Lecture 13
Intro to Connect Four Al

Connect Four!

hw07

—
Q
—~
Q
D
=
o
(-
S
D
Q.
B>
i)
D
<
o
=
h=
=
=
&
S
D
)
—
O
>
a0
Q.
O
=
=
[J

* 6 x 7 board that stands vertically

* Players take turns dropping a checker

into‘)ne of the board's columns.

-

U

000000
000000,
000000

loee [I |

O0000®
000000
OO0000O0

{r

000000
000000,
000000,
0000 I |
00000, |
000000
000000

000000
000000,
000000,

[OO000®

00000, |
00/0/0@/@
00000

{r

000000
000000,
000000,
O0000®
000000,
000000
000000

* Win == four adjacent checkers in any direction:

vertical up diagonal down diagonal

horizontal

OO0O00®
o | [
ool [I)
oe [I 1)
C00000
0000 0®

00/0/00¢

OOO00®
0eel I [
e e I [|
o [I 1
o [[1
Q000 0®

00000

0000e]
oo el I [
oo I [
000000
000000
0000 0®

O0O000O®

ool [I)
QOO90®
oo e [[)
oo . | I
00 000®
0000 I
O0O000®

class Board:

Board Class for Connect Four

def __init_ (self, height, width):

def _ repr__(self):

def add_checker(self, checker, col):

plus other methods!

JEEN

Board object

S~

height
width

slots

5

6

~

T\

oo [ey [o]
D IR I O L IR G B O B
Xttt Xt ptot)t
XHotprot ot X X!

Player Class

class Player:

def _init_ (self, checker):
p = Player('X")

def _ repr__(self): Player object

checker | 'X'

def opponent_checker(self): num_moves | O

def next_move(self, board):
self.num_moves += 1

while True:
col = int(input('Enter a column: '))
1if valid column index, return that integer
else, print 'Try again!' and keep looping

The APIs of Our Board and Player Classes

class Board:

__init_ (self,col) (provided)

__repr__(self) Make sure to take
add_checker(self,checker,col) full advantage
clear(self) of these methods
add_checkers(self,colnums) in your work
can_add_to(self,col) on hwoeé!

1s _full(self)
remove_checker(self,col)
1s win_for(self,checker)

class Player: (for you to implement)
__1nit_ (self,col)
__repr__(self)
opponent_checker(self)
next _move(self,board)

def process_move(player, board):
“'"Applies a player object’s next move to a board object.
Returns true if the player wins or a tie occurs,
False otherwise’"’’
pass

def connect_four(player1, player2) # provided in stencil
‘’'Plays a connect four game between player1 and player2,
Returns the final board configuration.’'’’

while True: % Play until a win or tie occurs.
if process_move(player1, board):
return board

if process_move(player2, board):
return board

What are the appropriate method calls?

class Board:

__init_ (self,col) # client code

__repr__(self) def process_move(player,board):
add_checker(self,checker,col)

clear(self) # get move from player
add_checkers(self,colnums) col =

can_add_to(self,col)

is_full(self) # apply the move

remove_checker(self,col)
1s win_for(self, checker)

class Player:
__1nit_ (self,col)
__repr__(self)
opponent_checker(self)
next _move(self,board)

What are the appropriate method calls?

class Board:

__repr__(self) def process_move(player,board):
add_checker(self,checker,col)
clear(self)

get move from player

add_checkers(self,colnums) =player.next_move(board)

can_add_to(self,col)

is_full(self) # apply the move
remove_checker(self,col) board.add _checker(...,)
is win_for(self, checker) B

class Player:
__1nit_ (self,col)
__repr__(self)
opponent_checker(self)
next _move(self,board)

Inheritance in Connect Four

 Player - the superclass
* includes fields and methods needed by all Connect 4 players
* in particular, a next_move method
* use this class for human players

Inheritance in Connect Four

 Player - the superclass
* includes fields and methods needed by all C4 players
* in particular, a next_move method
* use this class for human players

« RandomPlayer - a subclass for an unintelligent computer player
* no new fields

e overrides next _move with a version that chooses at random
from the non-full columns

Inheritance in Connect Four

« Player -the superclass
* includes fields and methods needed by all C4 players
* in particular, a next_move method
* use this class for human players

« RandomPlayer - a subclass for an unintelligent computer player
* no new fields

e overrides next _move with a version that chooses at random
from the non-full columns

« AIPlayer - asubclass for an "intelligent” computer player
 uses Al techniques

* new fields for details of its strategy

e overrides next_move with a version that tries to determine
the best move!

