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Introduction 
Statistical models of text are one way to quantify how similar one piece of text is to another. 
Such models were used ​as evidence that the book ​The Cuckoo’s Calling​ was written by J. K. 
Rowling​ (using the name Robert Galbraith) in the summer of 2013. 
 
The comparative analysis of Rowling’s works used surprisingly simple techniques to model the 
author’s ​style​. Possible “style signatures” could include (but are not limited to): 

● the distribution of word lengths in a document – calculating the frequency of words of 
length one, length two, length three, etc. This is one of the metrics that was used in the 
Rowling case. 

● the distribution of words used by an author – calculating the frequency of each unique 
word. 

● the distribution of word ​stems​ used (e.g., “spam” and “spamming” would have the same 
stem) by an author – calculating the frequency of each unique stem. 

● the distribution of sentence lengths used by an author – calculating the frequency of 
sentences of length one, length two, length three, etc. 

In Modeling, you will create a text analysis model based on statistics to model, analyze, and 
score the similarity of text samples. By the end of the project, you will have developed a 
sophisticated tool that will allow you to identify a particular author or style of writing. 
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Installation and Handin  
Project setup.​  For each project, there may be support files that you will need to complete the 
assignment. These can be copied to your home directory by using the ​cs4_install ​ command 
in a CIT Terminal window. For this project, type the commands: 

cs4_install modeling 

There should now be a ​modeling ​ folder within your ​projects ​ directory. Using Terminal, you 
can move into the folders with the cd command: 

cd ~/course/cs0040/projects/modeling 
 
Project hand-in.​  When you are ready to submit the files for Project 2: Modeling, run: 
 
cs4_handin modeling 

 
from a CIT Terminal window from your ​~/course/cs0040/projects/modeling 
directory. The entire contents of ​~/course/cs0040/projects/modeling ​ will be handed 
in. Check for a confirmation email to ensure that your assignment was correctly submitted using 
the ​cs4_handin ​ command.  
 
You can resubmit this assignment using the ​cs4_handin ​ command at any time, but only your 
most recent submission with be graded.  

Specification 
In Modeling, you will develop a ​TextModel ​ class that is able to perform statistical operations 
on a body of text.  At a minimum, your final model should include the following five features: 
 

● word frequencies 
● word lengths 
● stem frequencies 
● sentence lengths 
● one other feature of your choice​. You might choose one of the features used in the 

analysis​ that revealed Rowling’s authorship of ​The Cuckoo’s Calling​. Or you could 
choose something else entirely (e.g., something based on punctuation, sentiment 
analysis) – anything that you can compute/count using Python!  
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Checklist 
While this project requires you to implement a lot of functions, a good sense of organization and 
pre-planning will make development substantially easier. To help, we’ve divided it up into five 
phases to help organize your workflow. We’ve first provided a checklist of the required functions 
you need to write (and you are welcome to write other helper functions for code cleanliness and 
readability).  
 
Note that this checklist is intentionally underspecified in some places to keep it concise—after 
the checklist, we’ve provided high-level descriptions to help you in your implementation. ​We 
highly recommend that you follow the checklist and the high-level descriptions in order 
to avoid major debugging issues later on. 

Phase 1: Setting Up The Model 
In ​model.py ​, implement the following methods: 
 

❏ __init__(self, model_name)​: constructs a new TextModel object and initializes 
the following attributes: 

❏ name ​ – ​a string that is a label for this text model 
❏ words ​ –​ a dictionary that records the number of times each word appears in the 

text 
❏ word_lengths ​ – ​a dictionary that records the number of times each word 

length​ appears 
❏ stems ​ – a dictionary that records the number of times each word stem appears 

in the text 
❏ sentence_lengths ​ – a dictionary that records the number of times each 

sentence length appears 
❏ another dictionary representing your extra chosen text analysis feature  

❏ __repr__(self)​: returns a string that includes the name of the model as well as the 
sizes of the dictionaries for each feature of the text 

Phase 2: Parsing the Text 
In ​model.py ​, implement the following functions and methods: 
 

❏ clean_text(txt)​: consumes a string ​txt ​ and returns a list of the “cleaned” versions 
of the words in ​txt 

❏ stem(word)​: ​accepts a string as a parameter, returns the stem of ​word ​. The stem of a 
word is the root part of the word, which excludes any prefixes and suffixes. 

 



 

❏ This function does not have to work perfectly for all possible words and stems. 
For full credit, you should implement seven distinct cases and test them on many 
different words. 

