Lecture 21 Working with Diagnostic Medical Images (in MATLAB)

Lecture 21 #goals

Medical Images

- Imaging for Medical Diagnostic
- DICOM Data Format
- Commercial Software
- MATLAB DICOM tools (Image Processing Toolbox)

MATLAB Graphics Properties

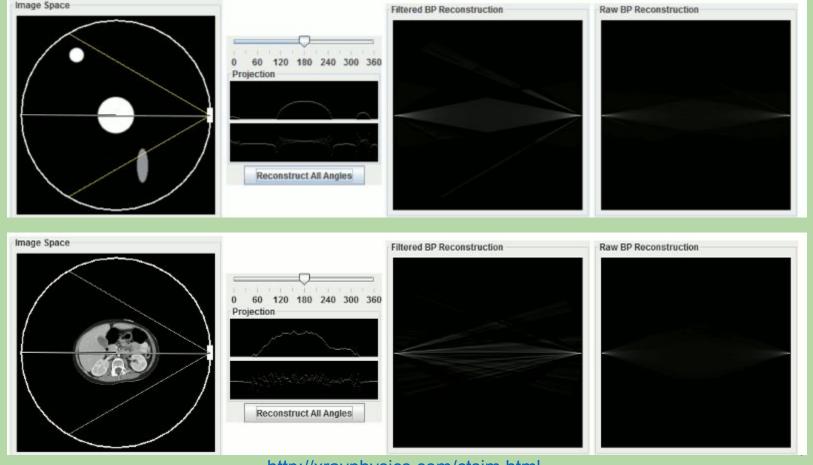
- Property Browser
- read/write properties

3D Data Visualization

- Plotting Slices
- Plotting Isosurfaces

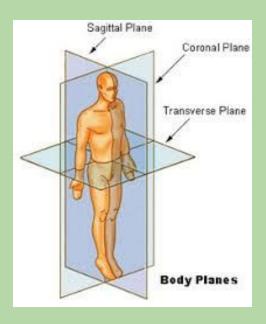
Imaging for Medical Diagnostics

Many types of diagnostic medical imaging machines are used in practice. The most common examples include:


- X-ray
- computed tomography (CT)
- magnetic resonance imaging (MRI)
- positron emission tomography (PET)
- ultrasound

Imaging for Medical Diagnostics

CT scans generate 'volumetric' information by applying numerical computations ('backpropagation') on a series of x-ray images taken at different angles and locations.


http://xrayphysics.com/ctsim.html


Imaging for Medical Diagnostics

Captured "images" can be 2D, 3D, 4D, ...

All medical images have key characteristics:

- subject orientation/coordinates
- image resolution/accuracy
- tissue density to image intensity mapping
- total contrast/dynamic range
- patient information (sensitive metadata)

Digital Imaging and Communications in Medicine (DICOM) Standard

Joint project by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA)

- v1.0 published in 1985
 - X-Rays
 - CT scans
- v3.0 is the current version of the standard & supports numerous medical imaging data types
 - MRI scans
 - Dentistry
 - Surgical planning
 - 3D ultrasound
 - 3D printed instrument files
 - and many more...

DICOM Standard Images

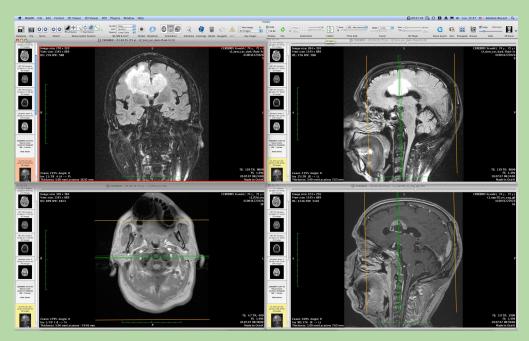
Pixel intensity values are different for each imaging type

- X-ray (intensity = gamma ray absorption level)
 - Bones => light
 - Soft tissues => dark
- MRI (intensity = frequency response of an RF pulse)