Using the Player Classes

 Example 1: two human players

>>> connect_four(Player('X"'), Player('0'))

* Example 2: human player vs. Al computer player:
>>> connect_four(Player('X"'), AIPlayer('O', 'LEFT', 3))

« connect_four () repeatedly calls process_move():

def connect_four(player1, player2):
print('Welcome to Connect Four!")
print()
board = Board(6, 7)
print(board)

while True:
if process_move(player1, board):
return board
if process_move(player2, board):
return board

OOP == Object-Oriented Power!

def process_move(player, board):

col = player.next_move(board)

* Which version of next_move gets called?

OOP == Object-Oriented Power!

def process_move(player, board):

col = player.next_move(board)

Which version of next_move gets called?

[t depends!
» if player isaPlayer object, call next_move from that class
* if player is a RandomPlayer, call that version of next_move
* if playerisan AIPlayer, call that version of next_move

The appropriate version is automatically called, depending on which
object player was defined as!

RandomPlayer, AIPlayer Class

class Player:

def _init_ (self, checker):

p = Player('X")

def _ repr__(self): 0 Player object
checker | 'X'
def opponent_checker(self): num_moves | O

def next_move(self, board):
self.num_moves += 1

?27?

Why Al Is Challenging

Make no mistake about it:
computers process numbers — not symbols.

Computers can only help us to the extent that
we can arithmetize an activity.

- paraphrasing Alan Perlis

"Arithmetizing” Connect Four

e Qur AIPlayer assigns a score to each possible move
® j.e. to each column

e Itlooks ahead some number of moves into the future
to determine the score.

® Jookahead = # of future moves that the player considers

"Arithmetizing” Connect Four

 Our AIPlayer assigns a score to each possible move
® j.e. to each column

e Itlooks ahead some number of moves into the future
to determine the score.

® Jookahead = # of future moves that the player considers

e Scoring columns:
-1: analready full column

"Arithmetizing” Connect Four

 Our AIPlayer assigns a score to each possible move
® j.e. to each column

e Itlooks ahead some number of moves into the future
to determine the score.

® Jookahead = # of future moves that the player considers

e Scoring columns:
-1: analready full column

0: if we choose this column, it will result in a loss
at some point during the player's lookahead

"Arithmetizing” Connect Four

 Our AIPlayer assigns a score to each possible move

® j.e. to each column

e Itlooks ahead some number of moves into the future
to determine the score.

® Jookahead = # of future moves that the player considers

e Scoring columns:

-1:
0:

100:

an already full column

if we choose this column, it will result in a loss
at some point during the player's lookahead

if we choose this column, it will result in a win
at some point during the player's lookahead

"Arithmetizing” Connect Four

 Our AIPlayer assigns a score to each possible move

® j.e. to each column

e Itlooks ahead some number of moves into the future
to determine the score.

® Jookahead = # of future moves that the player considers

e Scoring columns:

-1:
0:

100:

50:

an already full column

if we choose this column, it will result in a loss
at some point during the player's lookahead

if we choose this column, it will result in a win
at some point during the player's lookahead

if we choose this column, it will result in
neither a win nor a loss during the player's lookahead

A Lookahead of 0

* A lookahead-0 player only assesses the current board

(0 moves!).

LA-0 scores for @

‘ |X|
‘ |O|

(=)
3
(@)
<
(1)
(7]
©
()
3
Q
Q
®

ol-ll
< ©
®

000000
' 1 0000
| 100000
| 100000
000000
000008
__00/00®

A Lookahead of 0

* A lookahead-0 player only assesses the current board

(0 moves!).

LA-0 scores for @

‘ |X|
-1 ‘ |O|

(=)
3
(@)
<
(1)
(7]
©
()
3
Q
Q
®

°|-Il
< ©
®

000000
' 1 0000
| 100000
| 100000
000000
 00000h
__00/00®

A Lookahead of 0

* A lookahead-0 player only assesses the current board

(0 moves!).