❏ add_string(self, s)​: given a string ​s ​, updates the feature dictionaries initialized in 
the ​TextModel ​ constructor 

❏ add_file(self, file_name)​: given the name of a file ​file_name ​, adds all of the 
text in the file identified by ​file_name ​ to the ​TextModel 

Phase 3: Model Persistence 

In ​model.py ​, implement the following methods: 
 

❏ save_model(self)​: ​ saves the ​TextModel ​ object self by writing its various feature 
dictionaries to files 

❏ read_model(self)​: ​ reads the stored dictionaries for the called ​TextModel ​ object 
from their files (with the assumption those files have been generated by ​save_model ​) 
and assigns them to the attributes of the called ​TextModel 

Phase 4: Performing Analysis 

In  ​model.py, ​ implement the following functions and methods: 
 

❏ compare_dictionaries(d1, d2)​: ​ ​consumes two feature dictionaries d1 and d2 as 
and computes and returns their log similarity score using the Naive Bayes scoring 
algorithm 

❏ similarity_scores(self, other)​: ​consumes another ​TextModel ​ and computes 
and returns a ​list​ of log similarity scores measuring the similarity of self and other, one 
score for each type of feature 

❏ classify(self, source1, source2)​: ​consumes two other “source” ​TextModel 
objects (​source1 ​ and ​source2 ​) and returns which of those two ​TextModels ​ is the 
more likely source of the called TextModel self 

❏ compare(self, source1, source2)​: identical to ​classify ​, but instead of 
returning a ​TextModel ​, prints out a “classification report” that contains the lists of 
similarity scores for ​source1 ​ and ​source2 ​ and some descriptive statement on which 
source the ​TextModel ​ self most likely originated from 

Phase 5: Experiment 
You don’t have to implement any functions for this phase of the project, but you still need to: 
 

● Curate two bodies of text from which to create two “source” models  
● Choose four different documents (not used in the creation of your source models) that 

you would be interested in classifying against your source models 

 



 

● Edit the supplied run_experiements function in the stencil code to: 
○ Create a ​TextModel ​ instance for each of your two chosen bodies of text 
○ Classify your four documents using each of the two new ​TextModels 
○ Output meaningful data using the ​compare ​ function from Phase 4 

● Write a ​technical_report.txt ​ file (approximately five paragraphs) containing 
answers to the following questions: 

○ What text features did you use? What was the additional feature you chose? 
○ What approach(es) did you use for your ​classify​ method? Why did you choose 

this approach? 
○ Which source bodies of text did you choose? Which new texts/bodies of text did 

you choose to compare against the sources? Why did you choose those sources 
and documents? 

○ What were the results of your comparisons? 
○ How well do you think your text classification program works? How could it be 

improved? 

Phase 1: Setting up the Model 
In this part, you’ll be editing the provided ​TextModel ​ class in ​model.py ​ to add functions that 
allow you to read in text files and extract meaningful output. 

__init__(self, model_name) 
If you’re having trouble setting up your constructor method, we recommend you refer back to 
the lecture slides and your Markstrings code and observe how the ​__init__ ​ methods are 
defined there. Remember to initialize the following attributes listed in the Specification Checklist 
above:  
 

1. name ​ – ​a string that is a label for this text model, such as ​'JKRowling' ​ or 
'Shakespeare' ​. ​This will be used in the filenames for saving and retrieving the model. 
Use the​ ​model_name ​ ​that is passed in as a parameter. 

2. words ​ –​ a dictionary that records the number of times each word appears in the text. 
3. word_lengths ​ – ​a dictionary that records the number of times each word ​length 

appears. 
4. stems ​ – a dictionary that records the number of times each word stem appears in the 

text. 
5. sentence_lengths ​ – a dictionary that records the number of times each sentence 

length appears. 
6. Another dictionary representing your chosen extra text analysis feature​. You might 

choose one of the features used in the analysis that revealed Rowling’s authorship of 
The Cuckoo’s Calling. Or you could choose something else entirely (e.g., something 

 



 

based on punctuation, sentiment analysis) – anything that you can compute/count using 
Python! 

__repr__(self) 
Write a method​ ​__repr__(self) ​ ​that returns a string that includes the name of the model as 
well as the sizes of the dictionaries for each feature of the text. 
 
For example, if a ​TextModel ​ named “J. K. Rowling” has been set-up, the return value of this 
method may look like: 
 

>>> ​some_model = TextModel(​"J. K. Rowling"​) 
# ... a bunch of operations take place here 

>>> ​print(some_model) 
text model name: J. K. Rowling 

  number of words: ​2103 
  number of word lengths: ​17 
  number of stems: ​12 
  number of sentence lengths: ​23 

 
The numbers shown above are just for demonstration purposes, and should be the length of 
each of the dictionaries you initialized in ​__init__ ​. Initially, these dictionaries should be 
empty. However, in Phase 2, we’ll develop methods to add meaningful information to these 
dictionaries. 
 
