Lecture 01
Introduction to Python
a

Announcements

First homework due Wednesday at 4 PM
You should have signed up for:
e weekly TA section
e Piazza
e REEF for iClickers
e signed the collaboration policy agreement
If you haven't, please do so ASAP! If you're having trouble, please
email the HTAs
Check out our instagram account @cs4thefans
Don't forget to use Piazza and TA Hours as resources!!

Python!

Guido van Rossum: creator of Python

iClicker check

What country is Guido von Rossum originally
from?

Canada
Germany
Holland
Netherlands
United States

mYOwWE

iClicker check

What country is Guido von Rossum originally
from?

Canada

Germany

Holland < not a country!
Netherlands

United States

MY OwWE

Interacting with Python
e We're using Python 3 (not 2).
® see course website for how to install

e When you start Python, you get the Python Shell.

e The following prompt indicates that the Shell is waiting
for you to type something:

>>>

Arithmetic in Python

e Numeric operators include:
+ addition
- subtraction
* multiplication
/ division
** exponentiation
% modulus: gives the remainder of a division

Data Types and Operators

e There are really two sets of numeric operators:

® one for integers (ints)
® one for floating-point numbers (floats)

e In most cases, the following rules apply:
e if at least one of the operands is a float, the result is a float
o if both of the operands are ints, the result is an int

e One exception: division!

Arithmetic in Python (cont)

The operators follow the PEMDAS order of operations (almost)

Exceptions:
e Multiplication and Division are evaluated left to right
e Addition and Subtraction are evaluated left to right

Please

Recall PEMDAS! Excuse Excuse me
M

>> 2 / 2 + 1 * 3 Dy \

4.0 ear
Aunt

>> 2 / (2 +1) * 3 Sally

2.0

Use parentheses to avoid confusion!

Numeric Data Types
e Different kinds of values are stored and manipulated differently.

e Python data types include:
® integers
e example: 451
¢ floating-point numbers
e numbers that can include a decimal (fractional part)
e example: 3.1416

Two Types of Division

e The / operator always produces a float result.
® examples:

>>> 5/ 3
1.6666666666666667

>>> 6 / 3
2.0

Two Types of Division (cont.)

® There is a separate // operator for integer division.

>>> 6 // 3
2

® [nteger division discards any fractional part of the result:

>>> 11 // 5
2
>>> 5 // 3
1

e Note that it does not round!

¢ i.e.only the “whole part” of the division and not the fractional
part is returned (“floor” function or “truncation”)

Another Data Type

e Astring is a sequence of characters/symbols
¢ surrounded by single or double quotes
® examples:
“Hello"
'Picobot’

“Your mother was a hamster, and your father
smelt of elderberries.”

Variables

e Variables allow us to store a value for later use:
>>> temp = 77
>>> temp - 5
72

>>> (temp - 32) * 5/ 9
25.0

e Updating a variable requires assignment to a new value
>>> temp = 80
>>> temp
80

Expressions

e Expressions produce a value.

e Python evaluates them to obtain their value.

e They include:
e Jiterals ("hard-coded" values):

3.1416
'"Picobot'

® variables
temp

e combinations of literals, variables, and operators:
(temp - 32) * 5/ 9

Evaluating Expressions with Variables

e When an expression includes variables, they are first
replaced with their current value.

e Example (showing how Python would evaluate this):

(temp - 32) * 5/ 9
(77 -32) *5 /9
45 * 5 / 9
225 / 9
25.0

Statements

e A statementis a command that carries out an action.

e Aprogram is a sequence of statements.

quarters = 2

dimes = 3

nickels = 1

pennies = 4

cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

Assignment Statements

Assignment statements store a value in a variable.
temp = 20

= Is known as the
General syntax: assignment operator

variable = expression

Steps:
1) evaluate the expression on the right-hand side of the =

2) assign the resulting value to the variable on the
left-hand side of the =

Example:
quarters = 10

quarters_val = 25 * quarters
quarters_val = 25 * 10
quarters_val = 250

Assignment Statements (cont.)

* We can change the value of a variable by assigning it
a new value.

