

⇒ to discard ALL local changes (no undo for this), you can use
git reset --hard

⇒ You can also use git reset to reset the HEAD to a specific
commit, DO THIS ONLY if you haven't pushed to a remote yet.

→ don't screw up the remote
→ if you use git reset frequently, there's something wrong.

23 / 46

Tags

15.12 Tags

25 / 46

⇒ Last lecture: checkout specific commits via their SHA-1 hash
→ creates detached head

⇒ Often you want to release your software to the public at specific
commits

→ tags provide a option to "tag" or mark a commit

⇒ List available tags via git tag

→ you can search for tags using a regex via
 git tag -l "<regex>"

15.12 Creating tags

26 / 46

⇒ There are two types of tags:

1) lightweight 2) annotated

⇒ lightweight tags are just a reference to a commit (i.e., the
checksum)

→ use git tag <tagname> to create a lightweight tag
→ you need to explicitly push a tag to a remote via
 git push origin <tagname>
→ checkout a tag via git checkout <tagname>

15.12 Creating tags

⇒ to create an annotated tag (with a message) use

 git tag -a <tagname> -m "tag message"

⇒ to retrieve tag info, use git show <tagname>

⇒ push tag via git push origin <tagname>

more on tags: https://git-scm.com/book/en/v2/Git-Basics-Tagging

27 / 46

https://git-scm.com/book/en/v2/Git-Basics-Tagging

Commit messages

15.13 How to write good commit messages

⇒ writing good commit
messages is an art for itself

⇒ Try to make them informative
and to keep track of changes

⇒ If you make a pull request or
push onto a public branch, have
clean & clear commit
messages

29 / 46

15.13 How to write good commit messages

30 / 46

bad examples good examples

add cli new

fixes

fix code review comments

no message

description

wip

hackz

little edit

Fix error when the URL is not reachable

Add error message for file not found

Add server fingerprint check

Fix shadow box closing problem

15.13 How to write good commit messages
⇒ write in imperative mode: If commit is applied, <your message>

⇒ write a short subject line of a maximum of 50-72 chars and
 capitalize first word e.g.
 Fix float casting bug in compiler

⇒ add whitespace line, then details of your commit.

⇒ Don't explain how it was done, but instead what and why

31 / 46

More info: https://medium.com/@cvortmann/what-makes-a-good-commit-message-995d23687ad

https://medium.com/@cvortmann/what-makes-a-good-commit-message-995d23687ad

15.13 How to write good commit messages
50-character subject line
#
72-character wrapped longer description. This should answer:
#
* Why was this change necessary?
* How does it address the problem?
* Are there any side effects?
#
Include a link to the ticket, if any.
#
Add co-authors if you worked on this code with others:
#
Co-authored-by: Full Name <email@example.com>
Co-authored-by: Full Name <email@example.com>

32 / 46 template from https://thoughtbot.com/blog/write-good-commit-messages-by-blaming-others

https://thoughtbot.com/blog/write-good-commit-messages-by-blaming-others

Git workflows

15.14 Common git workflows

34 / 46

⇒ There are several collaboration models or workflows used in
(software) engineering teams:

→ central part of them is a pull request

→ most repository management systems like
 github/bitbucket/gitlab/… provide support for
 pull requests/reviews/...

Following slides are based on: https://www.slideshare.net/psquy/git-collaboration

https://www.slideshare.net/psquy/git-collaboration

15.14 Pull request
(1) Create feature on dedicated branch

in local repo
(2) Push branch to public

repository/remote
(3) file pull request to official repository
(4) other developers review code,

discuss it, update it
(5) project maintainer merges feature

into official repository and closes
the pull request

35 / 46

15.15 Four standard git workflows

36 / 46

15.16 Centralized workflow

⇒ one master branch on which everybody
works

37 / 46

Pro Con

+ simple flow
+ good for not-frequently

updated/changed projects

- more conflicts when many
developers work together

- no review or feature pull
requests allowed

- no branching
- everybody works on the

same branch
- high chance for dirty

master/problems

15.17 Forking workflow

⇒ everybody forks the official
repo, changes are added using
pull request to the official repo

38 / 46

Pro Con

+ standard used for
open-source projects

+ allows to incorporate
changes into "read" only
repos, i.e. not everybody
needs push access

+ less "code conflict" friction

- slower, because they require
maintainer to incorporate
changes

Note: a forked repo is a
"server-side" cloned repo

15.18 Feature branch workflow
⇒ best for small teams. Have 1-2 senior
engineers who merge in pull requests

⇒ Each developer creates for a feature a
separate branch and makes a pull
request

39 / 46

Pro Con

+ master branch not disturbed
by development

+ pull requests/reviews
+ easy to manage
+ good for internal projects

- develop vs. production?
- feature vs. hotfix?
- release tracking?
- dirty master branch?

15.19 Gitflow workflow
One master branch

One develop branch

One temporary branch
for each release

One feature branch for
each feature

One temporary hotfix
branch for each hotfix

40 / 46

15.19 Gitflow workflow

41 / 46

15.19 Gitflow workflow
⇒ naming conventions:

feature branch feature/<name>
hotfix branch hotfix/<name>
release branch release/v1.0

⇒ for practical management, there are plugins to support this workflow explicitly in git
 https://github.com/nvie/gitflow

42 / 46

Pro Con

+ separate release and dev
+ no dirty branch history
+ good for product with

release base

- need to follow conventions
to work smoothly

- many branches, overkill for
small projects

https://github.com/nvie/gitflow

Merging or rebasing?

Merging vs. rebasing
⇒ Some persons argue you should always rebase on the master before you file a
pull request.

⇒ this is more about faith than arguments, both solve the same problem

⇒ squash your commits when you make a pull request!

Rebase Merge

+ clean, linear history
+ scales well with many developers/branches
+ no extra merge commit
- more difficult, many developers make

mistakes
- reverting commits is difficult
- destructive operation

+ clear history, shows exactly what happened
+ non destructive
- leads to polluted and difficult to understand history
when many branches/developers are involved in a
project
- extra merge commit

Final words

⇒ don't push blindly to a remote,
 always examine first what you did.

→ fixing branches on a remote is
 difficult and may screw up
 your team member's
 working copies.

45 / 46

End of lecture.
Next class: Tue, 4pm-5:20pm @ CIT 477

