
An Overview of the net.datastructures package∗

Michael T. Goodrich
†‡

Roberto Tamassia
§‡

Eric Zamore
§

http://net.datastructures.net

java@datastructures.net

(Version 3.0)

Abstract

We introduce the net.datastructures package, written entirely in Java. The net.datastructures
package includes implementations of a variety of simple and complex data structures, such as lists,
dictionaries, maps, trees, graphs, and priority queues, with powerful and flexible access to the
elements stored, both by means of traditional iterators and by means of relavitvely new types of
accessors called positions and entries. The net.datastructures package also includes implementations
of a few fundamental algorithms, such as a DFS traversal of a graph, and Dijkstra’s algorithm for
shortest paths.

∗Work supported in part by the U. S. Army Research Office under grant DAAH04–96–1–0013 and by the National

Science Foundation under grants CCR–9625289 and CCR–9732327.
†Center for Geometric Computing, Department of Computer Science, The Johns Hopkins University, 3400 N. Charles

Street, Baltimore, MD 21218, USA.
‡Work on this project performed by this author as a coauthor of the book Data Structures and Algorithms in Java.
§Center for Geometric Computing, Department of Computer Science, Brown University, 115 Waterman Street, Provi-

dence, RI 02912–1910, USA.



1 Introduction

Computer programs organize information into data structures and process it according to algorithms.
Thus, providing component libraries of efficient data structures and algorithms can enable rapid software
development for advanced applications.

1.1 Data Structure Libraries in Java

Java is evolving into a premier development language for advanced software applications, particularly
for the Internet. A small library of data structures and algorithms, which we refer to as Java Collections
(JC) is included in the standard Java package java.util. An alternative library is the Generic Library
for Java (JGL) by ObjectSpace, which is patterned after the STL, the Standard Template Library written
in C++. Both the Java Collections and JGL provide implementations of basic data structures such as
maps, sets, dictionaries, and sequences. JGL also provides a considerable number of template-based
algorithms for permuting data. The Graph Foundation Classes for Java (GFC ) by alphaWorks is a
framework for programming with graphs in Java. It provides a set of data structures to represent trees
and graphs and some graph drawing algorithms based on these data structures.

1.2 JDSL

The Data Structures Library in Java (JDSL), is a data structures library that provides advanced data
structures and algorithms not found in the Java Collections and JGL. In addition to basic data structures
such as lists and dictionaries, JDSL includes implementations of a variety of complex data structures
such as trees, graphs, and priority queues, with powerful and flexible access to the elements stored.

The net.datastructures package was created to function as a simpler, more user-friendly alternative to
JDSL. While the underlying philosophies behind each library differ, many of the features in JDSL are also
included in the net.datastructures package, and much of the functionality of the two libraries is identical.
They were both in-part developed at the Center for Geometric Computing at Brown University. See
Section 5 for a full comparison between the two.

1.3 The net.datastructures package

Like JDSL, the net.datastructures package provides basic and advanced data structures such as lists,
trees, graphs, dictionaries, hash tables, priority queues, and graphs. The net.datastructures package
provides several algorithms such as Dijkstra’s shortest-paths algorithm for graphs, and sorting algorithms
such as quick-sort and merge-sort.

The net.datastructures package allows access to stored data through a variety of mechanisms. Be-
sides providing iterators, a simple mechanism for iteratively listing through a collection of objects, the
net.datastructures package provides two types of accessors to data, called positions and entries, which
allows a user to “track” elements within data structures. For example, the method for inserting an
element into a dictionary returns an entry, containing a key and a value, for the element, which allows
to later access the element in constant time without having to search.

Another feature of the net.datastructures package is the support for decorations (or attributes), which
can be used to “label” positions within a data structure. For example, in a traversal of a graph, we can

1



JC JGL GFC JDSL DSP
Stacks and Queues

√ √ √

Sequences (lists, vectors)
√ √ √ √ √

General-purpose trees
√ √

Binary trees
√ √ √

Priority queues (heaps)
√ √ √

Hash Tables
√ √ √ √

Search Trees
√ √ √ √

Sets
√

Graphs
√ √ √

Templated algorithms
√ √

Sorting algorithms
√ √ √ √

Data permutation algorithms
√

Graph traversals
√ √ √

Shortest path
√ √

Minimum spanning tree
√

Graph drawing algorithms
√

Iterators
√ √ √ √

Accessors (positions and entries/locators)
√ √

Range views
√ √

Decorations (attributes)
√ √ √

Thread-safety and full serializability
√ √

Table 1: A Comparison of the Java Collections, the Generic Library for Java, the Graph Foundation
Classes for Java, the Data Structures Library in Java, and the net.datastructures package.

use decorations to mark the vertices and edges visited so far.

The net.datastructures package treats algorithms as objects that (i) are instantiated, (ii) passed the
input data, (iii) run through some sort of execute method, and (iv) provide access to the output after
their execution via various methods. Most algorithms implemented by the net.datastructures package
can be parameterized by means of the template method pattern.