Fill in the blanks!
* Example:
numl = 100
num2 = 120 num’1 100 num2 120
numl = 50 num1 num2
numl = num2 * 2 num1 num2

num2 = 60 num1 num2

Assignment Statements (cont.)

* We can change the value of a variable by assigning it
a new value.

* Example:
numl = 100
num2 = 120 num’1 100 num2 120
numl = 50 num 50 num2 120
numl = num2 * 2 num1 240 num2 120
120 * 2
240
num2 = 60 numT 240 num2 60

Assignment Statements (cont.)

* Avariable can appear on both sides of the assignment
operator!

Fill in the blanks!
* Example:
sum = 13
val = 30 sum 13 val
sum = sum + val sum val

val = val * 2 sum val

Assignment Statements (cont.)

* Avariable can appear on both sides of the assignment
operator!

* Example:
sum = 13
val = 30 sum 13 val 30
sum = sum + val sum 43 val 30
13 + 30
43
val = val * 2 sum 43 val 60
30 * 2
60

Creating a Reusable Program

e Put the statements in a text file.

a program to compute the value of some coins

quarters = 2 # number of quarters
dimes = 3

nickels = 1

pennies = 4

cents = quarters*25 + dimes*10 + nickels*5 + pennies
print('you have', cents, 'cents')

e Program file names should have the extension .py
® example: coins.py

Print Statements

e print statements display one or more values on the screen

e Basic syntax:
print(expr)
or
print(expr,, expr,, ... expr)
where each expr is an expression

e Steps taken when executed:
1. the individual expression(s) are evaluated
2. the resulting values are displayed on the same line, separated
by spaces

e To print a blank line, omit the expressions:
print()

Print Statements (cont.)

e Examples:

¢ first example:

print('the results are:', 15 + 5, 15 - 5)

\/ \ \/
'the results are:' 20 10

output: the results are: 20 10

(note that the quotes around the string literal are not printed)

« second example:

cents = 89

print('you have', cents, 'cents')

\/ \/ \/
'you have' 89 ‘cents'

output: you have 89 cents

Variables and Data Types

e The type function gives us the type of an expression:
>>> type('hello")
<class 'str'>
>>> type(5 / 2)
<class 'float'>

e \/ariables in Python do not have a fixed type.
* examples:

>>> temp = 25.0
>>> type(temp)
<class 'float'>
>>> temp = 77
>>> type(temp)
<class 'int'>

How a Program Flows...

 Flow of control = order in which statements are executed

* By default, a program's statements are executed sequentially,

from top to bottom.

example program
total = 0
numl = 5
num2 = 10

total = numl + num?2

variables in memory

total num1

num2

How a Program Flows...

 Flow of control = order in which statements are executed

* By default, a program's statements are executed sequentially,
from top to bottom.

example program variables in memory
total = 0 total num’
numl = 5 15 5
num2 = 10 num2
total = numl + num2 10
total = numl + num2

5 + 10

15

What is the output of the following program?

X = 15
name = 'Picobot'
X =x // 2

print('name ', x, type(x))

oY aw»

Picobot 7 <class 'int'>
Picobot 7.5 <class 'float'>
name 8 <class 'int'>

name 7 <class 'int'>

name 7.5 <class 'float'>

What is the output of the following program?

X = 15
name = 'Picobot'
X =x // 2 # x =x// 2
print('name ', x, type(x)) 15 // 2
v \ / \ / 7
‘name ' /7 type(7/)
\
<class 'int'>

A. Picobot 7 <class 'int'>
B. Picobot 7.5 <class 'float'>
C. name 8 <class 'int'>
D. name 7 <class 'int'>
E. name 7.5 <class 'float'>

X:
name
X:
prin

oY aw»

Extra Practice: What about this program?

15
= 'Picobot"
7.5
t(name, ' x ', type(x))

name x <class 'float'>
Picobot 7.5 <class 'float'>
Picobot x <class 'float'>
Picobot 15 <class 'int'>

name 7.5 <class 'str'>

Extra Practice: What about this program?

x = 15
name = 'Pilcobot'’
x = 7.5
print(name, ' x ', type(x))
\/ \/ \/
'Picobot' ' x ' type(7.5)
\/

oY aw»

<class 'float'>

name x <class 'float'>
Picobot 7.5 <class 'float'>
Picobot x <class 'float'>
Picobot 15 <class 'int'>

name 7.5 <class 'str'>

X N X< X

oY aw»

What are the values of the variables
after the following code runs?