Note:​ ​Remember that the ​__repr__ ​ method should create a single string and return it. You 
should not use the print function in this method. Additionally, since the returned string should 
have multiple lines, you will need to add in the newline character (​'\n' ​).  The stencil contains a 
stub method. Fill it out. 

Checkpoint 
At this point, you will be able to test that your instance variables were initialized correctly in 
__init__ ​ and your implementation of ​__repr__ ​ by calling print on a ​TextModel ​ instance. 
For example: 
 

>>> ​model = TextModel(​'A. Poor Righter'​) 
>>> ​print(model) 
text model name: A. Poor Righter 

  number of words: ​0 
  number of word lengths: ​0 

 



 

  number of stems: ​0 
  number of sentence lengths: ​0 

 

Phase 2: Parsing the Text 
Now that you have a base ​TextModel ​ class and a way to read text from files, you will 
implement several helper functions to perform string parsing operations and accumulate 
statistics on a given body of text. Then, you will extend the ​TextModel ​ class with methods that 
apply these functions so that you can add a body of text to a ​TextModel ​ and automatically 
update the feature dictionaries you setup in the ​TextModel ​ constructor. 

Functions Outside of TextModel 
Implement the following functions ​outside of the ​TextModel​ class: 

clean_text(txt) 
Write a function named ​clean_text(txt) ​ that takes a body of text ​s ​ as a parameter, and 
returns a list containing the words in ​txt ​ with all punctuation and special characters removed. 
Duplicates should remain in the list. 
 
The extent to which you clean the text is up to you. While you should at least remove common 
punctuation symbols, you can decide how many other symbols you want to remove. (You may 
find it helpful to use the Python string method ​replace ​.) You may also find it helpful to perform 
other operations on the string, such as converting all of the characters to lowercase (which you 
can do using the Python string method ​lower ​). For example: 
 

>>> ​clean_text(​"This has LOTS of punctuation--let's clean this!"​) 
[​"this"​, ​"has"​, ​"lots"​, ​"of"​, ​"punctuation"​, ​"lets"​, ​"clean"​, ​"this"​] 

 
Note: ​You should not use recursion for this function, since for large files you will run out of 
memory from too many recursive method calls. 

stem(word) 
Write a function named ​stem(word) ​ that accepts a string as a parameter. The function should 
then return the ​stem​ of ​word ​. The stem of a word is the root part of the word, which excludes 
any prefixes and suffixes. For example: 
 

>>> ​stem(​'party'​) 
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'parti' 

>>> ​stem(​'parties'​) 
'parti' 

>>> ​stem(​'love'​) 
'lov' 

>>> ​stem(​'loving'​) 
'lov' 

 
Notes: 
 

● This problem is open-ended, and the number of different cases that stem is able to 
handle is up to you. Please ask on Piazza for clarifications on expected output. For full 
credit, your function should handle at least seven distinct cases, each of which works on 
multiple words. 

● The stem of a word is not necessarily a word itself! 
● This function does not have to work perfectly for all possible words and stems. Instead, 

you should define a multitude of cases for stems that work for many words, as we will 
discuss in lecture. For full credit, you should implement seven distinct cases and test 
them on many different words. 

Methods for TextModel 
Implement the following two functions ​as ​TextModel​ methods​: 

add_string(self, s) 
Write a method​ ​add_string(self, s) ​ that adds a string of text s to the model by 
augmenting the feature dictionaries defined in the constructor. It should ​not​ explicitly return a 
value. 
 
Don’t forget to also update the extra dictionary you initialized in ​__init__ ​ representing the 
extra text analysis feature you chose in Part 1. 
 
We ​highly recommend​ that you develop helper functions to perform each of the text 
processing operations you need to update the ​TextModel ​’s feature dictionaries. ​You are also 
expected to apply the ​clean_text​ and stem methods as specified above. ​See the 
Checkpoint below on the expected result of ​add_string ​. 

add_file(self, file_name) 
Write a method ​add_file(self, file_name) ​that adds all of the text in the file identified by 
filename to the model by augmenting the feature dictionaries defined in the constructor. It 
should ​not​ explicitly return a value. 

 



 

 
You can use the ​open ​ method to open a file and read its contents. When you open the file for 
reading, you should specify two additional arguments as follows: 
 

f = open(<some file name>, ​'r'​, encoding=​'utf8'​, errors=​'ignore'​) 

 
These ​encoding​ and ​errors​ arguments should allow Python to handle special characters (e.g., 
“smart quotes”) that may be present in your text files. 