LA-0 scores for @

-1

50

50

50

50

50

50

000000
' 1 0000
| 100000

=

(=

| 100000
000000

3

Q
(1)

 00000h
__00/00®

‘ |X|
‘ |O|

A Lookahead of 1

» A lookahead-1 player assesses the outcome of only

the considered move.

LA-1 scores for @

® x
1 ‘ 0"
O
\ 1 move is made!
. 10I0/0/0/0@
. 1I0/0/0/0/0/0

o @O0

i [0/0/0/0/0)0.
Q9O O OOV
0000000

A Lookahead of 1

the considered move.

LA-1 scores for @

-1

o)
o

3
o
<
®
G-
3
m
Q
e

to
ove

=

O

,1
QO
QO
OO
Q0
Q0
o0

| 100000
000000
@ OO0
__00/00®

» A lookahead-1 player assesses the outcome of only

A Lookahead of 1

» A lookahead-1 player assesses the outcome of only

the considered move.

LA-1 scores for @

-1

50

50

°|-Il
< ©
®

000000
QOO0 .
' 1 10000

=

3
o
<
®

m
Q
e

@ OO0
__00/00®

3

| 100000
000000

A Lookahead of 1

» A lookahead-1 player assesses the outcome of only

the considered move.

LA-1 scores for @

-1

50

50

50

°|-Il
< ©
®

000000
QOO0 .
| 100000

=

3
o
<
®

_
- ‘

m
Q
e

' 1 10000
000000
@ OO0
__00/00®

®
3

A Lookahead of 1

» A lookahead-1 player assesses the outcome of only
the considered move.

LA-1 scores for @

-1 || 90 || 50 || 50 || 100 ‘ .O.

1

Q@OOOOOO

Q@OOOOOOQ A lookahead-1 player
to 'OQQO@@ will "see" an
move @O OOOO() impending victory.

1 10]0/00)e

0000000

A Lookahead of 1

» A lookahead-1 player assesses the outcome of only

the considered move.

LA-1 scores for @

-1

50

50

50

100

50

°|-Il
< ©
®

000000
QOO0 .
| 100000

=

3
o
<
®

| 100000
000000

3

Q
Q
1)

2 ._‘

| L 10000
__00/00®

A Lookahead of 1

» A lookahead-1 player assesses the outcome of only

the considered move.

LA-1 scores for @

-1 || 50 {| 50 || 50 || 100 || 50 || 50

‘

3
o
<
®
G-
3
m
Q
e

°|-Il
< ©
®

000000
QOO0 .
| 100000
| 100000
000000
_ [0/0/000)
{1000

A Lookahead of 1

» A lookahead-1 player assesses the outcome of only
the considered move.

LA-1 scores for @

50

50

100

50

50

A lookahead-1 player
will "see" an
iImpending victory.

next_move
will return 4 for
AIPlayer!

A Lookahead of 1

» A lookahead-1 player assesses the outcome of only
the considered move

How do these scores change if it is @'s
turn instead of @'s?

Let’s look at the lookahead-2 scores for the ‘ player.

A Lookahead of 2

« A lookahead-2 player looks 2 moves ahead.

e what if | (‘) make this move, and then my opponent (‘)
makes its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move

LA-2 scores for @
) ‘ 1 X 1
' 1 O 1

to
move

@
000000 ©
[1 0000
| 100000

| 100000
000000
| 00000
__00/00@

A Lookahead of 2

« A lookahead-2 player looks 2 moves ahead.

e what if | (‘) make this move, and then my opponent (‘)
makes its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move

LA-2 scores for @
)) ‘ 1 X 1
' 1 O 1

move

Q@00 O 0 @

| 100000
QOO0 @

| 00000
__00/00@

000000
| 100000

A Lookahead of 2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move

LA-2 scores for @
-1 0|l O ‘ ' X '
' 1 O 1

to
move

Q@0 O OO0 @

| 100000
QOO0 @

| 00000
__00/00@

000000
[1 0000

A Lookahead of 2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move
LA-2 scores for @