X XK O Un

11
11
7

none of these, because the code has an error

6

15
11
17
11

X N X< X

oY aw»

Hint: create a table of program state changes

5
6
y + 3
X +Yy
X + 2

X) Z
M 6 15
M 6 1
M 6 17
7 6 11

none of these, because the code has an error

U

Y

oy O

X N X< X

oY aw»

What are the values of the variables
after the following code runs?

X y Z
5 5
6 5 6
y + 3 9 6
X +y 9 6 15
X + 2 11 6 15
9 + 2
11
X y Z
11 6 15 changing the value of x
does not change the value of z!
11 6 11
11 6 17
7 6 11

none of these, because the code has an error

Strings: Numbering the Characters

* The position of a character within a string is known as its index.

* There are two ways of numbering characters in Python:
 from left to right, starting from 0

01234

' J
Perry
* from right to left, starting from -1
-5-4-3-2-1

| I
Perry

e '"P' hasanindexof 0 or-5

* 'y' hasanindex of 4 or-1

String Operations

* Indexing: string [index]

>>> name = 'Picobot’
>>>name[1]

lil

>>>name|[-3]

lbl

 Slicing (extracting a substring): string [start :end]

>>> name([0:2]

'Pi’ from up to but

>>> name|[1:-1] this index not including
'icobo’ this index
>>> name|1:]

'icobot’
>>> name|:4]
'Pico’

String Operations (cont.)

* Concatenation: string1 + string2

>>> word = 'program'
>>> plural = word + 's’
>>> plural
‘programs’

* Duplication: string * num_copies

>>> "ho!' * 3
'ho'ho'ho!"

* Determining the length: len(string)

>>>name = 'Perry’

>>> len(name)
5

>>>len("") # an empty string - no characters!
0

String Operations (cont.)

* Concatenation: string1 + string2

>>>word = 'program’

>>> plural = word +'s’ Remark:
>>> plural Operators depends on the types of their
‘programs' operands

icati ' : <type ‘str'> + <type ‘str'> => concatenation
* Duplication: string * num_copies = P

>>> 'ho!' * 3 <type ‘str'> * <type ‘int’> => duplication
'ho'ho!ho!’

* Determining the length: len(string)

>>>name = 'Perry’
>>> len(name)
5

>>>len("") # an empty string - no characters!
0

n

What is the value of s after the following code

"abc'

('d" * 3) +s

S[2:-2]

‘ddab’
‘dab’
‘dda’
'da "’

none of these

runs?

What is the value of s after the following code

runs?
"abc'

n
I

s = ('d" * 3) + s

"ddd' + 'abc' = "dddabc'
s[2:-2]
"dddabc'[2:-2]

n
I

A. 'ddab’ 5 Al el o
B. 'dab’

C. 'dda’

D 'da’

E

none of these

Skip-Slicing

» Slices can have a third number: string [start :end :stride_length]

ép\wn University go bears!’

o 1 2 3 4 5 6 7!8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

>>>s[0:0:2]
'BonU’ # Note ends at U, not i

Skip-Slicing
» Slices can have a third number: string [start :end :stride_length]

AT . :
s = 'Brown University go bears!

0’1 2 3 4 5/6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

>>>5[0:8:2]
'BonU'’ # Note ends at U, not i
>>>g[5:0:-1]

"nwor’ # Note space at beginning

Skip-Slicing

» Slices can have a third number: string [start :end :stride_length]

s = 'Brown University go bears!’

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

>>>5[0:8:2]

'BonU'’ # Note ends at U, not i
>>>g[5:0:-1]

"nwor’ # Note space at beginning

>>>s| : : | #what numbers do we need?
‘etoa’

>>> S[0::23]+s[6:0:-2]+s[-1]1*2 # what do we get?

Skip-Slicing
» Slices can have a third number: string [start :end :stride_length]

; R :
s = 'Brown University go bears!