Checkpoint 
At this point, you should be able to add bodies of text to ​TextModel ​ instances using your 
add_string method, and verify that the statistic dictionaries are updated correctly by printing the 
TextModel ​ (thereby invoking the ​__repr__ ​ method you created in Part 1) and accessing the 
instance variables. 
 

>>> ​model = TextModel(​'A. Poor Righter'​) 
>>> ​model.add_string(​"The partiers love the pizza party."​) 
>>> ​print(model) 
text model name: A. Poor Righter 

  number of words: ​5 
  number of word lengths: ​4 
  number of stems: ​4 
  number of sentence lengths: ​1 
>>> ​model.words 
{​'party'​: ​1​, ​'partiers'​: ​1​, ​'pizza'​: ​1​, ​'love'​: ​1​, ​'the'​: ​2​} 
>>> ​model.word_lengths 
{​8​: ​1​, ​3​: ​2​, ​4​: ​1​, ​5​: ​2​} 
>>> ​model.stems 
{​'parti'​: ​2​, ​'the'​: ​2​, ​'pizza'​: ​1​, ​'lov'​: ​1​} 
>>> ​model.sentence_lengths 
{​6​: ​1​} 

 

Phase 3: Model Persistence 
Creating a text model can require a lot of computational power and time. Therefore, once we 
have created a model, we want to be able to save it for later use. The easiest way to do this is 
to write each of the feature dictionaries to a different file so that we can read them back in at a 
later time. In this part of the project, you will add methods to your​ ​TextModel ​ ​class that allow 
you to save and retrieve a text model in this way. 
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save_model(self) 
Write a method ​save_model(self) ​ ​that saves the​ ​TextModel ​ ​object​ ​self ​ ​by writing its 
various feature dictionaries to files. There will be one file written for each feature dictionary. 
 
In order to identify which model and dictionary is stored in a given file, you should use the ​name 
attribute concatenated with the name of the feature dictionary. For example, if​ ​name ​is​ ​'JKR' 
(for J. K. Rowling), then we would suggest using the filenames: 
 

● 'JKR_words' 
● 'JKR_word_lengths' 
● 'JKR_stems' 

● 'JKR_sentence_lengths' 

 
In general, the filenames are ​self.name + '_' + ​ ​name_of_dictionary​. ​Taking this 
approach will ensure that you don’t overwrite one model’s dictionary files when you go to save 
another model. 
 
Below, we’ve provided a code snippet of a function that writes a dictionary to a file: 
 

def​ ​sample_file_write​(filename): 
    ​""" 
    A function that demonstrates how to write a Python dictionary to an 

    easily-readable file. 

    """ 

    d = {​'test'​: ​1​, ​'foo'​: ​42​}   ​# Create a sample dictionary. 
    f = open(filename, ​'w'​)      ​# Open file for writing. 
    f.write(str(d))              ​# Writes the dictionary to the file. 
    f.close()                    ​# Close the file. 

 
Notice that the file is opened for ​writing​ by using a second parameter of​ ​'w' ​ in the ​open 
function call. In addition, we write to the file by using the file handle’s ​write ​ ​method on a string 
representation of the dictionary. 

read_model(self) 
Write a method​ ​read_model(self) ​ that reads the stored dictionaries for the called 
TextModel ​ ​object from their files and assigns them to the attributes of the called​ ​TextModel ​. 
This is the complementary method to​ ​save_model ​, ​and you should assume that the necessary 
files have filenames that follow the naming scheme used in​ ​save_model ​. 
 

 



 

Remember that you can use the ​dict ​ ​and​ ​eval ​ ​functions to convert a string that represents a 
dictionary to an actual dictionary object. 
 
Below, we’ve provided a code snippet of a function that reads a dictionary from a file (which was 
put into the file by the ​sample_file_write ​ method above). This function converts this string 
(which is a string that ​looks like​ a dictionary) to an actual dictionary object. The conversion is 
performed using a combination of two built-in functions: ​dict ​, ​the constructor for dictionary 
objects; and​ ​eval ​, ​which evaluates a string as if it were an expression: 
 

def​ ​sample_file_read​(filename): 
    ​""" 
    A function that demonstrates how to read a Python dictionary from  

    a file. 