-1 000 ‘ K

9
Q@OOOOOO)
B[100/0/0/00
o (@O0
i 1000000
L4 lol [0l0e
0000000

A Lookahead of 2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move
LA-2 scores for @

-1 0 O0¢YO

‘ |X|
' |O|

(0)
o

If @) moves into
column index 4, then
all of ' ‘s directly
subsequent moves will
result in neither a win
nor a loss for '

to
move

Q@ OO0V @
| 00000
__00/00@

000000
[1 0000
| 100000
| 100000

A Lookahead of 2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move

LA-2 scores for @ ®
-1 OjlOo(fO]jsS50(f 01} O ' 'O'

A lookahead-2 player
will "see" a way to win
or
a way to block the
opponent's win.

to
move

000000
' 1 0000
| 100000
| 100000
000000
| [0/00/00
@ OO0

A Lookahead of 2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move

LA-2 scores for @ ®
Try it! @ 'o

to
move

000000
' 1 0000
| 100000
| 100000
000000
| [0/00/00
@ OO0

A Lookahead of 2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move

LA-2 scores for @ ®

]]
Try it! -1 |50 || 50 || 50 || 100 || 50 || 50 ‘ 0

to
move

000000
' 1 0000
| 100000
| 100000
000000
| [0/00/00
@ OO0

Al for Connect Four (cont.)

based in part on notes from the CS-for-All curriculum
developed at Harvey Mudd College

Recall: "Arithmetizing" Connect Four

e Qur AIPlayer assigns a score to each possible move
® j.e. to each column

e Itlooks ahead some number of moves into the future
to determine the score.

® Jookahead = # of future moves that the player considers

e Scoring columns:
-1: analready full column

0: if we choose this column, it will result in a loss
at some point during the player's lookahead

100: if we choose this column, it will result in a win
at some point during the player's lookahead

50: if we choose this column, it will result in
neither a win nor a loss during the player's lookahead

Example 2: LA-0

* A lookahead-0 player only assesses the current board

(0 moves!).

LA-0 scores for @ ® X
50|50 |50 | 50 || 50 || 50 || -1 ‘ 'O'
000000 |

® OOOOOV®

o O@OOOO®

10000000
0000000
000000

Example 2: LA-1

» A lookahead-1 player assesses the outcome of only
the considered move.

LA-0 scores for @ ®
What scores change | sl 50l 50 | 50 1l 50 [l 50 || - @ '0
with the increased LA?
0/0/0/0/0/0] |
® OO0V
o (O@OOOO®
e 10000000
0000000
Q000000

Example 2: LA-1

» A lookahead-1 player assesses the outcome of only
the considered move.

LA-1 scores for @ ®
What scores change | sl 50l 50 | 50 1l 50 [l 50 || - @ '0
with the increased LA?
none of them!
000000 |
® OOOOOV®
= (O00000e
0000000
0000000
000000

Example 2: LA-2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move

LA-1 scores for @ ®

What would change? |50/ 50 | 50 || 50 || 50 || 50 || -1 ‘ ‘0’
QOOOOO@
® OOOOOO®
v O@LOOOO®
10000000
0000009
0000000

Example 2: LA-2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 =1 move

LA-2 scores for @ ®
0| 0|50} 0] 0] -1 ‘ 'O'

to
move

For example,

if black moves here —
red can win by going

to column 2 as shown.

' { 10000
900000
@000
' 1]| 00
Q@OOOOO
9000 O
000000

LA-3!

* A lookahead-3 player looks 3 moves ahead.

e what if | make this move, and then my opponent makes
its best move, and then | make my best subsequent move?

e note: we assume the opponent looks ahead 3 - 1 = 2 moves

LA-2 scores for ‘ ‘ N
‘ 1 O 1

o
o
3
o
o
(@)
N

What would change?

to
move

@OV
000000
(11 00
' 1]| 00
Q@OOOOO
9000 O
000000

LA-3!

* A lookahead-3 player looks 3 moves ahead.

e what if | make this move, and then my opponent makes
its best move, and then | make my best subsequent move?

e note: we assume the opponent looks ahead 3 - 1 = 2 moves

LA-3 scores for @ ® X
O | O {100{ O | O} O | -1 ‘ 'O'
000000 |

® OOOOOV®

b O@@OOO®

10000000
0000000
000000

Example 2: LA-0

* A lookahead-0 player only assesses the current board
(0 moves!).