Image contrast, or the intensity difference between tissue types, is needed to show features of interest

Each file contains a 2D "slice" of imaging data

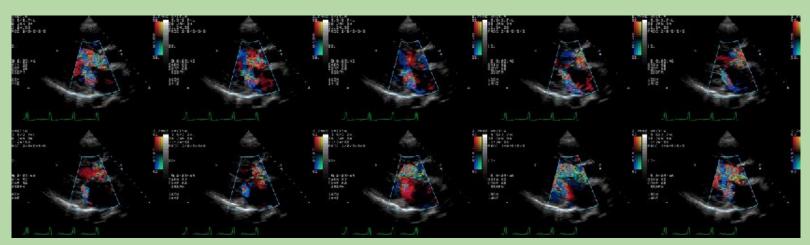
- 8-bit (0, 255) or 16-bit (0, 65,535) levels
- RGB (MxNx3) or Grayscale (MxNx1)


Commercial DICOM Software

Many commercial software packages exist for viewing and editing DICOM standard images

 These packages are primarily developed for the medical community (radiologists, general practitioners, patients, etc.)

Examples:


- OsiriX for OS X
 - free "Lite" version
- <u>MicroDicom</u> for Windows
 - free viewer

DICOM Images in MATLAB

MATLAB supports DICOM import/export since 2006

- Part of the Image Processing Toolbox (optional installation package)
- Reads in DICOM standard files
- Writes 3 types of DICOM files (Secondary capture, MRI, CT)

DICOM ultrasound "snapshots" plotted in MATLAB

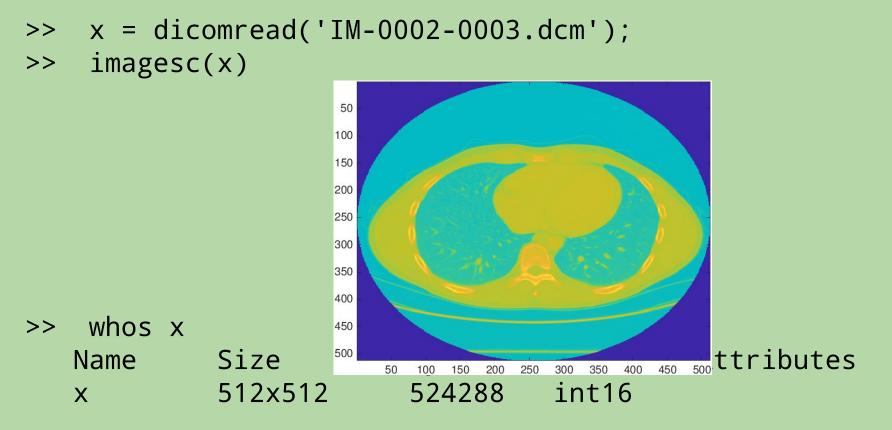
Source: https://www.mathworks.com/help/images/ref/dicomread.html

DICOM Images in MATLAB

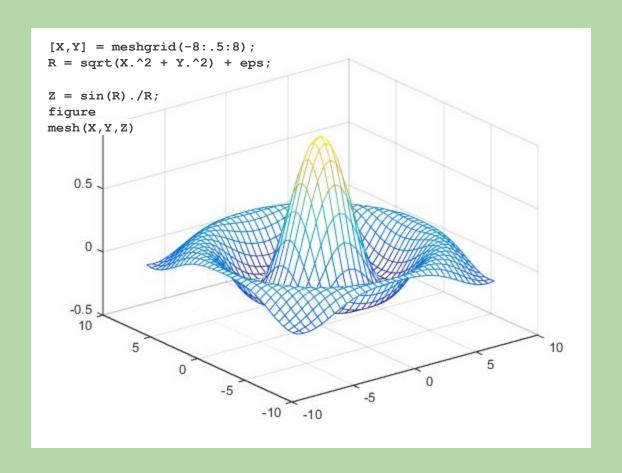
dicomdisp(filename) - Displays DICOM file structure on command line

dicominfo(filename) - Reads metadata from DICOM file into struct

X = **dicomread**(filename) - Reads a DICOM image


[X, colormap, alpha, overlaps] = **dicomread**(filename)
Also reads the colormap, alpha channel, and any overlays, if they exist

dicomwrite(X, filename) - Write images as DICOM files


Note: dicomreadVolume exists, but don't use it for homework.