    """ 

    f = open(filename, ​'r'​)    ​# Open for reading. 
    d_str = f.read()           ​# Read string that represents a dict. 
    f.close() 

    d = dict(eval(d_str))      ​# Convert the string to a dictionary. 
    print(​"Inside the newly-read dictionary, d, we have:"​) 
    print(d) 

 

Checkpoint 
At this point, you should be able to add bodies of text to ​TextModel ​ instances using your 
add_string ​ method, save the generated statistic dictionaries using ​save_model ​, and load 
them back into a new ​TextModel ​ instance using the ​read_model ​ method. For example: 
 

# Create a model for a simple text, and save the resulting model. 

>>> ​model = TextModel(​'A. Poor Righter'​) 
>>> ​model.add_string(​"The partiers love the pizza party."​) 
>>> ​model.save_model() 
# Create a new TextModel object with the same name as the original one, 

# and assign it to a new variable. 

>>> ​model2 = TextModel(​'A. Poor Righter'​) 
# Read the dictionaries that were saved for the original model, 

# and use them as the dictionaries of `model2`. 

>>> ​model2.read_model() 
>>> ​print(model2) 
  text model name: A. Poor Righter 

    number of words: ​5 

 



 

    number of word lengths: ​4 
>>> ​model2.words 
{​'party'​: ​1​, ​'partiers'​: ​1​, ​'pizza'​: ​1​, ​'love'​: ​1​, ​'the'​: ​2​} 
>>> ​model2.word_lengths 
{​8​: ​1​, ​3​: ​2​, ​4​: ​1​, ​5​: ​2​} 

 

Phase 4: Performing Analysis 
In this part of the project, you will first implement the Naive Bayes scoring algorithm covered in 
lecture that will allow you to compare bodies of text. This algorithm will produce a numeric 
similarity score​ that measures how similar one body of text is to another, based on one type of 
feature (e.g., word lengths). You will then compute scores of this type for all five of the features, 
and use them to classify a piece of text as being more likely to come from one source than 
another. 

Naive Bayes Example 
To illustrate how the Bayesian scoring algorithm works, let’s assume that the only features we 
care about are the individual word counts found in a text. 
 
As you have already done in your ​TextModel ​ class, we can use a Python dictionary to model 
the word counts. The dictionary’s keys are words, and the value for a given word is the number 
of times that it appears in the text (i.e. its count). 
 
For example, let’s assume that we have two text documents: 
 

● a ​source​ text (which we are pretending was written by Shakespeare!) that has the 
following dictionary: 
shakespeare_dict = {'love': 50, 'spell': 8, 'thou': 42} 

● This document has 100 words in all: 50 occurrences of the word “love,” 8 of “spell,” and 
42 of “thou.” 

● a ​mystery​ text (author unknown) whose dictionary looks like this: 
mystery_dict = {'love': 3, 'thou': 1, 'potter': 2, 'spam': 4} 

● This document has 10 words in all: three occurrences of “love,” one of “thou,” two of 
“potter,” and four of “spam.” 

 
The Bayesian similarity score between these two texts attempts to measure the likelihood that 
the ten words in the mystery text come from the same class of text as the 100 words in the 
source text. (A given class of text could be based on a particular author or publication, or on 
other characteristics of the texts in question.) 

 



 

 
To calculate the score, we first take each word in the mystery text and compute a probability for 
it that is based on the number of times that it occurs in the source text. If a word in the mystery 
text doesn’t occur at all in the source text (which would lead to a probability of 0), we instead 
compute a probability that is based on a “default” word count of 0.5. This will allow us to avoid 
multiplying by 0 when we compute the final score. 
 
Here are the probabilities for the words in our mystery text: 
 

● “love” has a probability of 50/100 or 0.5 (it occurs 50 times out of the 100 words in the 
source text) 

● “thou” has a probability of 42/100 or 0.42 
● “potter” has a probability of 0/100, but we change it to 0.5/100 or 0.005 to avoid a 

probability of 0 
● “spam” has a probability of 0/100, but we change it to 0.5/100 or 0.005 

 
Important: These probabilities have denominators of 100 because the source text has 100 
words in it. The denominators should ​not​ always be 100! 
 
To compute the similarity score of the mystery text, we need to compute a product in which a 
given word’s probability is multiplied by itself ​n​ times, where ​n​ is the number of times that the 
word appears in the mystery text. In this case, we would do the following: 
 

#            3 "love"   1 "thou"  2 "potter"         4 "spam" 

sim_score = (​.5​*​.5​*​.5​) * (​.42​) * (​.005​*​.005​) * (​.005​*​.005​*​.005​*​.005​) 

 
This similarity score is very small! In practice, these very small values are hard to work with, and 
they can become so small that Python’s floating-point values cannot accurately represent them! 
Therefore, instead of using the probabilities themselves, we will use the ​logs​ of the probabilities. 
The log operation transforms multiplications into additions (and exponents into multiplication), 
so our log-based similarity score would be: 
 

log_sim_score = ​3​*log(​.5​) + ​1​*log(​.42​) + ​2​*log(​.005​) + ​4​*log(​.005​) 

 
This results in a more manageable value of around -34.737. (Note that Python’s math.log 
function uses the natural log (of base ​e​) by default, which is fine for our purposes.) 
 
