
1

Lecture 13
Intro to Connect Four AI

• Two players, each with one type of checker

• 6 x 7 board that stands vertically

• Players take turns dropping a checker
into one of the board's columns.

• Win == four adjacent checkers in any direction:

 horizontal vertical up diagonal down diagonal

hw07: Connect Four!

2

Board Class for Connect Four

class Board:
 def __init__(self, height, width):
 ...

 def __repr__(self):
 ...

 def add_checker(self, checker, col):
 ...

 # plus other methods!

slots

width 6

height 5

Board objectb

' ' ' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' 'X' ' ' ' '

' ' ' ' 'O' 'X' 'O' ' '

' ' 'X' 'O' 'X' 'O' ' '

'X' 'O' 'O' 'O' 'X' 'X'
3

class Player:

 def __init__(self, checker):
 ...

 def __repr__(self):
 ...

 def opponent_checker(self):
 ...

 def next_move(self, board):
 self.num_moves += 1

 while True:
 col = int(input('Enter a column: '))
 # if valid column index, return that integer
 # else, print 'Try again!' and keep looping

Player Class

Player objectp

num_moves 0

checker 'X'

p = Player('X')

4

The APIs of Our Board and Player Classes

class Board:
 __init__(self,col)
 __repr__(self)
 add_checker(self,checker,col)
 clear(self)
 add_checkers(self,colnums)
 can_add_to(self,col)
 is_full(self)
 remove_checker(self,col)
 is_win_for(self,checker)

class Player:
 __init__(self,col)
 __repr__(self)
 opponent_checker(self)
 next_move(self,board)

Make sure to take
full advantage

of these methods
in your work

on hw06!

5

(for you to implement)

(provided)

def process_move(player, board):
 ‘’’Applies a player object’s next move to a board object.
 Returns true if the player wins or a tie occurs,
 False otherwise’’’
 pass

def connect_four(player1, player2) # provided in stencil
 ‘’’Plays a connect four game between player1 and player2,
 Returns the final board configuration.’’’

 while True: % Play until a win or tie occurs.
 if process_move(player1, board):
 return board

 if process_move(player2, board):
 return board

6

What are the appropriate method calls?

class Board:
 __init__(self,col)
 __repr__(self)
 add_checker(self,checker,col)
 clear(self)
 add_checkers(self,colnums)
 can_add_to(self,col)
 is_full(self)
 remove_checker(self,col)
 is_win_for(self,checker)

class Player:
 __init__(self,col)
 __repr__(self)
 opponent_checker(self)
 next_move(self,board)

client code
def process_move(player,board):
 ...

 # get move from player
 col = _____________

 # apply the move

 ...

7

What are the appropriate method calls?

class Board:
 __init__(self,col)
 __repr__(self)
 add_checker(self,checker,col)
 clear(self)
 add_checkers(self,colnums)
 can_add_to(self,col)
 is_full(self)
 remove_checker(self,col)
 is_win_for(self,checker)

class Player:
 __init__(self,col)
 __repr__(self)
 opponent_checker(self)
 next_move(self,board)

client code
def process_move(player,board):
 ...

 # get move from player
 col = player.next_move(board)

 # apply the move
 board.add_checker(..., col)
 ...

8

Inheritance in Connect Four

• Player – the superclass

• includes fields and methods needed by all Connect 4 players

• in particular, a next_move method

• use this class for human players

9

Inheritance in Connect Four

• Player – the superclass

• includes fields and methods needed by all C4 players

• in particular, a next_move method

• use this class for human players

• RandomPlayer – a subclass for an unintelligent computer player

• no new fields

• overrides next_move with a version that chooses at random
from the non-full columns

10

Inheritance in Connect Four

• Player – the superclass

• includes fields and methods needed by all C4 players

• in particular, a next_move method

• use this class for human players

• RandomPlayer – a subclass for an unintelligent computer player

• no new fields

• overrides next_move with a version that chooses at random
from the non-full columns

• AIPlayer – a subclass for an "intelligent" computer player

• uses AI techniques

• new fields for details of its strategy

• overrides next_move with a version that tries to determine
the best move!