DICOM Images in MATLAB

Once the DICOM image is read into a variable, we can treat it as any normal image


MATLAB Graphics Properties

MATLAB Graphics Objects

Every graphics object (figure, axis, surface, line, light, etc.) has a set of properties.

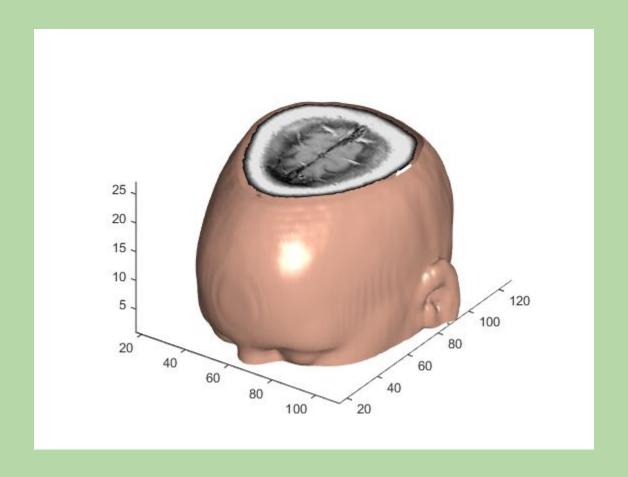
These properties can be viewed or modified using the Property Inspector.

MATLAB Graphics Objects

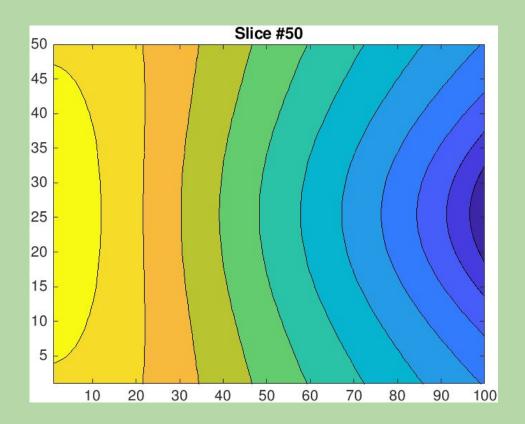
Alternatively, we can access properties as object attributes

```
>> fh = figure;
>> fh.Color = [1 1 1] % set background to white
>> x = plot(randn(1000,1));
>> x.LineStyle = ':';
>> x.LineWidth = 2;
```

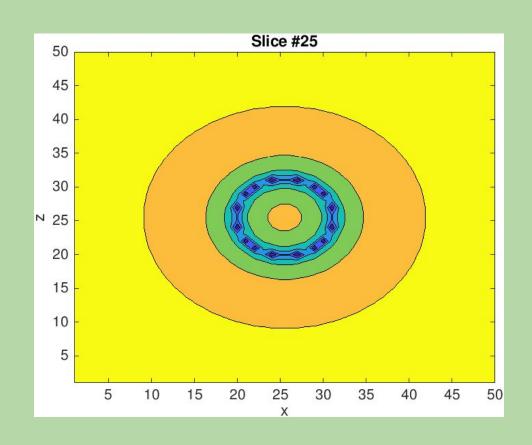
In older releases of MATLAB we can use 'get' and 'set' commands.


```
>> x = get(fh, 'XScale');
>> set(fh, 'XScale', 'log')
```

MATLAB Graphics Objects


Without the object handle, you will need to use 'gca', 'gcf', or 'gco' ("Get current (axis|figure|object)"). These commands retrieve the handle of the most recently accessed axis, figure, or object.

```
>> x = get(gco, 'XScale');
>> set(gcf, 'Position', [1 1 640 480])
```


