Lecture 06

File Processing and Dictionaries

: \ s - il P o
i\ " -
b \ : ~
) W " g
. R hAN \ b g g
h ttttt - ——

A young Joy, reading her Barney dictionary

based in part on notes from the CS-for-All curriculum developed at Harvey Mudd College

Working with Text Files

A text file can be thought of as one long string.
* The end of each line is stored as a newline character (\n").

« Example: the following three-line text file

Don't forget!

Write test cases first!

is equivalent to the following string:

'Don't forget'\n\nTest your code fully!\n'

Opening a Text File

Before we can read from a text file, we need to open
a connection to the file.

Example:
f = open('reminder.txt', 'r')
where:

 'reminder. txt'is the name of the file we want to read

e 'r'indicates that we want to read from the file
(if we leave this out, Python will assume it)

Doing so creates an object known as a file handle.
e we use the file handle to perform operations on the file
e this is why we store the file handle in the variable f!

Processing a File Using Methods

e Afile handle is an object.

e We can use its methods to
process a file.

>>> f = open('reminder.txt', 'r')

>>> f.readline() # Read in a single line
"Don't forget\n"

>>> f.readline()

\n'

>>> f.readline()

‘Test your code fully\n'

>>> f.readline()

reminder.txt

Don't forget!

Test your code fully!

>>> f = open('reminder.txt', 'r') # start over at top

>>> f.read() # Read in the whole file
"Don't forget\n\nTest your code fully\n"

Processing a File Using a for Loop

e We often want to read and process a file one line at a time.

e We could use readline() inside a loop, but...

e what's the problem we would face?
we don't know how many lines there are

e Python makes it easy!

for line in <file-handle>:
code to process line goes here

* reads one line at a time and assigns it to line
e continues looping until there are no lines left

Processing a CSV File

e (CSV = comma-separated values
e each line is one record

e the fields in a given record
are separated by commas

courses.txt

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3

How Should We Fill in the Blank?

Print CS courses
file = open('courses.txt', 'r')

count=0
for line in file:
line = line[:-1]
fields =
if fields[0] == "'CS"
print(fields[0],fields[1])
count += 1

file.split()
line.split()
file.split(",")
line.split(’,")

oY aw»

none of the above

courses.txt

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3

How Should We Fill in the Blank?

Print CS courses
file = open('courses.txt', 'r')

count=10
for line in file:
line = line[:-1]
fields = line.split(’,")
if fields[0] == "'CS"
print(fields[0],fields[1])
count += 1

file.split()
line.split()
file.split(",")
line.split(’,")

oY aw»

none of the above

courses.txt

CS,111,MWF 10-11
MA,123,TR 3-5
CS,105,MWF 1-2
EC,100,MWF 2-3

Processing a CSV File

. | o courses.txt
file = open('courses.txt', 'r')

CS,111,MWF 10-11

count=0 MA,123,TR 3-5
for line in file: CS,105,MWF 1-2
line = line[:-1] EC,100,MWF 2-3

fields = line.split(’,")

if fields[0] == 'CS"
print(fields[0],fields[1])
count += 1

|5
D
—h
@
o
wn
F
(e
—t
(e
—t
(@]
(@]
(e
)
4=

Processing a CSV File

. | o courses.txt
file = open('courses.txt', 'r')

CS,111,MWF 10-11

count=0 MA,123,TR 3-5
for line in file: CS,105,MWF 1-2
line = line[:-1] EC,100,MWF 2-3

fields = line.split(’,")
if fields[0] == 'CS":

print(fields[0],fields[1])

count += 1
line fields output count

0

'CS,111,MWF 10-11\n'
'CS,111,MWF 10-11' ['CS")'111''MWF 10-11'] CS 111 1
'MA,123, TR 3-5\n'
'MA,123,TR 3-5' ['MA''123",'TR 3-5'] none 1

'CS,105,MWF 1-2\n'
'CS,105,MWF 1-2' ['CS',"105", MWF 1-2'] CS 105 2

Closing a File

When you're done with a file, close your connection to it:
file.close() # file is the file handle

e another example of a method inside an object!