11

Using the Player Classes

• Example 1: two human players

 >>> connect_four(Player('X'), Player('O'))

• Example 2: human player vs. AI computer player:

 >>> connect_four(Player('X'), AIPlayer('O', 'LEFT', 3))

• connect_four() repeatedly calls process_move():

def connect_four(player1, player2):
 print('Welcome to Connect Four!')
 print()
 board = Board(6, 7)
 print(board)

 while True:
 if process_move(player1, board):
 return board
 if process_move(player2, board):
 return board

12

OOP == Object-Oriented Power!

• Which version of next_move gets called?

def process_move(player, board):
 ...

 col = player.next_move(board)

 ...

13

OOP == Object-Oriented Power!

• Which version of next_move gets called?

• It depends!

• if player is a Player object, call next_move from that class

• if player is a RandomPlayer, call that version of next_move
• if player is an AIPlayer, call that version of next_move

• The appropriate version is automatically called, depending on which
object player was defined as!

def process_move(player, board):
 ...

 col = player.next_move(board)

 ...

14

class Player:

 def __init__(self, checker):
 ...

 def __repr__(self):
 ...

 def opponent_checker(self):
 ...

 def next_move(self, board):
 self.num_moves += 1

 ???

RandomPlayer, AIPlayer Class

Player objectp

num_moves 0

checker 'X'

p = Player('X')

15

Make no mistake about it:
computers process numbers – not symbols.

Computers can only help us to the extent that
we can arithmetize an activity.

- paraphrasing Alan Perlis

Why AI Is Challenging

16

"Arithmetizing" Connect Four

• Our AIPlayer assigns a score to each possible move

• i.e., to each column

• It looks ahead some number of moves into the future
to determine the score.

• lookahead = # of future moves that the player considers

17

"Arithmetizing" Connect Four

• Our AIPlayer assigns a score to each possible move

• i.e., to each column

• It looks ahead some number of moves into the future
to determine the score.

• lookahead = # of future moves that the player considers

• Scoring columns:

 –1: an already full column

18

"Arithmetizing" Connect Four

• Our AIPlayer assigns a score to each possible move

• i.e., to each column

• It looks ahead some number of moves into the future
to determine the score.

• lookahead = # of future moves that the player considers

• Scoring columns:

 –1: an already full column

 0: if we choose this column, it will result in a loss
at some point during the player's lookahead

19

"Arithmetizing" Connect Four

• Our AIPlayer assigns a score to each possible move

• i.e., to each column

• It looks ahead some number of moves into the future
to determine the score.

• lookahead = # of future moves that the player considers

• Scoring columns:

 –1: an already full column

 0: if we choose this column, it will result in a loss
at some point during the player's lookahead

 100: if we choose this column, it will result in a win
at some point during the player's lookahead

20

"Arithmetizing" Connect Four

• Our AIPlayer assigns a score to each possible move

• i.e., to each column

• It looks ahead some number of moves into the future
to determine the score.

• lookahead = # of future moves that the player considers

• Scoring columns:

 –1: an already full column

 0: if we choose this column, it will result in a loss
at some point during the player's lookahead

 100: if we choose this column, it will result in a win
at some point during the player's lookahead

 50: if we choose this column, it will result in
neither a win nor a loss during the player's lookahead

21

 0 moves are made!

to
move

LA-0 scores for

A Lookahead of 0

'X'
'O'

• A lookahead-0 player only assesses the current board
(0 moves!).

22

-1

LA-0 scores for

A Lookahead of 0

'X'
'O'

• A lookahead-0 player only assesses the current board
(0 moves!).

23

 0 moves are made!

to
move

-1 50 50 50 50 50 50

LA-0 scores for

A Lookahead of 0

'X'
'O'

• A lookahead-0 player only assesses the current board
(0 moves!).

24

 0 moves are made!

to
move

to
move

LA-1 scores for

A Lookahead of 1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

 1 move is made!

-1

25

to
move

LA-1 scores for

A Lookahead of 1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

 1 move is made!

-1 50

26

to
move

LA-1 scores for

A Lookahead of 1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

 1 move is made!

-1 50 50

27

to
move

LA-1 scores for

A Lookahead of 1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

-1 50 50 50

28

 1 move is made!

to
move

LA-1 scores for

A Lookahead of 1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

A lookahead-1 player
will "see" an

impending victory.