The resulting similarity score gives us a measure of how similar the mystery text is to the source 
text. To classify a new mystery text, we compute similarity scores between it and a collection of 
known texts in order to determine which of the known texts is most likely to be related to the 

 



 

mystery text.  For example, let’s say that we also have the following model for texts by J.K. 
Rowling: 
 

jkr = {​'love'​: ​25​, ​'spell'​: ​275​, ​'potter'​: ​700​} 

 
Note​: there are a total of 1000 words in this model. 
 
We can compute a similarity score for the mystery text and the jkr texts in the same way that we 
did above. We get the following probabilities that the words in the mystery text came from the jkr 
texts: 
 

● “love” has a probability of 25/1000 or 0.025 
● “thou” has a probability of 0.5/1000 or 0.0005 (using the default value of 0.5 for the 

count, because “thou” does not appear in the jkr texts) 
● “potter” has a probability of 700/1000 of 0.7 
● “spam” has a probability of 0.5/1000 or 0.0005 

 
Thus, the non-log similarity score for 3 occurrences of “love”, 1 occurrence of “thou”, 2 
occurrences of “potter”, and 4 occurrences of “spam” would be: 
 

sim_score = (​.025​*​.025​*​.025​) * (​.0005​) * (​.7​*​.7​) * 
(​.0005​*​.0005​*​.0005​*​.0005​) 

 

This value is also very small! Using logs: 
 

log_sim_score = ​3​*log(​.025​) + ​1​*log(​.0005​) + ​2​*log(​.7​) + ​4​*log(​.0005​) 

 
Now the similarity score is approximately -49.784. This value is less than the value that we 
computed when comparing the mystery text to the Shakespeare text. Therefore, we can 
conclude that the mystery text is more likely to have come from Shakespeare than from J.K. 
Rowling. 

compare_dictionaries(d1, d2) 
Write a function (​not a method, so it should be outside the TextModel class​) named 
compare_dictionaries ​. It should take two feature dictionaries ​d1 ​ and ​d2 ​ as inputs, and it 
should compute and return their log similarity score. Below is some pseudocode for what you 
will need to do: 
 

1. Start the score at zero. 

 



 

2. Let ​total ​ be the total number of words in ​d1 ​ – not only distinct items, but all of the 
repetitions of all the items as well. (For example, ​total ​ for our example 
shakespeare_dict ​ would be 100.) 

3. For each item in ​d2 ​: 
a. Check if the item is in ​d1 ​. 
b. If so, add the log of the probability that the item would be chosen at random from 

everything in ​d1 ​, multiplied by the number of times it appears in ​d2 ​. 
c. If not, add the log of the default probability (0.5 / ​total ​), multiplied by the 

number of times the item appears in ​d2 ​. 
4. Return the resulting score. 

similarity_scores(self, other) 
Write a method ​similarity_scores(self, other) ​that consumes another ​TextModel 
and computes and returns a ​list​ of log similarity scores measuring the similarity of self and other 
– one score for each type of feature (words, word lengths, stems, sentence lengths, and your 
additional feature).  
 
The ​compare_dictionaries ​ function you wrote will be helpful in your implementation for 
this function, as it returns the log similarity score between two dictionaries. 
 
Important: ​In order for your statistics to be calculated correctly, whenever a ​TextModel 
instance calls the compare_dictionaries function, the dictionary belonging to that instance self 
should be the second parameter of the call. For example: 
 

word_score = compare_dictionaries(other.words, self.words) 

classify(self, source1, source2) 
Write a method ​classify(self, source1, source2) ​ that compares the called 
TextModel ​ object ​self ​ to two other “source” ​TextModel ​ objects (​source1 ​ and ​source2 ​) 
and returns which of these two ​TextModels ​ is the more likely source of the called ​TextModel 
self. 
 
You should begin by calling ​similarity_scores ​ twice: 
 

scores1 = self.similarity_scores(source1) 

scores2 = self.similarity_scores(source2) 

 
You should then use these two lists of scores to determine whether the called ​TextModel ​ is 
more likely to have come from ​source1 ​ or ​source2 ​. ​You are free to do this in any way you 

 



 

choose, but note that you will have to document your approach later in the project in 
Phase 5. 