This isn't crucial when reading from a file (but you should do it
anyway)

It is crucial when your finished writing to a file

e Otherwise text that you write to file may not make it
to disk until you close the file handle!

e This is because disk writes are “cached” (i.e. buffered) in
memory because writing (and reading) from a disk is quite slow

e When you close the file everything in the cache is “flushed” (i.e.
written) to the disk

Extracting Relevant Data from a File

 Assume that the results of a track meet are summarized in a
comma-delimited text file (a CSV file) that looks like this:

Mike Mercury,BU,mile,4:50:00

Steve Slug,BC,mile,7:30:00

Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

* We'd like to have a function that reads in such a results file
and extracts just the results for a particular school.

Extracting Relevant Data from a File

def print_results(filename, target_school):
file = open(filename, 'r')

for line in file:
line = line[:-1] # chop off newline at end

f1ll in the rest of the loop body

file.close()
Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

Extracting Relevant Data from a File

def print_results(filename, target_school):
file = open(filename, 'r')

for line in file:
line = line[:-1] # chop off newline at end

fields = line.split(',")

if fields[1] == target_school:
print(fields[0], fields[2], fields[3])

file.close()

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00

Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

Using a Counter to Handle Schools with No Records

def print_results(filename, target_school):
file = open(filename, 'r')

count = 0
for line in file:
line = line[:-1] # chop off newline at end

fields = line.split(',")

if fields[1] == target_school:
print(fields[0], fields[2], fields[3])
count += 1

1f count ==
print(target_school, 'not found')

file.close()

Another Data-Processing Task

Mike Mercury,BU,mile,4:50:00

Steve Slug,BC,mile,7:30:00

Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

« Now we'd like to count the number of results from each school, and
report all of the counts:

>>> school counts('results.txt')
There are 3 schools in all.

BU has 2 result(s).

BC has 1 result(s).

UMass has 1 result(s).

* Python makes this easy if we use a dictionary.

Extracting Relevant Data from a File

def extract_results(filename, target_school):
file = open(filename, 'r')

for line in file:
line = line[:-1] # chop off newline char at end
fields = line.split(',') #split line on *,’
athlete = fields[0]
school = fields[1]
event = fields[2]
result = fields[3]

if school == target_school:
print(athlete, event, result)

file.close()

Mike Mercury,BU,mile,4:50:00

Steve Slug,BC,mile,7:30:00

Len Lightning,BU,half-mile,2:15:00
Tom Turtle,UMass,half-mile,4:00:00

On to Dictionaries!

SRR
1\\\\\\\\\\\\

18

What is a Dictionary?

e Adictionary is a set of key-value pairs.
>>> counts = {'BU': 2, 'UMass': 1, 'BC': 1}

general syntax:
{key1: valuel, key2: value2, key3: value3...}

e We can use the key like an index to lookup the associated value!

>>> counts['BU']
2

e [tissimilartoa "physical” dictionary:
e keys = words
e values = definitions
e use the word to lookup its definition
« Big difference- a digital dictionary is unordered

™ -
'\4
|
el
b 1
A
™
I~
w3
N
il
N-\i
N
- in

Using a Dictionary
>>> counts = {} # create an empty dictionary

>>> counts['BU'] = 2

key value

>>> counts['BC'] = 1

>>> counts # a set of key: value pairs
{'BU': 2, 'BC': 1}

>>> counts['BU"] # use the key to get the value
2

>>> counts['BC']
1

>>> counts['UMass'] = 1
>>> counts
{'BU': 2, 'UMass': 1, 'BC': 1} # order 1s not fixed

Other Dictionary Operations
>>> counts = {'BU': 2, 'UMass': 1, 'BC': 1}

>>>]Jen(counts)
3

>>> 'BU' 1n counts # 1s 'BU' one of the keys?
True

>>> 'Harvard' in counts
False

>>> 'Harvard' not in counts
True

>>> 2 1n counts
False # 2 1s not a key!

Processing All of the Items in a Dictionary
counts = {'BU': 2, 'UMass': 1, 'BC': 1}
for key in counts: # get one key at a time

print(key, counts[key])

the above outputs:
BU 2

UMass 1

BC 1

e More generally:
for key in <dictionary>:
code to process key-value palr goes here
* gets one key at a time and assigns it to key variable
« continues looping until there are no keys left
« Remember: Order is random

Processing All of the Items in a Dictionary
counts = {'BU': 2, 'UMass': 1, 'BC': 1}

for key in counts: # get one key at a time
print(key, counts[key])

key counts[key] output

Processing All of the Items in a Dictionary
counts = {'BU': 2, 'UMass': 1, 'BC': 1}

for key in counts: # get one key at a time
print(key, counts[key])

key countsfkey] output
'BU’ counts['BU'] - 2 BU 2
"UMass' counts['Umass'] — 1 UMass 1

'BC’ counts['BC'] - 1 BC 1

What Is the Output?
d = {4: 10, 11: 2, 12: 3}

count = 0
for x in d:
if x > 5:
count += 1

print(count)

0
1

A

B.