0o 1 2 3 4 5 6 7 8 9/10 11 12 13 14 15 16 17 18 19 20 21 22/ 23 24 25

>>> 5[0:8:2]

'BonU" # Note ends at U, not i

>>> 5[5:0:-1]

"nwor’ # Note space at beginning
>>> s 4] #ors[10::4] or ..
‘etoa’

>>> S[0::23]+s[6:0:-2]+s[-1]1*2 # what do we get?

Skip-Slicing

» Slices can have a third number: string [start :end :stride_length]

s = 'Brown University go bears!’

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N g
>>> 5[0:8:2]
'BonU" # Note ends at U, not i
>>> 5[5:0:-1]
"nwor’ # Note space at beginning
>>> s 4] #ors[10::4] or ..
‘etoa’

>>> S[0::23]+s[6:0:-2]+s[-1]1*2 # what do we get?
'BrUno!!’

Lists

Lists

* A string is a sequence of characters.
'hello’

» Alistis a sequence of arbitrary values (the list's elements).
[2, 4, 6, 8]
['CS’, 'math’, 'english’, 'psych’]

» Alist can include values of different types:
['Star Wars', 1977, 'PG', [35.9, 460.9]]

List Ops == String Ops (more or less)

0 1 2 3

>>>majors = ['CS’, 'math’, 'english’, 'psych’]

>>> majors|2]

‘english’

>>> majors|[1:3]

['math’, 'english’]

>>> len(majors)

4

>>> majors + [physics']

['CS’, 'math’, 'english’, 'psych’, 'physics’]

>>> majors[::-2]

77?7

List Ops == String Ops (more or less)
/\

>>>majors = ['CS', ‘'math’, 'english’, 'psych]
>>> majors|2]

‘english’

>>> majors|[1:3]

['math’, 'english’]

>>> len(majors)

4

>>> majors + [physics']

['CS’, 'math’, 'english’, 'psych’, 'physics’]
>>> majors| -2]

['psych’, 'math’]

What is the output of the following program?

mylist = [1, 2, [3, 4, 5]]
print(mylist[1], mylist[1:2])

2 2 3

2 [2, 3]

2 2

2 2 [3, 4, 5]

none of these

oY aw»

What is the output of the following program?

0 1 2

mylist = [1,|2, [3, 4, 5]]
print(mylist[1], mylist[1)

\j v T up to but not including
2 [2] from this index
this index

2 2 3

Slicing a list always
2 [2, 3] produces a list!
2 2

2 2 [3, 4, 5]

none of these!! 2 [2]

m o 0w

Note the difference!

* For a string, both slicing and indexing produce a string:
>>> s = 'Bears'
>>> s[1:2]
‘e
>>> s[1]
o

* For a list:
* slicing produces a list

* indexing produces a single element - may or may not be a list

>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]
>>> info[1:2]

[1977]

>>> info[1]

1977

>>> info[-1]

[35.9, 460.9]

Note the difference!

* For a string, both slicing and indexing produce a string:
>>> s = 'Bears'
>>> s[1:2]
‘e
>>> s[1]
o

* For a list:
* slicing produces a list

* indexing produces a single element - may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> 1info[1:2] >>> ?7?? # what 1s needed?
[1977] 35.9

>>> 1nfo[1]

1977

>>> 1nfo[-1]
[35.9, 460.9]

Note the difference!

* For a string, both slicing and indexing produce a string:
>>> s = 'Bears'
>>> s[1:2]
‘e
>>> s[1]
o

* For a list:
* slicing produces a list

* indexing produces a single element - may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> info[1:2] >>> info[-1][0]
[1977] 35.9

>>> 1nfo[1]

1977

>>> 1nfo[-1]
[35.9, 460.9]

Note the difference!

* For a string, both slicing and indexing produce a string:
>>> s = 'Bears'
>>> s[1:2]
‘e
>>> s[1]
o

* For a list:
* slicing produces a list

* indexing produces a single element - may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> info[1:2] >>> info[-1][0]
[1977] 35.9

>>> info[1] >>> info[-1]1[-1]
1977 277

>>> 1nfo[-1]
[35.9, 460.9]

Note the difference!