Table 1 compares key features of JC, JGL, GFC, JDSL, and the net.datastructures package (DSP).

The net.datastructures package has been developed at the Center for Geometric Computing at Brown
University, in collaboration with Michael Goodrich, who is a professor at The Johns Hopkins University.

In the next section, we present the design goals for the net.datastructures package. Section 3 discusses
the major concepts used in the net.datastructures package, and Section 4 examines the specific data
structures and algorithms packaged in this release of the net.datastructures package. Section 5 outlines
a comparason between JDSL and the net.datastructures package, and in Section 6, we briefly outline
what is planned for the future of the net.datastructures package.

2



2 Design Goals

In this section, we overview the design goals followed in the development of the net.datastructures
package.

2.1 Education

The main purpose of the net.datastructures package is to serve as an educational tool. The software
is meant to explain concepts about algorithms and data structures by providing a set of functional,
fully-usable components. The software is intended to be used for educational purposes, though it is
suitable for any non-commercial use. The package has been thoroughly tested, but the input data sets
were relatively small, making it impractical for use in a commercial product.

2.2 Code Readability

The code behind the net.datastructures package is intended to be easily readable - so that anyone familiar
with the Java programming language will have full understanding of the code with one readthrough. Our
choice of syntax is clear and concise, and many comments are interleaved to provide further clarification.

2.3 Simplicity

In an effort to make the net.datastructures package easy to use, simplicity was an important consideration
in designing the package. All components of the net.datastructures package belong to a single Java
package. There are very few different types of exception classes, no container classes, and quite basic
inheritance hierarchies.

2.4 Efficiency

The data structures in the net.datastructures package typically offer the best-possible asymptotic time
complexity for every operation supported. For example, in a hash table, searches are performed in
expexted O(1) time, while in a heap, insertions and removals are performed in actual O(log N) time. It
should be noted that in order to keep the package as simple as possible, no constant-factor optimizations
have been made.

2.5 Reliability

Reliability has been one of our primary goals during the construction of the net.datastructures package.
We have thoroughly tested each component and ensured that it functions exactly according to our
specifications. We have also paid close attention to error conditions, and made sure that appropriate
user feedback is provided when an exception is thrown.

3



2.6 Object-Orientation

The net.datastructures package takes a strong object-oriented view of data structures and algorithms.
The data structures and algorithms in the net.datastructures package are objects that themselves handle
all the supported operations. Algorithm objects are instantiated with the input data and store the results
of their execution and provide methods to access them.

3 Data Organization Concepts in the net.datastructures pack-

age

In this section, we examine some key data organization concepts used in the net.datastructures package.

3.1 Element

An element of a data structure is any java.lang.Object. The element is the underlying data stored in
the data structure. Note that the same object can be stored in many data structures and can be also
stored multiple times in the same data structure.

3.2 Key

Some data structures in the net.datastructures package store keys associated with elements. When keys
are involved with a data structure, we use the term “value” instead of “element” to avoid confusion.
Keys are typically used as an indexing mechanism for their associated value. An example of a key-based
data structure is a dictionary, whose main methods support the following operations:

• inserting a (key, value) pair;

• searching for an value with a given key;

• removing an value with a given key.

A key can be any java.lang.Object. Note that a key and its value need not be distinct from each
other. Typical keys are strings (e.g., names) and numbers (e.g., account numbers).

3.3 Accessor

The net.datastructures package provides unified and implementation-independent access to the elements
of a data structure by means of accessors. An accessor provides constant-time access to an element stored
in a data structure, independently from the implementation of the data structure. Every element in the
net.datastructures package has an accessor which contains it. Most operations in the net.datastructures
package refer to accessors, and not to the actual data itself. There are two main types of accessors in
the net.datastructures package, positions and entries.

For example, a sequence S may be implemented either by means of an array or by means of a linked
list. In the first case, to access an element we need its index in the array. In the second case, we need a

4



pointer to the list node storing the element. However, the user of the net.datastructures package need
not know which implementation of the sequence is being used. This is because in either case, given a
position pos in the sequence, we can get the element by calling pos.element(). Also, we can delete the
element from the sequence by calling S.remove(pos).

3.3.1 Position

Positions denote virtual “places” in data structures such as sequences, trees, and graphs. These data
structures establish topological relations between their positions, such as the adjacency relation on the
vertices of a graph, the parent-child relation on the nodes of a tree, and the predecessor-successor relation
on the nodes of a sequence. Positions represent the “nodes” in such structures.

3.3.2 Entry

Any key-based data structure uses an entry to represent the data associated with a key. Since these
data structures do not necessarily define relationships among virtual places but operate on their elements
through their associated keys, an entry is conceptually different from a position.