C. 2
D 3
E.

none of these

What Is the Output?
d =4{4: 10, 11: 2, 12: 3}

count = 0
for x in d: # x gets one key at a time!
if x > 5:
count += 1

print(count)

0
1

A

B.

C. 2
D 3
E.

none of these

Using a Dictionary to Compute Counts

def school counts(filename): ?keMgfw%gﬁthgggﬁgm
. _ . 1 1 teve ug, ,mile, /. .
file = Open(fllename' r) Len Lightning,BU,half-mile,2:15:00

Tom Turtle,UMass,half-mile,4:00:00
counts = {}

for line in file:
fields = line.split(',")

school = fields[1]
if school not in counts:

counts[school] = 1 # new key-value pair
else:

counts[school] += 1 # existing k-v pair

file.close()
print('There are', len(counts), 'schools in all."')

for school in counts:
print(school, 'has', counts[school], 'result(s).")

Using a Dictionary to Compute Counts

def school counts(filename): ?keMgfw%gﬁth?ggﬁgm
. _ . 1 1 teve ug, ,mile, /. .
file = Open(fllename' r) Len Lightning,BU,half-mile,2:15:00

Tom Turtle,UMass,half-mile,4:00:00
counts = {}

for line in file:
fields = line.split(',")

school = fields[1]
1f school not in counts:
counts[school] = 1
else:
counts[school] += 1

file.close()
print('There are', len(counts), 'schools in all.')

for school in counts:
print(school, 'has', counts[school], 'result(s).")

Using a Dictionary to Compute Counts

def school counts(filename): ?keMgfw%gﬁth?ggggm
. _ . 1 1 teve ug, ,mile, /. .
file = Open(fllename' r) Len Lightning,BU,half-mile,2:15:00

Tom Turtle,UMass,half-mile,4:00:00
counts = {}

for line in file:
fields = line.split(',")

school = fields[1]
1f school not in counts:
counts[school] = 1
else:
counts[school] += 1

file.close()
print('There are', len(counts), 'schools in all.')

for school in counts:
print(school, 'has', counts[school], 'result(s)."')

Another Example

def word_frequencies(filename): of Counting
file = open(filename, 'r')
text = file.read() # read 1t all in at once!

file.close()

words = text.split()
d = {}

for word 1n words:
if word not 1in d:
d[word] = 1
else:
d[word] += 1

return d # so we can use 1t later!

Shakespeare, Anyone?

>>> freqs = word_frequencies('romeo.txt")

>>> freqs['Romeo’] Act | of Romeo & Juliet.

1 See Text Processing Project
>>> freqs['ROMEO: '] # case and punctuation matter
47

>>> freqs['love']
12

>>> len(freqs)
2469

* In his plays, Shakespeare used 31,534 distinct words!

http://www-math.cudenver.edu/~wbriggs/qr/shakespeare.html

* He also coined a number of words:
gust besmirch unreal
swagger watchdog superscript

http://www.pathguy.com/shakeswo.htm
http://www.shakespeare-online.com/biography/wordsinvented.html

Generate Text Based on Shakespeare!

>>> d = create_dictionary('romeo.txt"')

>>> generate_text(d, 50)

ROMEO: Out of mine own word: If you merry! BENVOLIO:
Come, go to. She hath here comes one of the year, Come
hither, nurse. ROMEO: Well, in spite, To be gone.
BENVOLIO: For men depart.[Exeunt all Christian souls!-
Were of wine. ROMEO: Bid a sea nourish'd with their
breaths with

Projects 1&2: Markstrings and Modeling

* Project 1: Generate Text via Markov, due 2/28/18 at Midnight
Section B: Model and Classify Text, due 3/21/18 at Midnight
(but we suggest you turn them in sooner!)

* More room for creativity than a homework!

Generate Text Based on Shakespeare
..0r Anyone Else!