LA-0 scores for @ ®
same board, 50 || 50 || 50 || 50 || 50 || 50 || -1 @ 'o
different player,
same LA-0 scores
000000 |
@ OOOOOOV®
© (OO0000e
100000009
0000000
000000

Example 2: LA-1

» A lookahead-1 player assesses the outcome of only
the considered move.

LA-1 scores for @ ® X
50 || 50 || 100 50 || 50 || 50 || -1 ‘ 'O'
000000 |

@ OOOOOOV®

o O@OOOO®

10000000
0000000
000000

What Are the LA-2 Scores for@ ?

 Look 2 moves ahead. Assume the opponent looks 1 move
ahead.

50 || 50 || 100]| 50 || 50 || 50 || -1 — LA-1 scores

A. |50 5010050 50|50 -1 < no change?

0| 0 (100 O | O O (-1

o)
o
o)
o

100

o)
o
o
o)
o
—_—

to
move

@OV
000000
(11 00
' 1]| 00
Q@OOOOO
9000 O
900000

Example 2: LA-2

« A lookahead-2 player looks 2 moves ahead.

e what if | make this move, and then my opponent makes
its best move?

e note: we assume the opponent looks ahead 2 -1 = 1 move

LA-2 scores for @ ® x

C. |50|[50]100] 50| 0 | 50] -1 @ 'oO
0l0/0/000]

@ OOOOOO®

o O@OOOO®

move O“'O"
0000000
000000

Example 2: LA-3

* A lookahead-3 player looks 3 moves ahead.

e what if | make this move, and then my opponent makes
its best move, and then | make my best subsequent move?

e note: we assume the opponent looks ahead 3 — 1 = 2 moves

LA-2 scores for @ ® 'x

What would change? |50/ 50 ||100(50 | O | 50 | -1 ‘ 0’
O/0/0/0/00]
| N O00000]
 O@OOOO®
10000000
0000000
0000000

LA-3!

* A lookahead-3 player looks 3 moves ahead.

e what if | make this move, and then my opponent makes
its best move, and then | make my best subsequent move?

e note: we now assume the opponent looks ahead 2 moves

LA-3 scores for @ ® X

What would change? |50/ 50 ||100(50 | O | 50 | -1 ‘ 0’
nothing

to
move

@ OOOOO)
900000
([1 00
(1]| 00
@OOOOO
9000 O
900000

* A lookahead-4 player looks 4 moves ahead.

LA-4!

e assumes the opponent looks ahead 4 — 1 = 3 moves

What would change?

to
move

LA-3 scores for ‘

50 || 50 ([100| 50 || O || 50 || -1

@ OOOOO)
900000
([1 00
(1]| 00
@OOOOO
9000 O
900000

‘ |X|
‘ |O|

* A lookahead-4 player looks 4 moves ahead.

LA-4!

e assumes the opponent looks ahead 4 — 1 = 3 moves

Consider column O:
1. 'O'moves there.
2. 'X"moves to 2.
3. 'O'movesto 4 to

block a diagonal win.

4. 'X'still wins
horizontally!

Same thing holds for the

other col's with new 0s.

LA-4 scores for @

0

0

100 0 || O

0

-1

@O0
900000
QOO0
(1]| 00
Q@O0
9000 O
000000

‘ |X|
‘ |O|

Try It!

LA-O scores for 'O':

Looks 0 moves into the future

LA-1 scores for 'O":

Looks 1 move into the future

LA-2 scores for 'O":

Looks 2 moves into the future

LA-3 scores for 'O":

Looks 3 moves into the future

@ o
you - self -is
playing 'O

‘ IXI

000000 O
Q00000 @
1 1 000l
| 100000
@OV @
900 0 O0'®

§
2000000 |

|

col 0 col 1 col 2 col 4 col 5 col 6
col 0 col 1 col 2 col 3 col 4 col 5 col 6
col 0 col 1 col 2 col 3 col 4 col 5 col 6
col 0 col 1 col 2 col 3 col 4 col 5 col 6