An entry is a mechanism for representing a (key,value) pair inside a key-based data structure C. If
you give the data structure a pair to hold, it gives you back an entry ent, and you can later refer to the
pair by means of the entry. For example, you can get the key with ent.key(), you can remove the pair
by calling C.remove(ent), and you can change the existing value with a new value newVal by calling
C.replaceValue(ent,newVal).

3.4 Iterator

Iterators provide a simple mechanism for iteratively listing through a collection of objects. The
net.datastructures package provides two types of iterators - a position iterator and an element itera-
tor. They each maintain a pointer to a “current” item in a list. The element iterator iterates over each
element of a list, while the position iterator iterates over each position of a list. Both implement the
java.util.Iterator interface, which has three methods: hasNext(), next(), and remove(). Neither
iterator provided by the net.datastructures package supports the remove() operation; if remove() is
called on an iterator, an exception is thrown.

Each iterator takes a list as a parameter to its constructor. Since the iterator does not copy the
list, any changes that are made to the list will be reflected in the iterator. For example, if you generate
an iterator over the elements of list L, and subsequently call L.removeLast(), the element that was
removed from the list, elem, is also “removed” from the iterator. This means that the iterator will no
longer return elem over its iteration.

Alternatively, one can use an iterator such that after one is generated over the elements of a data
structure, changes to that data structure are not reflected in the iterator – the iterator refers to the
state of the data structure when the iterator was created. This implies that in our above example, the
iterator would return elem, the object removed from the list after the iterator was generated, over its
iteration. To achieve this behavior, one could alter the elements() method of a list (which returns an
iterator over the list) to first copy the list, and then pass the copy to the iterator. That way, the iterator
refers to the copy, and changes to the original will not affect the iteration. This is what is currently done
in the net.datastructures package.

5



3.5 Comparator

When using a key-based data structure, it is particularly important to be able to specify the relation
for comparing the keys. In general, this relation depends on the type of the keys and on the specific
application for which the key-based data structure is used. Keys of the same type may be compared
differently in different applications.

To provide this capability, the net.datastructures package makes use of the java.util.Comparator

interface. All comparators in the net.datastructures package implement this interface, and only provide
one method - the compare() method. Also, a separate interface, named EqualityTester, is provided
by the net.datastructures package, which is used to determine whether two objects are equal.

The net.datastructures package only provides one public comparator, the DefaultComparator,
which uses the natural ordering of objects, as specified by the compareTo(Object) method in the
java.lang.Object class. A few data structures use inner classes (§3.10) as comparators and others as
equality testers.

3.6 Decoration

The net.datastructures package provides the DecorablePosition interface to allow the ability to “dec-
orate” the positions of a data structure with various attributes. This mechanism is useful for storing
intermediate or final results of the execution of an algorithm. For example, in a depth-first search
traversal of a graph, we can use decorations to mark the vertices as visited or unvisited.

3.7 Map and Dictionary

The net.datastructures package provides the Map interface to uniquely associate a data item with a key,
thus creating a 1-1 mapping from keys to data. The Dictionary interface provides a mechanism to
store entries for convenient lookup. Both interfaces support insertion, search, and removal. The main
difference is that each key in a map is associated with a unique element, whereas two or more entries
with the same key may exist in a dictionary.

3.8 Binary Tree Format

Binary trees in the net.datastructures package are not proper, which means that external nodes have
zero children, and internal nodes can either have one child or two children. A proper binary tree, on
the other hand, requires that its internal nodes have exactly two children. In the net.datastructures
package, if a node has only one child, it can be either a left or a right child. To facilitate this, methods
such as hasLeft(Position), which returns true if and only if a given node has a left child, are provided
in the binary tree interface.

In the net.datastructures package, a heap, for instance, is built upon a complete binary tree. Because
the tree is also non-proper, elements of the heap are stored in external (as well as internal) nodes. The
binary search tree implementation, however, is proper, and thus does not store elements within external
nodes. This decision to require binary search trees to be proper was made because many algorithms for
binary search trees are much simpler to implement when built on a proper tree.

6



3.9 Algorithm/Template Method Pattern

The net.datastructures package views algorithms as objects that are instantiated with the input data,
and provide access to the output after their execution via various methods. Algorithms in the
net.datastructures package perform “generic” computations that can be parameterized by means of
the template method pattern [GHJV95]. In short, this means that they can be specialized for specific
tasks by subclassing them and overriding specific methods.

For example, the net.datastructures package contains an implementation of a depth-first search
traversal of a graph, which contains a series of empty methods which get called by the main body of the
algorithm when a vertex is first encountered, when an edge is traversed, etc. These empty methods can
be overridden in subclasses to provide specific functionality.