-1 50 50 50 100

29

 1 move is made!

to
move

LA-1 scores for

A Lookahead of 1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

-1 50 50 50 100 50

30

 1 move is made!

to
move

LA-1 scores for

A Lookahead of 1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

-1 50 50 50 100 50 50

31

 1 move is made!

to
move

LA-1 scores for

A Lookahead of 1
• A lookahead-1 player assesses the outcome of only

the considered move.

A lookahead-1 player
will "see" an

impending victory.

next_move
will return 4 for
AIPlayer!

-1 50 50 50 100 50 50

32

A Lookahead of 1
• A lookahead-1 player assesses the outcome of only

the considered move

 How do these scores change if it is ‘s
turn instead of ‘s?

Let’s look at the lookahead-2 scores for the player.

33

to
move

LA-2 scores for

A Lookahead of 2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I () make this move, and then my opponent ()

makes its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

-1

34

A Lookahead of 2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I () make this move, and then my opponent ()

makes its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

35

to
move

LA-2 scores for
-1 0

A Lookahead of 2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

36

to
move

LA-2 scores for
-1 0 0

A Lookahead of 2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

37

to
move

LA-2 scores for
-1 0 0 0

A Lookahead of 2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

38

to
move

LA-2 scores for
-1 0 0 0 50

If moves into
column index 4, then
all of ‘s directly
subsequent moves will
result in neither a win
nor a loss for .

to
move

LA-2 scores for

A Lookahead of 2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

A lookahead-2 player
will "see" a way to win

or
a way to block the
opponent's win.

-1 0 0 0 0 050

39

to
move

LA-2 scores for

A Lookahead of 2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

Try it!

40

to
move

LA-2 scores for

A Lookahead of 2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

-1 50 50 50 50 50100Try it!

41

AI for Connect Four (cont.)

based in part on notes from the CS-for-All curriculum
developed at Harvey Mudd College

42

Recall: "Arithmetizing" Connect Four

• Our AIPlayer assigns a score to each possible move

• i.e., to each column

• It looks ahead some number of moves into the future
to determine the score.

• lookahead = # of future moves that the player considers

• Scoring columns:

 –1: an already full column

 0: if we choose this column, it will result in a loss
at some point during the player's lookahead

 100: if we choose this column, it will result in a win
at some point during the player's lookahead

 50: if we choose this column, it will result in
neither a win nor a loss during the player's lookahead

43

to
move

LA-0 scores for

Example 2: LA-0

'X'
'O'

• A lookahead-0 player only assesses the current board
(0 moves!).

50 50 50 50 50 -150

44

to
move

LA-0 scores for

Example 2: LA-1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

50 50 50 50 50 -150What scores change
with the increased LA?

45

to
move

LA-1 scores for

Example 2: LA-1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

50 50 50 50 50 -150What scores change
with the increased LA?

none of them!

46

to
move

LA-1 scores for

Example 2: LA-2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

50 50 50 50 50 -150What would change?

47

to
move

LA-2 scores for

Example 2: LA-2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

0 0 50 0 0 -10

For example,
if black moves here →
red can win by going
to column 2 as shown.

48

to
move

LA-2 scores for

LA-3!

'X'
'O'

• A lookahead-3 player looks 3 moves ahead.
• what if I make this move, and then my opponent makes

its best move, and then I make my best subsequent move?
• note: we assume the opponent looks ahead 3 – 1 = 2 moves

0 0 50 0 0 -10What would change?

49

to
move

LA-3 scores for

LA-3!

'X'
'O'

• A lookahead-3 player looks 3 moves ahead.
• what if I make this move, and then my opponent makes

its best move, and then I make my best subsequent move?
• note: we assume the opponent looks ahead 3 – 1 = 2 moves

0 0 0 0 -10100

50

2

1

3

to
move

LA-0 scores for

Example 2: LA-0

'X'
'O'

• A lookahead-0 player only assesses the current board
(0 moves!).

50 50 50 50 50 -150same board,
different player,

same LA-0 scores

51

to
move

LA-1 scores for

Example 2: LA-1

'X'
'O'

• A lookahead-1 player assesses the outcome of only
the considered move.