Example Approach 1: Best of Five 

One way to do this is to compare corresponding pairs of scores, and determine which of the 
source ​TextModels ​ has the larger number of higher scores. 
 
For example, imagine that the two sets of scores are the following: 
 

scores1 = [​-34.737​, ​-25.132​, ​-55.312​, ​-10.715​, ​-47.125​]  
scores2 = [​-49.091​, ​-21.071​, ​-60.154​, ​-16.502​, ​-43.675​] 

 
scores1 ​ has a higher score for three of the features (the ones in positions 0, 2, and 3 of the 
lists), while ​scores2 ​ has a higher score for only two of the features (the ones in positions 1 and  
4). Thus, we conclude that self is more likely to have come from ​source1 ​. 

Example Approach 2: Weighted Sum 

Another approach to using the two lists of scores is computing a weighted sum of the scores in 
each list, which can be done by doing something like this: 
 

weighted_sum1 = ​10 ​* scores1[​0​] + ​5 ​* scores1[​1​] + ​7 ​* scores1[​2​] + ... 
weighted_sum2 = ​10 ​* scores2[​0​] + ​5 ​* scores2[​1​] + ​7 ​* scores2[​2​] + ... 

 
You could then base your classification on which source’s weighted sum is larger. One 
advantage of this approach is that it allows you to adjust the relative importance of the different 
features – giving certain features a larger impact on the classification. 

compare(self, source1, source2) 
Write a method ​compare ​ that ​prints out a “classification report” that contains the lists of 
similarity scores for ​source1 ​ and ​source2 ​ and some descriptive statement on which source 
the ​TextModel ​ self most likely originated from. 
 
This method does not need to return anything. As long as the lists of similarity scores and the 
final statement are in the message printed by compare, you are free to format your message as 
you see fit. For example, this is how the TAs formatted their output: 
 

>>> ​mystery.compare(source1, source2) 
scores for source1: [​-16.394​, ​-9.92​, ​-15.701​, ​-1.386​, ​-1.386​] 

 



 

scores for source2: [​-17.087​, ​-15.008​, ​-17.087​, ​-1.386​, ​-3.466​] 
mystery is more likely to have come from source1 

 
Some of your similarity scores will be different than ours (e.g., the third scores, which depend on 
how you stem the words, and the fifth scores, which depend on which additional feature you 
include). Our conclusion is based on a pairwise comparison of the scores: because ​source1 
has a larger number of higher scores, it is chosen as the more likely source. If you use the lists 
of scores in another way, you may come to a different conclusion, which is fine! 

Checkpoint 
At this point, you should have developed a sophisticated ​TextModel ​ class that can perform 
similarity comparisons between different bodies of text. For example: 
 

>>> ​source1 = TextModel(​'source1'​) 
>>> ​source1.add_string(​'It is interesting that she is interested.'​) 
 

>>> ​source2 = TextModel(​'source2'​) 
>>> ​source2.add_string(​'I am very, very excited about this!'​) 
 

>>> ​mystery = TextModel(​'mystery'​) 
>>> ​mystery.add_string(​'Is he interested? No, but I am.'​) 
>>> ​mystery.compare(source1, source2) 
scores for source1: [​-16.394​, ​-9.92​, ​-15.701​, ​-1.386​, ​-1.386​] 
scores for source2: [​-17.087​, ​-15.008​, ​-17.087​, ​-1.386​, ​-3.466​] 
mystery is more likely to have come from source1 

 

Phase 5: Experiment 
Now that your ​TextModel ​ class is complete and you have tested its ability to compare texts, 
you should choose several bodies of text from which you can create models and compute 
similarity scores. 

Curating TextModel Sources 
Choose two bodies of text from which you will create two “source” ​TextModels​.​ In the 
example we provided at the start of Phase 4, we chose William Shakespeare and J. K. Rowling 
texts for our source models, and then selected a new mystery text to compare them against. For 
this part, you should similarly choose two bodies of text for your source models, and in the next 
part you will choose new texts to compare them against.  

 



 

 
Note that we say ​bodies​ of text, because a given text model can be based on more than one 
text document. For example, if you want to build a text model for ​New York Times ​articles, you 
should base it on multiple articles from the ​Times​. ​(Another reason for combining multiple 
documents from the same source is that models based on too small a source text tend to be 
brittle—they depend too much on the idiosyncrasies of that source.) 
 