3.10 Inner Class

The net.datastructures package heavily uses inner classes, which are classes completely defined within a
regular public class. In Java applications, inner classes are typically used to define some small internal
component (e.g. a button). In the net.datastructures package, inner classes are used when a data
structure requires some component which would not be useful to classes outside the net.datastructures
package. For example, the BinarySearchClass defines the inner class BSTEntry, which implements
the Entry interface. There is no public implementation of an entry because different data structures
specialize entries in various ways, and an outside user of the net.datastructures package would have no
use for a common entry implementation. This means that each data structure that uses entries (or any
type of accessor, for that matter) must define its own implementation. and this is done via an inner class.
All inner classes in the net.datastructures package are declared protected so that they can be used in
subclasses of their enclosing classes. They are declared static so that they do not have references to
their enclosing classes, because such references would be unnecessary and would break encapsulation.

4 The Architecture of the net.datastructures package

In this section, we describe the interfaces defined in the net.datastructures package, their implemen-
tations, and the algorithms that operate on them. All interfaces and classes in the net.datastructures
package are included, with the exception of inner classes (see §3.10).

In the rest of this section, we denote with N the current number of elements stored in the data
structure being considered.

4.1 Packages

Each class and interface of the net.datastructures package is contained within a single Java package,
called net.datastructures.

4.2 Accessors

There are several interfaces and classes that serve as accessors, implying they contain a single data item
(see §3.3).

7



4.2.1 Position

The interface Position has one method, element(), which returns the data item stored at that position.
BTPosition (an interface for a node in a binary tree) extends Position. The BTNode class implements
the BTPosition interface, and is used in binary trees. The DNode class is an implementation of a position
used for a doubly-linked list (see §3.3.1).

A decorable position is a position to which it is possible to assign attributes, such as the weight of
an edge (see §3.6). Both the Vertex and Edge interfaces are decorable positions.

4.2.2 Entry

An entry is an accessor for key-based data structures (see §3.3.2). The Entry interface has two methods,
key() and value(), which return the key and data, respectively, stored in a given entry.

4.3 Basic Data Structures

We classify the following data structures as “basic” because they support relatively few simple operations,
and are often the first data structures presented to students.

4.3.1 Stack

A stack is a container of elements that are inserted and removed according to the last-in, first-out (LIFO)
principle. A stack can hold an arbitrary number of elements, but only the most-recently inserted element
(i.e., the “last-in” element) can be accessed or removed. The net.datastructures package provides the
Stack interface, and two implementations of that interface. The ArrayStack interface implements a
stack by means of a fixed-size array, and the NodeStack class implements a stack by means of a singly-
linked list of nodes. In both implementations, all operations run in constant time.

The Node class is provided as an implementation of a node for a singly-linked list that does not
implement the Position interface. This is done for simplification purposes, as students are generally
introduced to basic data structures before accessors.

4.3.2 Queue

A queue is a container of elements that are inserted and removed according to the first-in, first-out
(FIFO) principle. A queue can hold an arbitrary number of elements, but only the element that has been
in the queue the longest (i.e., the “first-in” element) can be accessed or removed. The net.datastructures
package provides the Queue interface, and the NodeQueue class, which implements a queue by means of
a singly-linked list of nodes. All operations in this implementation run in constant time.

As in NodeStack, the NodeQueue class uses the Node class for the same reasons.

4.3.3 Deque

A deque (double-ended queue) is a collection of elements that are inserted and removed only from
either end. It can be viewed as a queue that supports accesses at both ends. The net.datastructures

8



package provides the Deque interface, and the NodeDeque class, which implements a deque by means of
a doubly-linked list of nodes. All operations in this implementation run in constant time.

As in NodeStack and NodeQueue, the NodeDeque class uses an implementation of a doubly-linked list
node (called DLNode) which does not implement the Position interface.

4.4 Sequential Data Structures

A sequential data structure stores its data in a linear sequence that is transparent to the user. Each
item is “adjacent” to at most two other items.

4.4.1 List

A list is a linear collection of nodes, where each node is a position that contains a single data item.
Access into the list is performed via the nodes. The the net.datastructures package provides the List

interface and an linked-list implementation of that interface, the NodeList class. The NodeList class
supports O(1)-time insertions, removals, and sequential accesses (e.g. finding the “next” node in the
list).

4.4.2 Vector

A vector is a linear sequence with the notion of rank. Each item has a unique rank in the list, from 0 to
N − 1. The rank of an item represents its location in the list, and a vector supports multiple operations
based on rank. The Vector interface and ArrayVector class are provided by the net.datastructures
package. ArrayVector supports O(1) rank-based accesses, and O(N) insertions and removals.

4.4.3 Sequence

A sequence supports all the operations of a list and a vector, thus the Sequence interface inherits
from both the Vector and List interfaces. It also contains two “bridging” methods which provide
connections between ranks and positions. There currently is no implementation of a sequence in the
net.datastructures package.

4.5 Iterators

The net.datastructures package provides two iterator classes, named PositionIterator and
ElementIterator. Both iterate over a List implementation by maintaining a pointer to the current
position (node of the list) or element (data item in the list), respectively (see §3.4).