50 50 100 50 50 -150

52

What Are the LA-2 Scores for ?
• Look 2 moves ahead. Assume the opponent looks 1 move

ahead.

A.

B.

C.

to
move

← LA-1 scores

50 50 100 50 50 -10

0 0 100 0 0 -10

50 50 100 50 50 -150

50 50 100 50 50 -150

← no change?

53

to
move

LA-2 scores for

Example 2: LA-2

'X'
'O'

• A lookahead-2 player looks 2 moves ahead.
• what if I make this move, and then my opponent makes

its best move?
• note: we assume the opponent looks ahead 2 – 1 = 1 move

50 50 100 50 50 -10C.

54

to
move

LA-2 scores for

Example 2: LA-3

'X'
'O'

• A lookahead-3 player looks 3 moves ahead.
• what if I make this move, and then my opponent makes

its best move, and then I make my best subsequent move?
• note: we assume the opponent looks ahead 3 – 1 = 2 moves

50 50 100 50 50 -10What would change?

55

to
move

LA-3 scores for

LA-3!

'X'
'O'

• A lookahead-3 player looks 3 moves ahead.
• what if I make this move, and then my opponent makes

its best move, and then I make my best subsequent move?
• note: we now assume the opponent looks ahead 2 moves

50 50 100 50 50 -10What would change?
nothing

56

to
move

LA-3 scores for

LA-4!

'X'
'O'

• A lookahead-4 player looks 4 moves ahead.
• assumes the opponent looks ahead 4 – 1 = 3 moves

50 50 100 50 50 -10What would change?

57

to
move

LA-4 scores for

LA-4!

'X'
'O'

• A lookahead-4 player looks 4 moves ahead.
• assumes the opponent looks ahead 4 – 1 = 3 moves

1

2

3

4

0 0 100 0 0 -10Consider column 0:
1. 'O' moves there.
2. 'X' moves to 2.
3. 'O' moves to 4 to

block a diagonal win.
4. 'X' still wins

horizontally!

Same thing holds for the
other col's with new 0s.

58

LA-0 scores for 'O':
col 0 col 1 col 2 col 3 col 4 col 5 col 6

LA-1 scores for 'O':
col 0 col 1 col 2 col 3 col 4 col 5 col 6

LA-2 scores for 'O':
col 0 col 1 col 2 col 3 col 4 col 5 col 6

LA-3 scores for 'O':
col 0 col 1 col 2 col 3 col 4 col 5 col 6

'X'

'O'
you - self - is

playing 'O'

Looks 0 moves into the future

Looks 1 move into the future

Looks 2 moves into the future

Looks 3 moves into the future

Try It!

59

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

-1

-1

-1

-1

50 50 50 50 50 50

50 50 100 50 50 50

0

0

100

100

0

0

0 0 50

10000

LA-0 scores for 'O':

LA-1 scores for 'O':

LA-2 scores for 'O':

LA-3 scores for 'O':

Looks 0 moves into the future

Looks 1 move into the future

Looks 2 moves into the future

Looks 3 moves into the future

Solutions

'X'

'O'
you - self - is

playing 'O'

60

61

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):

 ???

return scores

scores_for – the AI in AIPlayer!

62

col 2

col 1

col 0

Suppose you're playing
with LA 2...
For each column:
1) add a checker to it
2) ask an opponent with
LA 1 for its scores for the
resulting board!
3) assume the opponent
will makes its best move,
and determine your
score accordingly
4) remove checker!

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[0] = ?

scores_for

opp_scores = [50,50,50,50,50,100,50]
max(opp_scores) = 100
scores[1] = ?

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[2] = ?

col 3

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[3] = ?

 (self) 'X'
possible

next move

63

col 2

col 1

col 0

Suppose you're playing
with LA 2...
For each column:
1) add a checker to it
2) ask an opponent with
LA 1 for its scores for the
resulting board!
3) assume the opponent
will makes its best move,
and determine your
score accordingly
4) remove checker!

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[0] = 100
A loss for my opponent
is a win for me!

scores_for

opp_scores = [50,50,50,50,50,100,50]
max(opp_scores) = 100
scores[1] = 0
A win for my opponent is a loss for me!