FH About Brown University | Brov. X

‘ = C' @& Secure https://www.brown.edu/about w r'u 5 @

@E'E BROWN UNIVERSITY

About Brown Academics Admission Research Campus Life

HOME * ABOUT BROWN UNIVERSITY

B

About Brown University

Facts About Brown

Welcome to Brown

History

Located in historic Providence, Rhode Island and founded
in 1764, Brown University is the seventh-oldest college in

Mission

Administration

v

the United States. Brown is an independent, coeducational
Ivy League institution comprising undergraduate and
graduate programs, plus the Alpert Medical School, School
of Public Health, School of Engineering, and the School of
Professional Studies.

Visit Brown

v

Social@Brown

Global Brown

With its talented and motivated student body and I
socamnliched faculty, Brown is a leading research

Brown & Providence

‘ https://www.brown.edu

Brown University is an international, comprehensive,
private research university, committed to educating
students to be reflective, resourceful individuals
ready to live, adapt, and lead in an interconnected
world. Brown University is committed to generating new
knowledge to benefit society.

We remain dedicated to our founding principles: that
higher education should be accessible to all and that
research, scholarship, artistic creation, and
professional practice should be conducted in the
service of the wider community-local and international.
These principles endure in the University’s insistence
on the value of diversity, in its tradition and
standards of excellence, and in its dynamic engagement
with the City of Providence and the world.

Brown University comprises a remarkable range of
undergraduate, graduate, and professional programs
built on a strong foundation of the liberal arts and
sciences. With the support and oversight of the Board
of Trustees, the University, through our faculty,
continually innovates in education and research to
ensure that we meet the needs of students and an
ever-changing world.

mission.txt

Generate Text Based on Shakespeare
..0r Anyone Else!

Brown University is an international, comprehensive, private research university, committed to
educating students to be reflective, resourceful individuals ready to live, adapt, and lead in an
interconnected world. Brown University is committed to generating new knowledge to benefit society.

We remain dedicated to our founding principles: that higher education should be accessible to all and
that research, scholarship, artistic creation, and professional practice should be conducted in the
service of the wider community-local and international. These principles endure in the University’s
insistence on the value of diversity, in its tradition and standards of excellence, and in its dynamic
engagement with the City of Providence and the world.

Brown University comprises a remarkable range of undergraduate, graduate, and professional programs
built on a strong foundation of the liberal arts and sciences. With the support and oversight of the
Board of Trustees, the University, through our faculty, continually innovates in education and
research to ensure that we meet the needs of students and an ever-changing world.

mission. txt

>>> d2 = create_dictionary('mission.txt")

>>> generate_text(d2, 20)

We remain dedicated to benefit society. Brown
University 1is an ever-changing world. Brown University
comprises a strong foundation of diversity,

Markov Models

What is a Markov Model?
« “A stochastic model used to model randomly changing systems”

Allow us to model any sequence of real-world data.
¢ human speech
o written text
® sensor data
* etc.

Can use the model to generate new sequences that are
based on existing ones.

We'll use a first-order Markov model.

* each term in the sequence depends only on the one term
that immediately precedes it

A Markov Model in Dictionary Form

Brown University 1s a comprehensive university.
It 1s committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.

It 1s amazing!

edited mission. txt

sentence-start symbol key = a word w

value = a list of the

{'$': ['Brown®, "It', "It', 'It'], words that follow w

'Brown': ['University'],

in the text
'University': ['1s'],
'is': ['a', 'committed', 'committed', ‘'amazing!'],
"to': 777,

'committed': 7?77,

}

A Markov Model in Dictionary Form

Brown University 1s a comprehensive university.
It 1s committed to educating students to be ready
to live and to lead in an 1nterconnected world.
It is committed to generating new knowledge.

It 1s amazing!

edited mission. txt

sentence-start symbol key = a word w

lue = a list of the
1 l: ’Brown', 'It', 'It', lItl , Va
{. $ [' o L] words that follow w
Brown': ['University'], in the text
'University': ['1s'],
'is': ['a', 'committed', 'committed', ‘'amazing!'],
'to': ['educating',6 'be', 'live', 'lead', 'generating'],
'committed': ?7?77?,

}

A Markov Model in Dictionary Form

Brown University 1s a comprehensive university.
It 1s committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.