4.6 Trees

The net.datastructures package contains many different types of trees. Trees allow more sophisticated
relationships between elements than is possible with a linear structure. Trees allow relationships between
a child and its parent, or between siblings of one parent. Trees have one root, which has no parent, and

9



external leaves, which have no children. In this sub-section, we omit trees that maintain a key-based
ordering (e.g. all binary search trees).

4.6.1 Tree

The most basic interface for a tree is the Tree interface, which lists a collection of methods which describe
a generic tree where each node can have an arbitrary number of children. A node is external if it has
zero children, and internal otherwise.

4.6.2 Binary Tree

The BinaryTree interface extends the Tree interface, adding support for a non-proper binary tree,
implying that any given node can have zero, one, or two children (see §3.8). The LinkedBinaryTree

class is a node-based implementation of a binary tree where each node has a reference to its parent and
children.

4.6.3 Complete Binary Tree

A binary tree with height h is complete if the levels 0, 1, 2, . . . , h − 1 have the maximum number of
nodes possible (that is, level i has 2i nodes, for 0 ≤ i ≤ h − 1) and in level h − 1 all the internal
nodes are to the left of the external nodes. The CompleteBinaryTree interface describes a complete
binary tree, adding to the BinaryTree interface methods add() and remove(), which adds and removes,
respectively, the node at the “end” of the tree, which is the rightmost node at the highest level of the
tree. The VectorCompleteBinaryTree class is a realization of a complete binary tree by means of a
vector.

4.7 Comparators

Comparators are used to compare keys in key-based data structures. They provide a generic way to
specify many different orderings in a key-based data structure without changing the data structure itself.

4.7.1 Equality Tester

The EqualityTester interface is not a “comparator” per se, but it is used to determine whether two ob-
jects are equal. There currently is no public implementation of an equality tester in the net.datastructures
package.

4.7.2 Default Comparator

The DefaultComparator is an implementation of the java.util.Comparator interface, and uses the nat-
ural ordering of objects, as specified by the compareTo(Object) method in the java.lang.Comparable

interface.

10



4.8 Priority Queues

A priority queue is a data structure for storing a collection of keys-value pairs, where the smallest key
value indicates the highest priority. It supports arbitrary insertions and deletions of entry and keeps
track of the highest-priority entry. A priority queue is useful, for instance, in applications where the user
wishes to store a queue of tasks of varying priority, and always process the most important task next.
There are two interfaces describing priority queues in the net.datastructures package: the PriorityQueue
interface and the AdaptablePriorityQueue interface. The former provides functionality to update the
priority queue by removing the highest-priority entry (i.e., removeMin()) only, while the latter allows
updates to any entry of the priority queue (i.e., remove(Entry) or replaceKey(Entry,Object)).

4.8.1 Heap

A heap is a complete binary tree satisfies the following property: for each node v other than the
root, the key stored at v is greater than or equal to the key stored at the parent of v. Thus, if
you were to traverse a path from the root to a leaf, you would encounter keys in non-decreasing
order. This description allows a heap to support O(log N) insertions, removals, and key-based up-
dates (i.e., replaceKey(Entry,Object)). The HeapPriorityQueue and HeapAdaptablePriorityQueue

classes each implement a priority queue by means of a heap.

4.8.2 Sorted List Implementation

The sorted list implementation of a priority queue is simply a list sorted in non-decreasing or-
der. Thus, the highest-priority item is the first element in the list. Removals take O(1)
time, but insertions and key-based updates take O(N) time. The SortedListPriorityQueue and
SortedListAdaptablePriorityQueue classes provide this implementation.

4.9 Maps

A map uniquely associates some data to a key. It differs from a dictionary in that a map does not allow
duplicate keys. The map exists primarily to define “attributes” for an object and assign values to those
attributes. (see §3.7, §3.6). The Map interface describes a map, and the HashTable class provides an
implementation by means of a hash table. The HashTable class uses linear probling to resolve collisions,
and has expected O(1) time for insertions, removals, and searches.

4.10 Dictionaries

A dictionary is a data structure used to store key-value pairs and quickly search for them using their
keys. All dictionaries in the net.datastructures package can store multiple key-value pairs with the same
key. A dictionary needs some type of comparator to maintain the order of its keys, and thus all the
dictionary implementations in the net.datastructures package have constructors which take a comparator
as a parameter.

11



4.10.1 Binary Search Tree

A binary search tree is a proper binary tree in which each internal node stores a key according to the
following ordering: if node v stores key k, then all keys stored in the left subtree of v are less than or equal
to k, and all keys stored in the right subtree of v are greater than or equal to k. The BinarySearchTree
class is a realization of a dictionary meeting these specifications. It extends LinkedBinaryTree.

4.10.2 AVL Tree

The AVLTree class is an implementation of an AVL tree, a binary search tree where insertion, removal,
and access to key-value pairs require each O(log N) time. It maintains this property by requiring the
heights of the left and right subtrees of each node not to differ by more than one. Its name comes from
its founders, Adel’son-Vel’skii and Landis.