* For a string, both slicing and indexing produce a string:
>>> s = 'Bears'
>>> s[1:2]
‘e
>>> s[1]
o

* For a list:
* slicing produces a list

* indexing produces a single element - may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> info[1:2] >>> info[-1][0]
[1977] 35.9
>>> info[1] >>> info[-1][-1]
1977 460.9

>>> 1nfo[-1]
[35.9, 460.9]

Note the difference!

* For a string, both slicing and indexing produce a string:
>>> s = 'Bears'
>>> s[1:2]
‘e
>>> s[1]
o

* For a list:
* slicing produces a list

* indexing produces a single element - may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> info[1:2] >>> info[-1][0]

[1977] 35.9

>>> info[1] >>> info[-1][-1]
1977 460.9

>>> info[-1] >>> info[0][-4]

[35.9, 460.9]

Note the difference!

* For a string, both slicing and indexing produce a string:
>>> s = 'Bears'
>>> s[1:2]
‘e
>>> s[1]
o

* For a list:
* slicing produces a list

* indexing produces a single element - may or may not be a list
>>> info = ['Star Wars', 1977, 'PG', [35.9, 460.9]]

>>> info[1:2] >>> info[-1][0]

[1977] 35.9

>>> info[1] >>> info[-1][-1]
1977 460.9

>>> info[-1] >>> info[0][-4]

[35.9, 460.9] "W

How could you fill in the blank
to produce [105, 111]?

intro cs = [101, 103, 105, 108, 109, 111]

new_courses =

oY aw»

intro_cs[2:3] + 1ntro_cs[-1:]

intro_cs[-4] + 1ntro_cs[5]

intro _cs[-4] + intro _cs[-1:]
more than one of the above

none of the above

How could you fill in the blank
to produce [105, 111]?

0 1 2 3 4 5

intro_cs = [101, 103, 105, 108, 109, 111]

new_courses =

A.

I

-6 -5 -4 -3 -2 -1

intro_cs[2:3] + intro_cs[-1:]

[105] + [111] - [105, 111]
intro _cs[-4] + 1intro _cs[5]

105 + 111 -, 216
intro_cs[-4] + intro_cs[-1:]

105 + [111] - error!

more than one of the above

none of the above

Extra Practice: Fill in the blank to
make the code print ' compute!’

subject = 'computer science!’
verb =

print(verb)

A. subject[:7 subject[-1]
B. subject[:7] subject[:-1]
C. subject[:8] subject[-1]
D. subject[:8 subject[:-1]
E. none of these

Extra Practice: Fill in the blank to
make the code print ' compute!’

subject = 'computer science!’
verb =

print(verb)

A. subject[:7] + subject[-1]
B. subject[:7] + subject[:-1]
C. subject[:8] + subject[-1]
D. subject[:8] + subject[:-1]
E. none of these

Extra practice from the textbook authors!

pi = [3,1,4,1,5,9]

L= 'pi', "isn't", [4,2]]
M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32
Part 1 Part 2

What is len (pi)

What is len (L)

Whatis len(L[1])

Whatis pi[2:4]

What slice of piis [3,1,4]

What slice of piis [3,4,5]

Whatis L[O]

Whatis L[0:1]

Whatis L[0][1]

What slice of M is 'try'?

Whatis M[9:15]

Whatis M[::5]

These two are

different!

is 'shoe'?

Extra!

These two are different, too...

Whatare pi[0]* (pi[1l] + pi[2]) and pi[O]1*(pi[l:2] + pi[2:3]) ?

Extra practice from the textbook authors!
pi = [3,1,4,1,5,9]

L=['pi', "isn't", [4,2]]
M = 'You need parentheses for chemistry !'
0 4 8 12 16 20 24 28 32

Part1 Part 2

What is len (pi) 6 What is L[0] Ipi' These two are

different!

Whatis len(L) 3 Whatis L[0:1] ['Pi']

Whatis len(L[1]) 5 Whatis L[0] [1] Iil

Whatis pi[2:4] [4’ 1] What slice of M is 'try'? is 'shoe'?

. M[31:34] M[30:17:-4]

What slice of piis [3,1,4] p|[3] Whatis M[9:15] 'parent'

What slice of piis [3,4,5] p|[::2] Whatis M[: :5] lYeah

csl'

Extra!