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[2] = 100

col 3

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[3] = 100

 (self) 'X'
possible

next move

64

col 6

col 5

col 4

Suppose you're playing
with LA 2...
For each column:
1) add a checker to it
2) ask an opponent with
LA 1 for its scores for the
resulting board!
3) assume the opponent
will makes its best move,
and determine your
score accordingly
4) remove checker!

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[4] = 100

scores_for

opp_scores = [50,50,50,50,50,50,50]
max(opp_scores) = 50
scores[5] = 50
A draw for my opponent is a draw for me!

opp_scores =
[50,50,50,50,50,100,50]
max(opp_scores) = 100
scores[6] = 0

 (self) 'X'
possible

next move

65

 (self) 'X'Suppose you're playing
with LA 2...

 We've tried
 all columns!

scores_for

col 6

col 5

col 4col 3
col 2

col 1

col 0

scores[0] = 100

scores[1] = 0

scores[2] = 100 scores[3] = 100 scores[4] = 100
scores[5] = 50

scores[6] = 0

scores = [100, 0, 100, 100, 100, 50, 0]

possible
next move

66

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

67

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

68

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

69

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

70

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

71

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

72

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

73

 (self) 'X'Suppose you're playing
with LA 2...

 We've tried
 all columns!

scores_for

col 6

col 5

col 4col 3
col 2

col 1

col 0

scores[0] = 100

scores[1] = 0

scores[2] = 100 scores[3] = 100 scores[4] = 100
scores[5] = 50

scores[6] = 0

scores=[100, 0, 100, 100, 100, 50, 0]

possible
next move

What should
next_move

return? 74

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

75

def scores_for(self, board):
""" MUST return a list of scores – one for each column!!
"""
scores = [50] * board.width

for col in range(board.width):
 if col is full:
 use -1 for scores[col]
 elif already win/loss:
 use appropriate score (100 or 0)
 elif lookahead is 0:
 use 50
 else:
 try col – adding a checker to it
 create an opponent with self.lookahead – 1
 opp_scores = opponent.scores_for(...)
 scores[col] = ???
 remove checker

return scores

scores_for – the AI in AIPlayer!

76

class Player:

 def __init__(self, checker):
 ...

 def __repr__(self):
 ...

 def opponent_checker(self):
 ...

 def next_move(self, board):
 self.num_moves += 1
 scores = self.scores_for(board)
 return ???

RandomPlayer, AIPlayer Class

Player objectp

num_moves 0

checker 'X'

p = Player('X')

77

Breaking Ties

• possible moves: ???

scores = [100, 0, 100, 100, 100, 50, 0]
 0 1 2 3 4 5 6

78

Breaking Ties

• possible moves: [0, 2, 3, 4]

• self.tiebreak == 'LEFT': return 0

• self.tiebreak == 'RIGHT': return 4

• self.tiebreak == 'RANDOM': choose at random!

scores = [100, 0, 100, 100, 100, 50, 0]
 0 1 2 3 4 5 6

79

Connect Four Complexity

80

81

LA 1

LA 2

LA 0

• On average, Connect 4 players
have seven choices per move.

• LA-0 player considers 1 outcome.
• the current board

• LA-1 player considers 7 outcomes.

• LA-2 player considers 72 outcomes.
• each of its 7 moves, followed by each of its opponent's 7 moves

• LA-n player considers 7n outcomes.

• As LA increases, time taken by next_move grows exponentially!
>>> AIPlayer('X', 'RANDOM', 5).next_move(Board(6, 7)) # 1.1 sec
>>> AIPlayer('X', 'RANDOM', 6).next_move(Board(6, 7)) # 7.1 sec
>>> AIPlayer('X', 'RANDOM', 7).next_move(Board(6, 7)) # 49.1 sec
>>> AIPlayer('X', 'RANDOM', 8).next_move(Board(6, 7)) # 341.8 sec
>>> AIPlayer('X', 'RANDOM', 9).next_move(Board(6, 7)) # ~40 min!!

How Many Outcomes Are Considered?

...

it's okay if your times

are longer!

81