It 1s amazing!

edited mission. txt

sentence-start symbol key = a word w
lue = a list of the
'$': ['Brown', "It', 'It', 'It'], va
{. ’ [' . L] words that follow w
Brown': ['University'], in the text

'University': ['1s'],

'is': ['a', 'committed', 'committed', ‘'amazing!'],
'to': ['educating',6 'be', 'live', 'lead', 'generating'],
'committed': ['to', 'to'],

}

A Markov Model in Dictionary Form

Brown University 1s a comprehensive university.
It 1s committed to educating students to be ready
to live and to lead in an interconnected world.
It is committed to generating new knowledge.

It is amazing!

edited mission. txt

sentence-start symbol key = a word w
lue = a list of the
'$': ['Brown', "It', 'It', 'It'], va
{. ’ [' . L] words that follow w
Brown': ['University'], in the text

'University': ['1s'],

'is': ['a', 'committed', 'committed', ‘'amazing!'],
'to': ['educating',6 'be', 'live', 'lead', 'generating'],
'committed': ['to', 'to'],

}

* Sentence-ending words should not be used as keys.
 words thatend witha '."', '?"',or '!"' (e.g, 'world.")

Model Creation Function

def create_dictionary(filename):
read in file and split it into a list of words

d = {}

current_word = '$'

for next_word in words:
1f current_word not in d:
d[current_word] = [next_word]

else:
d[current_word] += [next_word]

update current_word... key = a word w
value = a list of the
return d words that follow w

in the text

Model Creation Example

words = ['Brown', 'University', 'is', 'a', 'comprehensive',
‘university.', 'It', 'is', 'committed', ...]

d = {}

current_word = '$'

for next _word in words:
1f current_word not in d:

d[current_word] = [next_word]
else:

d[current_word] += [next _word]

update current_word to be either next_word or '$'...

current word next word action taken

Model Creation Example

words = ['Brown', 'University', 'is', 'a', 'comprehensive',
‘university.', 'It', 'is', 'committed', ...]

d = {}

current_word = '$'

for next_word in words:
1f current_word not in d:
d[current_word] = [next_word]
else:
d[current_word] += [next _word]

update current_word to be either next_word or '$'...

current word next word action taken

'$ 'Brown' d['$'] = ['Brown']

'Brown' ‘University’ d['Brown'] = ['University']
‘University’ 'is' d['University'] = ['1s"']

"is' 'a' d['1is'] = ['a"]

'a' ‘comprehensive' d['a'] = ['comprehensive']
'comprehensive' ‘'unilversity.' d['comprehensive']=["university."']

l$l

Model Creation Example

words = ['Brown', 'University', 'is', 'a', 'comprehensive',
‘university.', 'It', 'is', 'committed', ...]

d = {}

current_word = '$'

for next_word in words:
1f current_word not in d:
d[current_word] = [next_word]
else:
d[current_word] += [next _word]

update current_word to be either next_word or '$'...

current word next word action taken

'$ 'Brown' d['$'] = ['Brown']

'Brown' 'University' d['Brown'] = ['University']
‘University’ 'is' d['University'] = ['1s']

"is' 'a' d['1s'] = ['a"]

'a' ‘comprehensive' d['a'] = ['comprehensive']
'comprehensive' ‘'university.' d['comprehensive']=["university."']
'$ "It d['$'] - ['Brown', 'It']

"It "is' di'It'] = ['1s']

'1is' 'committed' d['is'] - ['a', 'committed']

generate_text(word_dict, num_words)

start with current word="'$

repeat num_words times:

next_word = random choice from the words that can follow
current_word (use the model!)

print next_word, followed by a space (use end=" ")

update current_word to be either next_word or '$'

print()

WMSCI

THE 22N° WoRrRLD MULTI-CONFERENCE ON

SysTEMICS, CYBERNETICS AND 7
INrorRMATICS: WMSCI 2018
July 8 - 11, 2018 ~ Orlando, Florida, USA
/n\ Virtual Sessions Important Dates Venue Keynote Speakers Contact Us
GENERAL INFO AUTHORS REGISTRATION REVIEWERS INVITED SESSIONS PROGRAM

" TESTIMONIALS

CO-SPONSORS

Google
MITRE

CORPORATION

Clo
acl
Innovations LLC

Creatively Thinking In Multiple Boxes

THE
STANDISH
GROUP

About the Conference

Purpose

The purpose of WMSCI 2018 is to promote discussions
and interactions between researchers and practitioners
focused on disciplinary, interdisciplinary and
transdisciplinary issues, ideas, concepts, theories,
methodologies and applications. We are particularly
interested in fostering the exchange of concepts,
prototypes, research ideas, and other results which
could contribute to the academic arena and also benefit
business, and the industrial community.