Solutions

LA-O scores for 'O":

Looks 0 moves into the future

LA-1 scores for 'O":

Looks 1 move into the future

LA-2 scores for 'O":

Looks 2 moves into the future

LA-3 scores for 'O":

Looks 3 moves into the future

1 | 100
000000

| 100000
100000

900 0

‘ IOI

you - self -is

playing 'O

‘ IXI

3 000000

colO col 1 col 3 col 4 col 5 col 6
-1 o0 50 50 50 o0
colO col 1 col 2 col 3 col 4 col 5 col 6
-1 50 50 100 50 50 50
col0 col 1 col 2 col 3 col 4 col 5 col 6
-1 0 0 100 0) 0 50
col0 col 1 col 2 col 3 col 4 col 5 col 6
-1 0 0 100 0 0 100

61

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

col range(board.width):

277

Scores

Suppose you're playing (self) 'X' ‘
with LA 2... scores_fo possible

For each column: next move
1) add a checker to it

2) ask an opponent with
LA 1 for its scores for the
resulting board!

1@O0000

3) assume the opponent

will makes its best move, opp_scores [019:8,0,0,0,0]
and determine your Z‘igﬁgg?ﬁcgrgs) =
score accordingly i
4) remove checker!
col 2

s PR
Q000000 elole] lelele)]
0]00/0]0]0®) oleolv] lol i@
32080 s338582
4444 +4% S ‘.‘.‘.‘.‘."!' 0,0,0,0,0,0,0
3534304 S mem e
opp_scores = [0,0,0,0,0,0,0] O scoreg?i] _
max(opp_scores) = 0 @) ;
scores[0] = ? @

opp_scores [50,50,50,50,50,100,50]
max(opp_scores) = 100
scores[1] = ?

Suppose you're playing
with LA 2...

For each column:
1) add a checker to it

2) ask an opponent with
LA 1 for its scores for the
resulting board!

QO
QO
QO
3) assume the opponent 8%\
@

will makes its best move,
and determine your
score accordingly

4) remove checker!

col 0

00000

Q0000
Q0000
oo lee)
ool lo] |
00000

00000

opp_scores = [0,0,0,0,0,0,0]
max(opp_scores) = 0
scores[0] = 100

A loss for my opponent opp_scores

is a win for me! max(opp_scores) = 100
scores[1] = 0

" 1@00000

(self) 'X! ‘

possible
next move

1@O0000

opp_scores

[0,0,0,0,0,0,0]

max(opp_scores) = 0

scores[3] = 100

@OOQ0| ™
00000

(610)

00000

Q0000
QOO0
oo lole,
0000®
00000

0000000
opp_scores = [0,
max(opp_scores)
scores[2] = 100

[50,50,50,50,50,100,50]

A win for my opponent is a loss for me!

0,

0,0,0,0,0]
0

Suppose you're playing (self) 'X' ‘
with LA 2... possible

For each column: next move
1) add a checker to it

2) ask an opponent with
LA 1 for its scores for the
resulting board!

wn
(@)
O
1
M
wn
=h
O

OO0 |
QO
| |19/00/00

3) assume the opponent
will makes its best move,
and determine your
score accordingly

@ OO0

5

000 0

| 100000
@O OO0

\ col 6

4) remove checker!
0000000
0]0]0]0]0]0]0)
e BO08080
otetetetetete OO0
olole] lolele) col 5 00000060
oleole] ol e opp_scores =
0000000 [50,50,50,50,50,100,50]
0000000 max(opp_scores) = 100

Q00
Q00O
Q0@
00O
000

opp_scores [0, scores[6] =
max(opp_scores)
00

scores[4] = 1

0,0 ,0,0,0,0]

0000000
opp_scores = [50,50,50,50,50,50,50]
max(opp_scores) = 50

scores[5] = 50

A draw for my opponent is a draw for me!

Suppose you're playing

with LA 2...