4.10.3 Red-Black Tree

The RBTree class is an implementation of a red-black tree, a bounded-depth binary search tree where
insertion, removal, and access to key-value pairs require each O(log N) time. It maintains this property
through a node-colorization scheme where each node is either colored red or black.

4.11 Graphs

A graph is a fundamental data structure used in a variety of application areas describing a binary
relationship on a set of elements. Each vertex of the graph may be linked to other vertices through edges.
Edges can be either one-way, directed edges, or two-way, undirected edges. In the net.datastructures
package, there are no directed graphs, and both vertices and edges are positions of the graph. The Graph
interface describes a generic, undirected graph.

4.11.1 Adjacency List Graph

The net.datastructures package provides a realization of a graph by means of an adjacency list structure,
which is characterized by the following properties.

• There is a list of all vertices, V , and all edges, E, in the graph.

• Each vertex and edge has a reference to an element, and its position in V or E, respectively.

• Each vertex v holds a reference to a list, I, of its incident edges.

• Each edge e has a reference to its endpoint vertices (there are always two of them), and for each
endpoint, a reference to e’s position in the incidence list, I, of that endpoint.

The AdjacencyListGraph class is an implementation of an adjacency list graph. Both parallel edges
(mutiple edges between the same two endpoints) and self-loops (edges for which both endpoints refer to
the same vertex) are supported.

12



4.12 Algorithms

The net.datastructures package provides a series of algorithms designed for different applications. Each
algorithm is a Java object that must be instantiated, passed input data, and executed. Currently, the
net.datastructures package provides algorithms for sorting and graph-processing.

4.12.1 Sorting Algorithms

All sorting algorithms in the net.datastructures package are containted in the Sort class. There are two
different sorting algorithms, quick-sort and merge-sort, and there are two different versions of each: an
array-based sort and a list-based sort. Each is represented by a Java method which takes either an array
or list and a comparator as parameters. Below is a description of these sorting algorithms.

• Quick-Sort. Quick-sort is an extremely fast sort, running in O(N log N) expected time. However,
its performance degrades greatly if the sequence is already very close to being sorted. Also, it is
not stable — that is, it does not guarantee that elements with the same value will remain in the
same order they were in before sorting. In all cases whether neither of these caveats apply, it is
the best choice.

The array-based version of quick-sort is an in-place sort, meaning it uses a constant amount of
additional space. The list-based version is not in-place. Both versions are recursive.

• Merge-Sort. Merge-sort is not as fast as quicksort, though it still runs in O(N log N) time. There
are no cases where its performance will degrade due to peculiarities in the input data, and it is a
stable sort.

The array-based version of merge-sort is iterative, and the list-based version is recursive. Neither
sort is in-place.

4.12.2 DFS

The depth-first search (DFS) traversal of a graph is available in the net.datastructures package. Depth-
first search proceeds along one path, continuing until no new vertices can be found before backtracking.
The implementation of depth-first search is a template method that allows the user to specify actions to
occur when a vertex is first visited or is “finished” by being exited for the last time, and when different
sorts of edges are reached (such as tree edges in the search tree DFS generates, or cross edges between
different branches of the search tree).

The DFS class is provided as a template. It contains all necessary functionality to traverse the graph,
in addition to callback methods which are called at certain points during the traversal. For instance,
the method traverseBack(Edge,Vertex) is called whenever a back edge is traversed, and the method
startVisit(Vertex) is called just before a vertex is marked as visited. To use these callbacks, they
must be overridden in a subclass.

The DFS class is abstract, and therefore must be overridden to be used. The abstract
execute(Graph,Vertex,Object) method is used to start the execution of the traversal, and return
a “result” of the traversal, as defined by a subclass. The third parameter (of type Object) exists so that
additional information can be supplied to the traversal. For example, the FindPathDFS class requires a
destination vertex to be passed in via this parameter, and returns a path in the form of a list.

The following three subclasses of DFS are provided to perform specific functions.

13



• FindPathDFS finds a path between two vertices.

• ConnectivityDFS determines whether a graph is connected.

• FindCycleDFS finds a cycle in the graph, if one exists.

All three are good examples of how to use DFS through the template method pattern.

4.12.3 Dijkstra’s Algorithm

Dijkstra’s algorithm computes the shortest path to every vertex of a connected graph from a specific
source vertex. Each edge must have an integer “weight” attribute associated with it. The length of a
path is determined by computing the sum of the weights of the edges along a path, and the shortest
path is a path with minimum length. In the net.datastructures package, after the algorithm finishes its
execution, a user can query each vertex for the shortest distance between it and the start vertex. The
implementation of Dijkstra’s algorithm — Dijkstra — uses the template method pattern; it can be
easily extended to change its functionality, although extending is not necessary. Extending it makes it
possible, for instance, to stop after computing the shortest path to a specific vertex, to alter the function
for calculating the weight of an edge, and to change the way the results are stored.