What is WMSCI 2018?

WMSCI 2018 is an international forum for scientists
and engineers, researchers and consultants,
theoreticians and practitioners in the fields of
Systemics, Cybernetics and Informatics. The forum
focuses into specific disciplinary research, and also in
multi, inter, and trans-disciplinary studies and projects.
One of its aims is to relate disciplines, fostering
analogical thinking and, hence, producing input to the
logical thinking.

b3
o «
\Gognirs/

gl |
MS C* 20 1‘ 8
’ ‘ :
Wi y
Multi-Conference
on Systemics,
Cybemetics and
Informatics

Special Tracks

Speclal Track on
Academic Globalization
and Inter-Cultural

RO T

46

WMSCI 2005

Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

http://pdos.csail.mit.edu/scigen/

Markov-generated submission
accepted to the conference!

Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification
of virtual machines and real-time theory. To what extent can
web browsers be constructed to achieve this purpose?

Certainly, the usual methods for the emulation of Smalltalk
that paved the way for the investigation of rasterization do
not apply in this area. In the opinions of many, despite the
fact that conventional wisdom states that this grand challenge

ic continnoncelv ancswered hv the etidv of accecs nninte we

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-
dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10] is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we
concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
Q((n + logn)) time [22]. In the end, we conclude.

II. ARCHITECTURE

Our research is principled. Consider the early methodology
by Martin and Smith; our model is similar, but will actually
overcome this grand challenge. Despite the fact that such
a claim at first glance seems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
time algorithm for the refinement of write-ahead logging by
Edward Feigenbaum et al. [15] is impossible; our application

ic nn Aiffarant Thic mav nr mavu nat antnalluy hald in reality

theirs was more than a first-order
model...

48

They presented the
paper in costume!

Project 2: Text Modeling and Classification

ROBERT GALBRAITH
Though Robin Ellacott’s twenty-five years of life THE

had seen their moments of drama and incident, CUCKOO S
she had never before woken up in the certain
knowledge that she would remember the coming
day for as long as she lived.

— first paragraph of The Cuckoo's Calling
by Robert Galbraith

Project 2: Text Modeling and Classification

ROBERT GALBRAITH
Though Robin Ellacott’s twenty-five years of life THE

had seen their moments of drama and incident, CUCKOO S

she had never before woken up in the certain
knowledge that she would remember the coming
day for as long as she lived.

— first paragraph of The Cuckoo's Calling

by FRIDAY, AUG 23, 2013 08:20 AM EDT

How J.K. Rowling was

exposed as Robert
Galbraith

A mathematical analysis of "The Cuckoo's Calling" revealed the "Harry Potter" author's
linguistic signature

PATRICK JUOLA, SCIENTIFIC AMERICAN

Project 2: Text Modeling and Classification

ROBERT GALBRAITH
Though Robin Ellacott’s twenty-five years of life THE
had seen their moments of drama and incident, C UCKOO S
she had never before woken up in the certain
knowledge that she would remember the coming
day for as long as she lived.

How J.K. Rowling was
exposed as Robert
Galbraith

A mathematical analysis of "The Cuckoo's Calling" revealed the "Harry Potter" author's
linguistic signature

PATRICK JUOLA, SCIENTIFIC AMERICAN

52

Modeling a Body of Text

e Based on features of the text.

word-frequencies

word-length frequencies
stem-frequencies
sentence-length frequencies
one other feature of your choice!

TextModel object

name | " JKR" Python dictionaries!
words » { "love": 25, "spell": 275, ..
word_lengths » { 4. 980, 5: 42005, ..}
stems » { "lov": 98, "spell": 306, ..
sentence_lengths > { 3: 450, 4: 1005, ..}
your_choice > { ..}

Text Modeling and Classification

e Build a model of a body of text.
e works by an author / of a certain genre / etc.

e articles from a given publication / type of publication
e scripts from a given TV series
e etc.

Text Modeling and Classification

e Build a model of a body of text.
e works by an author / of a certain genre / etc.

e articles from a given publication / type of publication
e scripts from a given TV series
e etc.

e Improved Model

 Implement a similarity score that allows you to compare
two bodies of text.

e room for creativity here:
You pick some bodies of text and perform comparisons!

Text Processing Project

 You already know enough to complete
e dictionaries
e file-processing

e We'll discuss next week
e the project write-up also includes more detail