You should choose two bodies of text that allow for meaningful comparisons. For example: 
 

● works by Shakespeare vs. works by J.K. Rowling 
● articles from the ​New York Times​ vs. articles from the ​Wall Street Journal 
● scripts from ​Friends​ vs. scripts from ​How I Met Your Mother 
● two styles of writing (e.g., articles written for scientific journals vs. articles written for 

popular magazines, or articles written for two different sections of a given publication) 
 
You are welcome to choose whatever texts you like, but as a starting point, here is a link to a 
text file containing the ​complete works of William Shakespeare​. You should not use this file as it 
is. You should download it, open it, and remove the text at the beginning and end that explains 
the file and provides additional information. This is true of ​any​ text file(s) that you use – you 
should inspect them and perform whatever human pre-processing is necessary to clean the file 
before handling it computationally. 
 
Note: ​We encourage you to ​leave out​ at least one text from each body of text when creating 
your models. This will allow you to use it for testing. For example, if your two bodies of text are a 
collection of articles from the ​New York Times​ and a collection of articles from the ​Wall Street 
Journal​, you can use most of the articles from a given collection to build its text model, but leave 
out one article from each collection so that you can perform tests to see if the ​Times​ article that 
you left out when building your source models is really more similar to the other ​Times​ articles 
than it is to the ​WSJ​ articles. 

Choosing Documents to Compare 
Once you have your two source models, ​you should choose at least four new text 
documents (texts not used in the creation of your source models) that you would be 
interested in classifying according to your source models. 
 
For example, you could see if: 
 

● your first year seminar paper is more like works by Shakespeare or Rowling  
● Providence Journal ​ is more like the ​New York Times​ or the ​Wall Street Journal ​(or 

perhaps the ​Daily Mail​) 
● Bart Simpson is more like Chandler Bing or Barney Stinson 

 

 

http://www.gutenberg.org/files/100/old/shaks12.txt


 

Be creative! For each text/collection of texts that you want to classify, you will again need to 
obtain one or more text files, pre-process them, and create a TextModel object from them. You 
should then invoke the compare method on that TextModel to see which of your models is the 
more likely source. 

Using run_experiments() to Run an Experiment 
E​dit the ​run_experiements ​ function in the stencil code to: 
 

● Create a ​TextModel ​ instance for each of your two chosen bodies of text 
● Classify your four documents using each of the two new ​TextModels 
● Output meaningful data using the compare function in the ​TextModel ​ instances 

 
For example, this is an example of how we implemented part of our ​run_experiments 
function: 
 

def​ ​run_experiments​(): 
    source1 = TextModel(​'rowling'​) 
    source1.add_file(​'rowling_source_text.txt'​) 
 

    source2 = TextModel(​'shakespeare'​) 
    source2.add_file(​'shakespeare_source_text.txt'​) 
 

    new1 = TextModel(​'seminar'​) 
    new1.add_file(​'seminar_source_text.txt'​) 
    new1.compare(source1, source2) 

 

    ​# more code goes here for your other three models 

 

You should replace the model names and file names in the provided code with the names of 
your models and text files. Don’t forget that you can use more than one file to build a given 
model, in which case you would call ​add_file ​ multiple times for that model. Appropriate use of 
your​ save_model ​and​ ​read_model ​methods will even allow you to efficiently work with 
really large texts.  
 
Important: Be sure and hand-in everything (including all your text files) needed to let the 
graders execute your ​run_experiments​ f​unction. 

technical_report.txt 
In a file named ​technical_report.txt ​, ​include a report containing answers to the following 
questions: 

 



 

 
● What text features did you use? What was the additional feature you chose? 
● What approach(es) did you use for your ​classify​ method? Why did you choose this 

approach? 
● Which source bodies of text did you choose? Which new texts/bodies of text did you 

choose to compare against the sources? Why did you choose those sources and 
documents? 

● What were the results of your comparisons? 
● How well do you think your text classification program works? How could it be improved? 

Extra Credit 
For up to 5 points of extra credit, you may extend your TextModel to include other text analysis 
features (anything outside of sentence length, word length, word counts, stem counts, and your 
additional chosen feature is fair game). 
 
Document all extra functionality​ in your ​technical_report.txt ​, along with a description 
of why you have chosen to implement it. In particular, we will be looking for extra features that 
are tailored towards the specific texts you have chosen to analyze. 
 

 
 
Please let us know if you find any mistakes, inconsistencies, or confusing language in this 
document or have any concerns about this and any other CS4 document by ​posting on Piazza 
or filling out ​our anonymous feedback form​. 

 

https://piazza.com/class/jcknnu4zub9o7
https://docs.google.com/forms/d/e/1FAIpQLSfXXsoLM7m9phN7GFBH4XyKHEdMgnXqAN-xM6-8_tVt_T13rg/viewform?usp=sf_link