3D Data Visualization

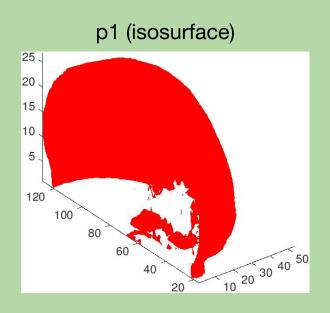

```
x = flow(50);
%% plotting X-Y axis
fh = figure;
for n = 1:size(x,3)
    xslice = x(:,:,n);
    contourf(xslice);
    xlabel('x')
    ylabel('y')
    title(sprintf('Slice #%d',n))
    pause(0.1)
end
```

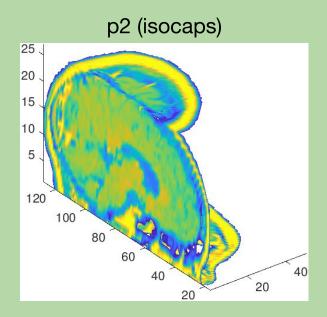


```
x = flow(50);
%% plotting X-Z axis
fh = figure;
for n = 1:size(x,2)
    xslice = squeeze(x(:,n,:));
    contourf(xslice);
    xlabel('x')
    ylabel('z')
    title(sprintf('Slice #%d',n))
    pause(0.1)
end
```

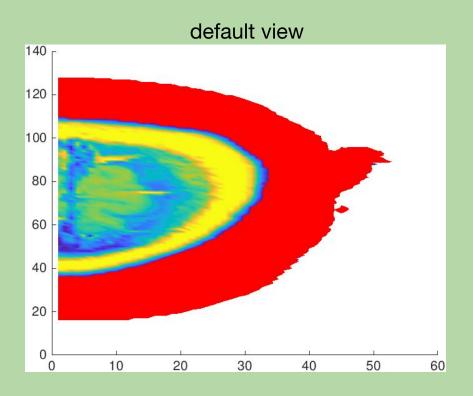

"slicing" into 3D Matrices

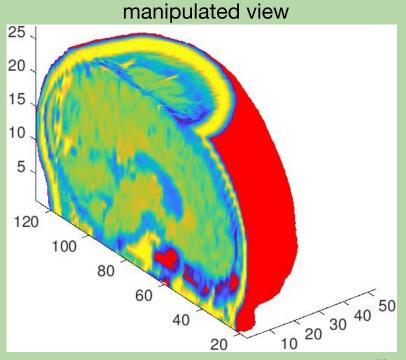
Selecting sub-volumes can be done with standard indexing

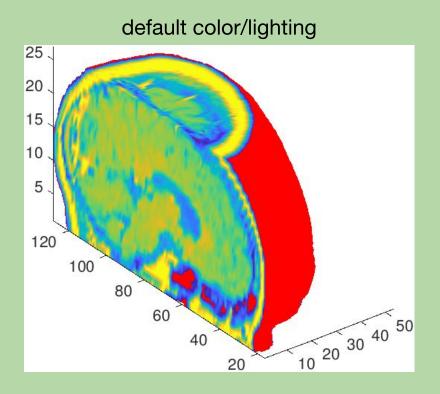

```
data = flow; % load 'flow' dataset

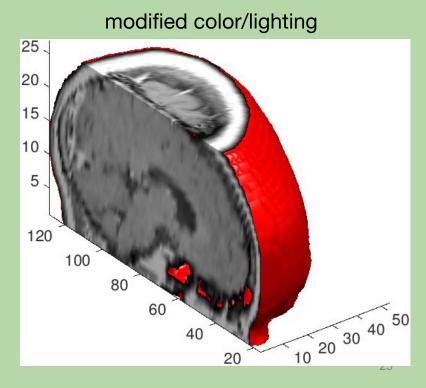

xIdx = 20:40;
yIdx = 5:2:end;
zIdx = 10:35;

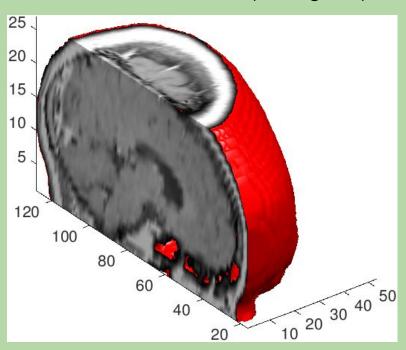
subdata = data(xIdx,yIdx,zIdx);
```

