
CS6
Practical
System
Skills
Fall 2019 edition
Leonhard Spiegelberg
lspiegel@cs.brown.edu

14
CS6 Practical System Skills
Fall 2019
Leonhard Spiegelberg lspiegel@cs.brown.edu

Official git book: https://git-scm.com/book/en/v2

Atlassian tutorial: https://www.atlassian.com/git/tutorials
(many slides are actually based on this)

Learn Version Control with Git by Tobias Günther. ISBN: 9781520786506
available freely here: https://www.git-tower.com/learn/git/ebook/en/command-line/introduction

Cheatsheets:
https://github.github.com/training-kit/downloads/github-git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

⇒ Best however is learning by doing!

3 / 53

https://git-scm.com/book/en/v2
https://www.atlassian.com/git/tutorials
https://www.git-tower.com/learn/git/ebook/en/command-line/introduction
https://github.github.com/training-kit/downloads/github-git-cheat-sheet.pdf
https://about.gitlab.com/images/press/git-cheat-sheet.pdf
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

⇒ We have all been there…

- Code worked, then we made changes and it broke…
→ How to revert to an old version?

- Taking snapshots / versions in folders for backups
→ e.g. version01, version02, …?
→ keeping a changelog.txt?

- Using a Dropbox folder or gdrive to share a project?
→ let's have only one person working on the document
 to avoid conflicts or breaking changes…?

4 / 53

Version control system: software that tracks and manages changes on a
set of files and resources

→ systems usually designed for software engineering projects

Version control systems typically enable

⇒ automated versioning

⇒ to help teams to collaborate on projects

⇒ to automatically backup files

⇒ efficient distribution of updates via deltas 5 / 53

⇒ definitely: text files

- source files
- build files / make files

⇒ depends: project files and small binary files

- ok, if they do not change. E.g. small image files, ...

⇒ strictly no: large files, temporary files, !!!PASSWORDS!!!

6 / 53

⇒ There are multiple version control systems, popular are

git (this the defacto standard)

subversion

mercurial

+ many more that are not used anymore or are commercial

7 / 53

Created by Linus Torvalds in 2005
⇒ designed for linux kernel development

→ https://www.youtube.com/watch?v=4XpnKHJAok8

Git design goals:
⇒ speed
⇒ support for non-linear development and
 thousands of parallel branches
⇒ fully distributed
⇒ able to handle large projects efficiently

⇒ Git is the standard VCS used today.
8 / 53

https://www.youtube.com/watch?v=4XpnKHJAok8

Mac OS X:
brew install git (brew.sh)

Debian/Ubuntu:
sudo apt-get install git

Fedora/Redhat:
sudo yum install git

9 / 53

git is already installed on
department machines

You can install also git under
windows, but it's most stable

under *NIX systems.

We use git version 2.xx.x

Basic syntax:

git cmd parameters

⇒ to learn more about cmd,
type git help cmd

10 / 53

Before running commands, we need to specify a user and email
address under which changes are tracked.

git config --global user.name "tux"
git config --global user.email "tux@cs6.brown.edu"

⇒ use git config --list to list config params

11 / 53

mailto:tux@cs6.brown.edu

Repository = a virtual storage of your project.

⇒ Make a folder a repository by running git init within it.

→ this will create a (hidden) folder .git where all
 versioning files are stored.

Alternative: Run git init project_directory

⇒ If a folder is a git repository and on your machine,
 it's referred to as local repository too.

12 / 53

You can use a repo-specific user for all your changes, to do so

⇒ instead of git config --global, use
 git config user.name "tux" to set repo-specific
 user name

⇒ Analog, git config user.email "tux@cs.brown.edu"

13 / 53

Note: You can also use git config --local, which is the same as git config.

mailto:tux@cs.brown.edu

⇒ When working in git, you edit your local files in your local
working copy (aka local repository)

⇒ When you're done with your edits, you bundle changes in a
commit which can be seen as a snapshot.

⇒ git has three areas for a local git project/repository:

1. working area (i.e. working directory)
2. staging area
3. git area (i.e. git directory/repository)

14 / 53

15 / 53

Working directory Staging Area .git directory
(Repository)

stage files

commit files

checkout files

staged filesunmodified/modified files committed files

(1) Modify files in your working directory

(2) stage files by appending to the staging area (git add)

(3) commit files, which takes all files in the staging area and

creates a snapshot to be permanently stored as changeset in

the .git directory (git commit)

16 / 53

⇒ use git add to add files to the staging area

⇒ moves a file from untracked status to tracked status if it was
previously not tracked.