To use the algorithm, you must call the execute(Graph,Vertex,Object) method. The first parame-
ter is the graph on which to execute Dijkstra’s algorithm, the second parameter is the source vertex, and
the third parameter is the weight decoration object. The weight decoration object is the attribute through
which all weights have been assigned to the edges. For example, suppose we had an object WEIGHT, and
we set the edge weights by calling edge.put(WEIGHT,new java.lang.Integer(intWeight)), where
intWeight was some int storing the weight of a given edge. To execute Dijkstra’s algorithm, we would
pass the object WEIGHT as the third parameter to the execute method. Note that it is required that for
each edge, the value of the weight attribute be a java.lang.Integer. Also, if no weights are set, the
execute(Graph,Vertex,Object) method will throw an exception.

After calling the execute(Graph,Vertex,Object) method, you can access length of the shortest
path from the source to any given vertex vert by calling getDist(vert), which returns an int. If
this method is called before the algorithm is executed, an exception is thrown. If there is no path from
the source to vert (and hence the graph is not connected), getDist(vert) will return the constant
java.lang.Integer.MAX VALUE.

4.13 Exceptions

The net.datastructures package defines the following exception classes. Each time an exception is thrown,
a detailed error message is provided, which describes the error that occurred. The exceptions are the
following.

• BoundaryViolationException. Signals that the boundaries of a data structure have been illegally
traversed (e.g. past the end of a list).

• EmptyDequeException. Thrown when a deque cannot fulfill the requested operation because it is
empty.

• EmptyListException. Thrown when a list cannot fulfill the requested operation because it is
empty.

14



• EmptyPriorityQueueException. Thrown when a priority queue cannot fulfill the requested oper-
ation because it is empty.

• EmptyQueueException. Thrown when a queue cannot fulfill the requested operation because it is
empty.

• EmptyStackException. Thrown when a stack cannot fulfill the requested operation because it is
empty.

• EmptyTreeException. Thrown when a tree cannot fulfill the requested operation because it is
empty.

• FullStackException. Thrown when an attempt is made to push an item onto a full stack. This
only occurs in the array implementation.

• InvalidEntryException. Thrown when an entry is discovered to be invalid.

• InvalidKeyException. Thrown when an key is discovered to be invalid.

• InvalidPositionException. Thrown when an position is discovered to be invalid.

• NonEmptyTreeException. Thrown when a tree cannot fulfill the requested operation (e.g. adding
a root) because it is not empty.

In addition to these, three exception classes provided by Java are used by the net.datastructures
package. They are the following.

• java.util.NoSuchElementException. Thrown by an iterator to indicate that there are no re-
maining elements that haven’t been traversed.

• java.util.UnsupportedOperationException. Thrown to indicate that the requested operation
is not supported. This is used when remove() is called on an iterator.

• java.lang.IllegalStateException. Signals that a method has been invoked at an illegal or
inappropriate time. This is used with the comparator is set in a non-empty priority queue.

5 Comparison to JDSL

This section assumes the reader is already familiar with JDSL. Readers who have not used JDSL should
skip this section. The purpose of this section is to highlight the significant differences between the
net.datastructures package and JDSL.

5.1 Purpose

The main goal of JDSL is to provide an efficient, reliable, flexible data structures library in Java con-
taining many crucial components not available in other existing data structures libraries in Java. It is
designed for both educational and high-performance use. It has been optimized and very well docu-
mented.

15



The primary goal of the net.datastructures package can be similarly phrased, but with two main
differences. First of all, the package was not designed to fill holes left by other data structures libraries.
Indeed, most, if not all, of the functionality in the net.datastructures package is also in available JDSL.
Secondly, and more importantly, the net.datastructures package exists because JDSL was too advanced
for some users. The net.datastructures package is a reduced, simpler, clearer, and easier-to-use version
of JDSL. These advantages come with drawbacks, however. For instance, there are no constant-factor
optimizations in the net.datastructures package.

5.2 Architecture

The net.datastructures package contains a much simpler architecture than does JDSL. Listed below are
statistics that illustrate this fact.

• All classes and interfaces within the net.datastructures package are contained within a single Java
package. JDSL currently consists of eight Java packages.

• The net.datastructures package contains about 60 Java files, whereas JDSL contains about 100.

• The net.datastructures package contains around 35 public classes and 20 public interfaces, whereas
JDSL contains around 50 public classes and 40 public interfaces.

• The net.datastructures package and JDSL each contain about 10 concrete data structures.

• The net.datastructures package provides implementations for about 8 algorithms, whereas JDSL
implements around 15 algorithms.

5.3 Binary Tree Format

One of the major design shifts from JDSL is the format of binary trees. In JDSL, all binary trees are
required to be proper, that is, all nodes must either have exactly zero or two children, meaining that
all internal nodes must have two children. As discussed in §3.8, binary trees in the net.datastructures
package are not proper.