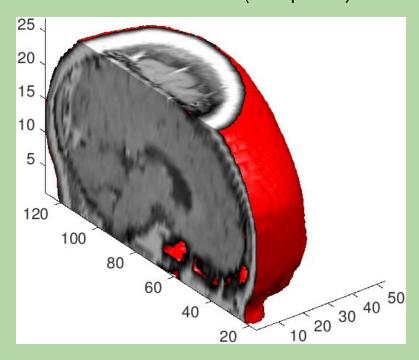

```
>> load mri
                  % load built-in MRI data set
>> whos
Name
     Size
                  Bytes Class Attributes
 128x128x1x27 442368 uint8
D
map 89x3
                  2136 double
siz 1x3
                  24
                        double
>> D = squeeze(D); % remove 'singleton' dimension
>> D(:,1:60,:) = []; % delete half of data about y-axis
>> whos
Name Size
                  Bytes Class Attributes
 128x68x1x27
                  235008 uint8
map 89x3
                  2136 double
siz 1x3
                  24
                        double
```


%% plot volumetric surfaces




%% manipulate view
view(3)
axis tight
daspect([1,1,.4])


%% modify color and lighting effects
colormap(gray(100))
camlight left
camlight
lighting gouraud



%% smooth out isosurface by computing normals from data
isonormals(D,p1)

default isonormals ('Triangular')

modified isonormals (computed)

isonormals generally creates a smoother surface finish

FV = isosurface(X,Y,Z,V,ISOVALUE) computes isosurface geometry for data V at isosurface value ISOVALUE.

FVC = isocaps(X,Y,Z,V,ISOVALUE) computes isosurface end
cap geometry for data V at isosurface value ISOVALUE

N = isonormals(X,Y,Z,V,VERTICES) computes the normals of isosurface vertices VERTICES by using the gradient of the data V.

Generate the 3D coordinate system (or assume default unit spacing)

```
>> [XX,YY,ZZ] = meshgrid(...)
```

MATLAB can also handle non-uniform grids, but requires user to create 3D grid manually

Transformations of 3D Matrices

Affine transformations (translation and rotation of data) can be performed by modifying the x, y, z coordinates

Translation along x-axis

$$X = X + deltaX;$$

Translation along y-axis

$$Y = Y + deltaY;$$

Translation along z-axis

$$Z = Z + deltaZ;$$

Transformations of 3D Matrices

Rotation about X-axis:

```
X = X;
Y = Y*cos(theta) - Z*sin(theta);
Z = Y*sin(theta) + Z*cos(theta);
```

Rotation about Y-axis:

```
X = X*cos(theta) + Z*sin(theta);
Y = Y;
Z = Z*cos(theta) - X*sin(theta);
```

Rotation about Z-axis:

```
X = X*cos(theta) - Y*sin(theta);
Y = X*sin(theta) + Y*cos(theta);
Z = Z;
```

Building a 3D volumetric image from 2D medical images requires stacking each image. The (x,y,z) coordinates will need to be tracked carefully.

- 2) import each 2D medical image x = dicomread(filename);
- 3) save each image to a slice in the 3D matrix V(:,:,n) = x;

V(x,y,z) => single pixel ("voxel" in 3D) at index x,y,z

Note: verify the size of each image to make sure it is M x N!

#puppiesrule