Syntax:

git add file

git add directory # e.g. git add .

git add *.html # using wildcard pattern

17 / 53

⇒ Use git status to get an overview of files
→ per default, long output enabled. Use -s for shorter output

⇒ after you added a file, you can print the changes via
 git status -v or git status -vv

⇒ After you staged all your files, you can create a commit via
 git commit -m "commit message"

18 / 53

19 / 53

tux@cs6demo:~$ mkdir repo && cd repo && git init
Initialized empty Git repository in /home/tux/repo/.git/
tux@cs6demo:~$ git config user.name "tux"
tux@cs6demo:~$ git config user.email "tux@cs6server.edu"
tux@cs6demo:~$ echo "Hello world" > README.md
tux@cs6demo:~$ git status
On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 README.md

nothing added to commit but untracked files present (use "git add" to track)
tux@cs6demo:~$ git add README.md
tux@cs6demo:~$ git status
On branch master

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: README.md
tux@cs6demo:~$ git commit -m "initial commit"
[master (root-commit) 486a8b1] initial commit
 1 file changed, 1 insertion(+)
 create mode 100644 README.md
tux@cs6demo:~$ git status
On branch master
nothing to commit, working tree clean

(1) create repo

(2) set repo-specific user

(3) untracked new file in
working directory

(4) git add stages the file

(5) git commit snapshots the
stage area

20 / 53

To remove a file from the staging area, use

git reset -- file

Tip: you can set an alias for a command in git, i.e. to have git unstage file instead of git
reset -- file , use git config --global alias.unstage 'reset --'

two dashes here used to indicate it's
a file we want to reset

⇒ Besides adding files, removal is tracked too.

⇒ There are two options to remove a file:

1. git rm file
2. rm file && git add file

⇒ git rm is basically a shortcut for rm && git add

⇒ Note: Rather than "removing" the file from version control,
 this creates a change which removes the file.

21 / 53

⇒ Sometimes you have files in your directory, which you don't
want to track

→ can be folders, system files (e.g. on Mac OS X: .DS_Store)

⇒ create in dir of repository a file .gitignore with a glob pattern
on each line to ignore certain files in this directory

⇒ you can also create a global .gitignore file, which is applied in
addition to your local .gitignore

→ git config --global core.excludesFile ~/.gitignore

22 / 53

23 / 53

Note: To add a file which is
ignored by a .gitignore file, you

can force add it via
git add -f file

⇒ for more examples on gitignore files confer e.g.
https://www.atlassian.com/git/tutorials/saving-changes/gitignore

comments in ignore files are done via
*.csv
ignored_folder/

.gitignore

/ indicates this is a
directory to be ignored.

This would NOT ignore a
file called

ignored_folder

https://www.atlassian.com/git/tutorials/saving-changes/gitignore

⇒ git creates for each commit a SHA-1 hash (40 character string of
hex digits).

⇒ Often only part of the hash is shown, part of it or the full hash
can be used to reference a specific commit.

24 / 53

tux@cs6demo:~$ git commit -m "initial commit"
[master (root-commit) 486a8b1] initial commit

part of the hash belonging
to this commit

You can change a commit using git commit --amend

⇒ this opens up the editor you configured to be used by git
(typically vim).

⇒ only use this on the last commit

⇒ can be used to change the commit message
 and add or remove files.

25 / 53

To undo a commit there are two options:
⇒ use git revert. Only use git reset if you know what you're
doing.

1) git revert [commit sha] ⇒ creates a new commit which
reverts changes

2) git reset [--hard] commit ⇒ reset repo to commit, if
hard is specified discard changes.

26 / 53

⇒ commits form a directed acyclic graph(DAG) with branches,
 i.e. each node is a commit. Often (incorrectly) referred to as commit tree.

27 / 53

HEAD

Branch A

Branch B

HEAD

branch merge

git branch
branch out, i.e. create a new branch.

Visually it is "forking" the DAG.

git checkout going to a commit node

git merge merging two commits together

git rebase placing commits on top of each other

To work with the DAG, there are multiple commands:

29 / 53

⇒ You can create a new branch via

git branch branch_name or

git checkout -b branch_name

⇒ list existing branches via git branch

⇒ you can delete a branch via git branch -d branch_name

30 / 53

current commit

new branch created

⇒ you can checkout a branch or commit, i.e. replace the files in
your working directory with the ones belonging to this commit

⇒ git checkout hash to go to a specific head
→ this will create a new, temporary branch
 called a detached HEAD

⇒ to checkout a branch (i.e. the tip or most recent commit of a
 branch), use git checkout branch

⇒ Example: git checkout master
⇒ Reminder: overview of branches via git branch

31 / 53

⇒ use git log to see a history of commits with their messages

→ git log -n to print out n last messages.
→ git log has many more useful options to search through history

32 / 53

Website repo for course website:

⇒ sometimes you want to see an old version of your work, you can
do so by checking out a commit via its hash (or parts of it)