This difference is not noticeable, however, in key-based data structures that are built upon binary
trees (e.g. red-black trees or heaps), because a user cannot access the underlying tree. For example, in
a heap, if a (key-value) pair, a user does not know anything about the node (whether it is internal or
external, for example) which contains the corresponding entry. The user also does not know how many
children the node has. These details are all handled by the heap implementation.

The difference in binary tree format comes into play when using basic binary trees which do not
serve a special purpose (e.g. general node-based binary trees). In this scenario, a user must properly
handle both internal nodes that have have one child, and those that have two children. In addition, any
user-created subclasses of key-based data structures (e.g. red-black trees, heaps) are given access to the
underlying tree, which may or may not be proper, depending on the data structure (see §3.8).

5.4 Comparator

There are two main differences between the comparators provided in the net.datastructures package
and the comparators provided in JDSL. In the net.datastructures package, there are fewer types of

16



comparators, and they do not support most of the specialized operations that the JDSL comparators
do.

In the net.datastructures package, there is only one public implementation of a comparator, which
is a default comparator which simply uses the natural ordering of objects. JDSL uses specialized com-
parators (e.g. integer comparators) which allow it to define precisely the set of elements over which
the comparator is valid. Thus, JDSL comparators provide the isComparable(Object) method which
determines whether an object is in this set of elements. Comparators in the net.datastructures package
have no such mechanism.

To compare objects in the net.datastructures package using a comparator, one must use the
compare(Object,Object) method, which determines whether an object is greater than, equal to, or
less than a second object. In JDSL, more specific operations to compare objects are available, such as
the isGreaterThanOrEqualTo(Object,Object) method, which returns true if the first object is greater
than or equal to the second. Such operations are optional, as they can be implemented using only
the compare(Object,Object) method. Thus, in the interest of simplicity, they were omitted in the
net.datastructures package.

5.5 Iterator

The semantics of iterators in the net.datastructures package are left to data structures that return them.
In JDSL, on the other hand, iterators have specific snapshot semantics: they refer to the state of the
data structure at the time the iterator was created, even in the data structure has been modified while
stepping through the iterator. For example, if an iterator is created for all the nodes of a tree and then a
subtree is cut off, the iterator will still include the nodes of the removed subtree. JDSL guarantees that
all iterators have snapshot semantics, and thus its data structures are designed in a way that depends
on this fact. In the net.datastructures package, no guarantees are made about iterator semantics.

Another difference is that JDSL iterators support a “reset” operation, which will reset the iterator
to its initial state, implying that the iterator will subsequently return its first object. There is no such
reset operation in the net.datastructures package.

5.6 Entry vs. Locator

JDSL introduced the concept of a locator, which is analagous to an entry in the net.datastructures
package - both store an item in a key-based data structure and are both used to associate data with a
given key.

There are a few slight differences, however.

• The term “element” is used to describe the data associated with a key in a locator. This is
analagous to the term “value” in an entry.

• In JDSL, both locators and positions inherit from a common Accessor interface. In the
net.datastructures package there is no such common inheritance.

• Classes that implement the Locator interface almost always are implemented efficiently. For
instance, a locator class usually has a reference to (a) its position in a data structure, and (b)
the data structure itself. This allows the data structure to perform efficient reorganizations and
also perform a constant-time “contains” test to determine whether a given locator is a member of

17



itself. Classes that implement the Entry interface make no such guarantees about implementation
efficiency.

5.7 Decorable Position

In the net.datastructures package, not all positions are decorable, as they are in JDSL. In the
net.datastructures package, decorable positions are a subset of all positions. Decorations in the
net.datastructures package are really just entries in a map.

5.8 Dictionary vs. Decorable

The JDSL equivalent to the Map interface (i.e., each key is uniquely associated with a value) is
the Decorable interface. JDSL provides hash table implementations for both the Decorable and
Dictionary interfaces, while the net.datastructures packageonly provides one for the Map interface.

6 Future Work

During the testing phase of the net.datastructures package, several visualizers, which draw a given data
structure on the screen, were used to initially verify the correctness of each data structure. For almost
every data structure, there is a visualizer that can display some sort of graphical representation of the
data structure. These visualizers are currently under development, but it is planned that in the future
they will be included with the rest of the net.datastructures package.

Also, numerous batch testers were created to ensure correctness over a large number of operations.
Although they don’t include much output or feedback, these batch testers may be released as well.

7 Acknowledgments

We would like to acknowledge suggestions, ideas, and code prototypes given by James Baker, Don
Blaheta, Lubomir Bourdev, Jitchaya Buranahirun, Ming En Cho, Marco da Silva, John Kloss, David
Jackson, Masi Oka, and Amit Sobti. Finally, we would like to thank Franco Preparata for encouragement
and support.

References

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-Wesley,
Reading, MA, 1995.

18