Whatare pi[0]* (pi[1l] + pi[2]) and pi[O]1*(pi[l:2] + pi[2:3]) ?

These two are different, too... 15 [1; 4; 1; 4; 1; 4]

Functions

Defining a Function

the function's name

\

def triple(x):

X Is the input or parameter

return 3*x

f \ this line specifies what
; the function outputs (or returns)

must indent o . .
. — in this case, 3 times the input
everything after

name

* Once we define a function, we can call it:
>>> triple(3)
9
>>> triple(10)
30

>>> triple(0.5)
1.5

Other Details

comment
our first function!A?””/’

triple(x):
""" Returns the triple of the input Xx.

3*X \

documentation string
Python keywords (docstring)

* Python uses color-coding to distinguish program components.

» Always use a docstring to explain what the function does.
* surrounded by triple quotes, beginning on the second line
* help(function name) retrieves it

* Other (non-docstring) comments can be included as needed.

Functions With String Inputs

undo(s):

""" Adds the prefix "un" to the input s. """
‘un' + s

redo(s):

""" Adds the prefix "re" to the input s. """
‘re' + s

* Examples:
>>> undo('plugged")

‘unplugged"’

>>> undo('zipped')

‘unzipped"’

>>> redo(‘submit’) The evil "un" people!

7?77 (from the PBS kids show Between the Lions)

>>> redo(undo('zipped'))
?227?

Functions With String Inputs

undo(s):
""" Adds the prefix "un" to the input s. """
'un' + s

redo(s):
""" Adds the prefix "re" to the input s. """
're' + s

Examples:

>>> undo('plugged’)
‘unplugged"’

>>> undo('zipped')
‘unzipped"’

>>> redo('submit"') The evil "un” people!
'resubmit’ (from the PBS kids show Between the Lions)

>>> redo(undo('zipped')) # redo('unzipped')
'reunzipped’

Multiple Lines, Multiple Parameters

circle _area(diam):
""" Computes the area of a circle
with a diameter diam.

radius = diam / 2
area = 3.14159 * (radius**2)
area

rect_perim(l, w):
""" Computes the perimeter of a rectangle
with length 1 and width w.

2*%]1 + 2%*w

* Examples:
>>> rect_perim(5, 7)

24

>>> circle _area(20)
314.159

Function and Function Call in the Same File

circle _area(diam):
""" Computes the area of a circle
with a diameter diam.

radius = diam / 2
area = 3.14159 * (radius**2)
area

rect_perim(l, w):
""" Computes the perimeter of a rectangle
with length 1 and width w.

2*%1 + 2*w

print(rect_perim(20, 8)) # Why 1s print needed?

- Defines two functions, but only one gets called when we run the program.
- We can still call either of them from the Shell after running the program.

What is the output of this code?

def calculate(x, y):

a =y
b = x + 1
return a*b -3

print(calculate(3, 2))

A.

m O O W

co W H WO U

X y
def calculate(x, 3 2
2 2
2 2

= x + 1
return a*b\-

What is the output of this code?
a b

27

print(calculate(3, 2))

m o 0w

co W H~ O U

The values in the function call are
assigned to the parameters.

In this case, it's as if we had written:
X = 3
y = 2

What is the output of this code?

X 'y a b
def calculate(x, y): 3 2
a =y 2
b = x + 1 4
return a *b - 3
2%4 -3 =05

k/////

print(calculate(3, 2)) # print(5)

A.

m O O W

The output/return value:

s sent back to where the function call
was made

« replaces the function call

The program picks up where it left off
when the function call was made.

co W H~ O U

Practice Writing a Function

* Write a function middle_char (s) that takes a string s with at least
one character, and returns the middle character in s

>>> middle_char('alien’)

lil

>>> middle_char('function’)
ltl

def middle char(s):
middle index =
return

Practice Writing a Function

* Write a function middle_char (s) that takes a string s with at least
one character, and returns the middle character in s
>>> middle_char('alien’)
lil
>>> middle_char('function’)
ltl

def middle char(s):
middle _index = len(s) // 2
return s[middle_index]