⇒ Example: git checkout f21a12b7abc

33 / 53

tux@cs6demo ~$ git branch
* (HEAD detached at f21a12b)
 dev1
 master

detached head

⇒ You can also checkout a commit relative to the most recent one,
for this do git checkout HEAD~n

⇒ Example: git checkout HEAD~1

⇒ you can create a new branch from
a detached head via branch/checkout

34 / 53

Note: git checkout HEAD~0 creates a
detached HEAD from the current head! git
checkout HEAD just stays on the current

commit

HEAD

37 / 53

⇒ to join two branches (or commits), git provides two mechanisms:

1. git merge (today)
2. git rebase (next lecture)

⇒ For now assume we want to join a branch feature
 with a branch master

⇒ Rebase "replays" changes on top of the branch to rebase on
⇒ Merge creates a new merge commit
⇒ More on differences/use cases next lecture

38 / 53

rebasing merging

git has an automatic merging algorithm, which often does a good job.

⇒ git merge can be configured to use different merge strategies

39 / 53

⇒ to merge a branch feature into a branch master do

git checkout master # go to master branch
git merge feature # merge feature into master

or as one-line version:
git merge master feature

40 / 53

git init
echo -e "README\n----" > README.md
git add . && git commit -m "initial commit"
git checkout -b feature
echo "This is the one and only true README
from feature branch" >> README.md
git commit -a -m "feature readme update"
git checkout master
echo "Only the master branch has the wisdom
to write a README" >> README.md
git commit -a -m "master README update"

tux@cs6server ~$: git merge feature
Auto-merging README.md
CONFLICT (content): Merge conflict in
README.md
Automatic merge failed; fix conflicts and
then commit the result.

41 / 53

initial
commit

feature
readme
update

master
README

update

merge
commit

⇒ git complains for git merge master feature about a merge conflict
 and that we should fix it.
 Tip: you can abort a merge via git merge --abort

⇒ for text files, git adds annotations to mark conflicts

42 / 53

README

<<<<<<< HEAD
Only the master branch has the wisdom to write a README
=======
This is the one and only true README from feature branch
>>>>>>> feature

README.md

HEAD of the branch we
are merging into

feature is the branch that
is merged in

We have 3 options to resolve a merge conflict:

1. take the version of feature
git checkout --theirs file

2. take the version of master
git checkout --ours file

3. manually create a merged file

After all conflicts are resolved, create a merge commit via git
commit.

⇒ more advanced conflict resolution next lecture. 43 / 53

45 / 53

⇒ to collaborate with others, need to share changes

⇒ for this remotes are used, i.e. servers which host a remote
version of the repo

⇒ pull changes from remote or push changes to remote

Remote
repo

local
repo

local
repo

pull

push

pull

push

⇒ remote repository are typically hosted in the cloud

⇒ There are several popular repository hosting platforms like

Github (Microsoft)
Bitbucket (Atlassian)
GitLab (GitLab Inc.)

⇒ Most open-source projects are on one of these platforms

46 / 53

git remote add <remote_name> <remote_repo_url>

→ maps a remote repository at remote_repo_url to remote_name

⇒ typically origin as name is used if you have a single remote.

Example:
git remote add origin https://github.com/cs6tux/lec12.git

⇒ git remote -v lists available remotes

47 / 53

⇒ Typical workflow: Go to your favourite hosting platform and
create a new remote repo and initialize it with a single file.

⇒ you can also clone the remote repository to get a local copy via
 git clone.

⇒ when git clone is used, this sets up a remote called origin
automatically pointing to the remote from where the repository was
cloned from

48 / 53

Note: You can clone via password
based authentication OR use SSH keys!
⇒ SSH keys allow you to work faster!

git push -u remote_name branch_name

⇒ pushes local branch to remote branch called branch_name
→ if empty, creates remote branch based on current one

⇒ --set-upstream is the long option for -u

⇒ this automatically
sets up tracking for
that branch

49 / 53

If you want to use a different user, you
can disable the credential helper via

git config --local
credential.helper ""

⇒ To list available remote branches, use git branch -r
⇒ remote branches can be fetched via git fetch
⇒ to pull changes on one branch (which tracks a remote branch)
 use git pull

⇒ you can checkout a remote branch by using
 git checkout origin/master - this creates a detached HEAD.
⇒ more convenient:

1. git checkout -b mybranch origin/feature
2. git checkout --track origin/feature

50 / 53

create mybranch which
has upstream

origin/feature

create local branch
feature which has

upstream
origin/feature

51 / 53

Typical steps when working on a branch:

git checkout branch # switch to branch you want to work on
...edit files…
git status # check what files are modified
git add . # add changes
git status # check which files are staged
git commit -m "write a message" # commit changes
git pull # fetch any changes from remote branch
… merge or rebase …
git push # push changes to remote

52 / 53

Exam next Tue, 4pm-5:20pm @ CIT 477

