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Heaps

Recall Priority Queue ADT (§ 7.1.3)

@ A priority queue stores a # Additional methods

collection of entries = min()
@ Each entry is a pair returns, but does not
(key, value) remove, an entry with
. . smallest key
® gagnugwgg_lgds of the Priority . size(), iSEmpty()

= insert(k, x)
inserts an entry with key k

and value x @ Applications:
= removeMin() = Standby flyers
removes and returns the = Auctions
entry with smallest key = Stock market
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Recall Priority Queue

Sorting (§ 7.1.4)

@ We can use a priority

queue to sort a set of
comparable elements
B Insert the elements with a
series of insert operations
B Remove the elements in
sorted order with a series
of removeMin operations
# The running time depends
on the priority queue
implementation:
= Unsorted sequence gives
selection-sort: O(n2) time
= Sorted sequence gives

Algorithm PQO-Sort(S, C)

Input sequence S, comparator C

for the elements of §

Output sequence S sorted in

increasing order according to C

P « priority queue with
comparator C

while —S.isEmpty ()
e < S.remove (S. first ())
P.insertltem(e, e)

insertion-sort: O(n?) time while —P.isEmpty()
@ Can we do better? ¢ < P.removeMin()
S.insertLast(e)
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‘Heaps (§7.3)

# A heap is a binary tree
storing keys at its nodes
and satisfying the following  gepth
properties:

= Heap-Order: for every
internal node v other than
the root,
key(v) > key(parent(v))

= Complete Binary Tree: let
be the height of the heap

¢ fori=0,...,h—1, there are
2i nodes of depth i

+ at depth & - 1, the internal
nodes are to the left of the
external nodes
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# The last node of a heap
is the rightmost node of

last node



Height of a Heap (§ 7.3.1)

@ Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
» Let & be the height of a heap storing n keys

= Since there are 2/ keys at depthi = 0, ...,  — 1 and at least one key
atdepth h, wehave n > 1 +2+4+ ... +2+1 +1

w Thus, n>2h, i.e., h<logn

depth keys
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Heaps and Priority Queues

@ We can use a heap to implement a priority queue

# We store a (key, element) item at each internal node
# We keep track of the position of the last node

# For simplicity, we show only the keys in the pictures
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Insertion into a
Heap (§ 7.3.3)

# Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key & to
the heap

# The insertion algorithm
consists of three steps

= Find the insertion node z
(the new last node)

n Storekatz

= Restore the heap-order
property (discussed next)
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Upheap

@ After the insertion of a new key k, the heap-order property may be
violated

# Algorithm upheap restores the heap-order property by swapping &
along an upward path from the insertion node

# Upheap terminates when the key & reaches the root or a node
whose parent has a key smaller than or equal to &

# Since a heap has height O(log n), upheap runs in O(log nr) time
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Removal from a Heap (§ 7.3.3)

# Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

# The removal algorithm
consists of three steps

= Replace the root key with
the key of the last node w

= Remove w

= Restore the heap-order
property (discussed next)

new last node

© 2004 Goodrich, Tamassia Heaps

© 2004 Goodrich, Tamassia

Downheap

@ After replacing the root key with the key k of the last node, the
heap-order property may be violated

@ Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

@ Upheap terminates when key &
children have keys greater than

@ Since a heap has height O(log n

reaches a leaf or a node whose
or equal to k&

), downheap runs in O(log n) time
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Updating the Last Node

nodes
= Go up until a left child or the root is reached
= If a left child is reached, go to the right child
= Go down left until a leaf is reached
@ Similar algorithm for updating the last node after a removal
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@ The insertion node can be found by traversing a path of O(log n)
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Heap-Sort (§2.4.4)

# Consider a priority
queue with n items
implemented by means
of a heap

= the space used is O(n)

= methods insert and
removeMin take O(log n)
time

= methods size, isEmpty,
and min take time O(1)
time
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# Using a heap tes=ed
priority queue, we can
sort a sequence of n
elements in O(n log n)
time

# The resulting algorithm
is called heap st

@ Heap sort is much
faster than quadratic
sorting algorithms, such
as insertion- «rt and

selection ot
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Vector-based Heap
Implementation (§2.4.3)

# We can represent a heap with n
keys by means of a vector of
length n + 1

# For the node at rank i

= the left child is at rank 2i
= the right child is at rank 2i + 1

Links between nodes are not

explicitly stored

The cell of at rank 0 is not used

®@® @

Operation insert corresponds to
inserting at rank n + 1 21516

@

Operation removeMin corresponds 0o 1 2
to removing at rank »

# Yields in-place heap-sort
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Merging Two Heaps

# We are given two two Q 2
heaps and a key & O S @ ©

# We create a new heap
with the root node
storing k and with the
two heaps as subtrees

# We perform downheap
to restore the heap
order property
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Bottom-up Heap
Construction (§2.4.3)

# We can construct a heap
storing n given keys in
using a bottom p
construction with log n
phases ﬂ

# In phase i, pairs of
heaps with 2/—1 keys are
merged into heaps with
2i+1-1 keys
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Example (contd.)
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Example (contd.)
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Example (end)
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Analysis

@ We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

# Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

@ Thus, bottom-up heap construction runs in O(n) time

@ Bottom-up heap construction is faster than » successive insertions
and speeds up the first phase of heap-sort
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