(self) 'X! ‘

scores for

possible
next move

000000
000000

scores[6] = 0

000000
000000
000000
000000
000000
000000
O0000e

scores[5] = 50

00000
OO [[
00000
000000
000 [
000e [
0000

We've tried

col 2
col 3 col 4

000000
000000
000000
000000
000000
000000
00000e

Q00000
000000
Q00000
000000
000000
000000

00000e

Q00000
000000
Q00000
000000
000000
000000

00000e

col 0
col 1

all columns!

00000@
000000
Q0000®
000000
000000
000000
000000

000000
000000
00000®
000000
000000
000000
O0000®

scores[1] = 0

scores[0] = 100

scores[4] = 100
100,

= 100

scores[3]

scores[2] = 100

50, 0]

100,

100,

= [100, O,

scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?7?
remove checker

return scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?7?
remove checker

return scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?7?
remove checker

return scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead 1is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?7?
remove checker

return scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?7?
remove checker

return scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?7?
remove checker

return scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?27?
remove checker

return scores

Suppose you're playing

with LA 2...

(self) 'X! ‘

scores for

possible
next move

000000
000000

scores[6] = 0

000000
000000
000000
000000
000000
000000
O0000e

scores[5] = 50

00000
OO [[
00000
000000
000 [
000e [
0000

We've tried

col 2
col 3 col 4

000000
000000
000000
000000
000000
000000
00000e

Q00000
000000
Q00000
000000
000000
000000

00000e

Q00000
000000
Q00000
000000
000000
000000

00000e

col 0
col 1

all columns!

00000@
000000
Q0000®
000000
000000
000000
000000

000000
000000
00000®
000000
000000
000000
O0000®

scores[1] = 0

scores[0] = 100

scores[4] = 100

= 100

scores[3]

scores[2] = 100

What should
next _move

return?

=[100, O, 100, 100, 100, 50, O]

scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?7?
remove checker

return scores

scores_for - the Al in AIPlayer!

scores_for(self, board):
"""OMUST return a list of scores - one for each column!!

scores = [50] * board.width

for col in range(board.width):

1f col 1is full:
use -1 for scores[col]

elif already win/loss:
use appropriate score (100 or 0)

elif lookahead is O:
use 50

else:
try col - adding a checker to it
create an opponent with self.lookahead - 1
opp_scores = opponent.scores_for(...)
scores[col] = ?7?
remove checker

return scores

RandomPlayer, AIPlayer Class

class Player:

def _init_ (self, checker):
p = Player('X")

def _ repr__(self): Player object

checker | 'X'

def opponent_checker(self): num_moves | O

def next_move(self, board):
self.num_moves += 1
scores = self.scores_for(board)
return 777

Breaking Ties

_|[@@O000
000000
@ O0000

- | @@@OO0
@O0000

" [@O0000
- @000

4 5 6
scores = [100, O, 100, 100, 100, 50, O]

« possible moves: 777

Breaking Ties

[1 10000
" 0000 0
| 100000

» 1 @@@VOOO
[|0/0/0/00

" [@O0000
- @000

4 5 6
scores = [100, O, 100, 100, 100, 50, O]

possible moves: [0, 2, 3, 4]
self.tiebreak == 'LEFT': return O
self.tiebreak == 'RIGHT': return 4

self.tiebreak == 'RANDOM': choose at random!

Connect Four Complexity

How Many Outcomes Are Considered?

On average, Connect 4 players
have seven choices per move. LA O

LA-O player considers 1 outcome.
* the current board

LA 1

LA 2
LA-1 player considers 7 outcomes.

LA-2 player considers 72 outcomes.
» each of its 7 moves, followed by each of its opponent's 7 moves

s okay if your imes

I n
LA-n player considers 7" outcomes. o longer

As LA increases, time taken by next_move grows exponentially!

>>> AIPlayer('X', "RANDOM', 5).next_move(Board(6,7)) # 1.1 sec
>>> AIPlayer('X', '"RANDOM', 6).next_move(Board(6,7)) # 7.1 sec
>>> AIPlayer('X', "RANDOM', 7).next_move(Board(6,7)) # 49.1 sec
>>> AIPlayer('X', "RANDOM', 8).next_move(Board(6,7)) # 341.8 sec
>>> AIPlayer('X', '"RANDOM', 9).next_move(Board(6,7)) # ~40 min!!

