Heaps

© 2004 Goodrich, Tamassia

Heaps

Recall Priority Queue ADT (§ 7.1.3)

@ A priority queue stores a # Additional methods

collection of entries = min()
@ Each entry is a pair returns, but does not
(key, value) remove, an entry with
. . smallest key
® gagnugwgg_lgds of the Priority . size(), iSEmpty()

= insert(k, x)
inserts an entry with key k

and value x @ Applications:
= removeMin() = Standby flyers
removes and returns the = Auctions
entry with smallest key = Stock market
© 2004 Goodrich, Tamassia Heaps

© 2004 Goodrich, Tamassia

Recall Priority Queue

Sorting (§ 7.1.4)

@ We can use a priority

queue to sort a set of
comparable elements
B Insert the elements with a
series of insert operations
B Remove the elements in
sorted order with a series
of removeMin operations
The running time depends
on the priority queue
implementation:
= Unsorted sequence gives
selection-sort: O(n2) time
= Sorted sequence gives

Algorithm PQO-Sort(S, C)

Input sequence S, comparator C

for the elements of §

Output sequence S sorted in

increasing order according to C

P « priority queue with
comparator C

while —S.isEmpty ()
e < S.remove (S. first ())
P.insertltem(e, e)

insertion-sort: O(n?) time while —P.isEmpty()
@ Can we do better? ¢ < P.removeMin()
S.insertLast(e)
Heaps 3

‘Heaps (§7.3)

A heap is a binary tree
storing keys at its nodes
and satisfying the following gepth
properties:

= Heap-Order: for every
internal node v other than
the root,
key(v) > key(parent(v))

= Complete Binary Tree: let
be the height of the heap

¢ fori=0,...,h—1, there are
2i nodes of depth i

+ at depth & - 1, the internal
nodes are to the left of the
external nodes

© 2004 Goodrich, Tamassia Heaps

The last node of a heap
is the rightmost node of

last node

Height of a Heap (§ 7.3.1)

@ Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
» Let & be the height of a heap storing n keys

= Since there are 2/ keys at depthi = 0, ..., — 1 and at least one key
atdepth h, wehave n > 1 +2+4+ ... +2+1 +1

w Thus, n>2h, i.e., h<logn

depth keys

© 2004 Goodrich, Tamassia Heaps 5

Heaps and Priority Queues

@ We can use a heap to implement a priority queue

We store a (key, element) item at each internal node
We keep track of the position of the last node

For simplicity, we show only the keys in the pictures

© 2004 Goodrich, Tamassia Heaps 6

Insertion into a
Heap (§ 7.3.3)

Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key & to
the heap

The insertion algorithm
consists of three steps

= Find the insertion node z
(the new last node)

n Storekatz

= Restore the heap-order
property (discussed next)

© 2004 Goodrich, Tamassia Heaps 7

Upheap

@ After the insertion of a new key k, the heap-order property may be
violated

Algorithm upheap restores the heap-order property by swapping &
along an upward path from the insertion node

Upheap terminates when the key & reaches the root or a node
whose parent has a key smaller than or equal to &

Since a heap has height O(log n), upheap runs in O(log nr) time

© 2004 Goodrich, Tamassia Heaps 8

Removal from a Heap (§ 7.3.3)

Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

The removal algorithm
consists of three steps

= Replace the root key with
the key of the last node w

= Remove w

= Restore the heap-order
property (discussed next)

new last node

© 2004 Goodrich, Tamassia Heaps

© 2004 Goodrich, Tamassia

Downheap

@ After replacing the root key with the key k of the last node, the
heap-order property may be violated

@ Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

@ Upheap terminates when key &
children have keys greater than

@ Since a heap has height O(log n

reaches a leaf or a node whose
or equal to k&

), downheap runs in O(log n) time

Heaps 10

Updating the Last Node

nodes
= Go up until a left child or the root is reached
= If a left child is reached, go to the right child
= Go down left until a leaf is reached
@ Similar algorithm for updating the last node after a removal

© 2004 Goodrich, Tamassia Heaps

@ The insertion node can be found by traversing a path of O(log n)

11

Heap-Sort (§2.4.4)

Consider a priority
queue with n items
implemented by means
of a heap

= the space used is O(n)

= methods insert and
removeMin take O(log n)
time

= methods size, isEmpty,
and min take time O(1)
time

© 2004 Goodrich, Tamassia Heaps

Using a heap tes=ed
priority queue, we can
sort a sequence of n
elements in O(n log n)
time

The resulting algorithm
is called heap st

@ Heap sort is much
faster than quadratic
sorting algorithms, such
as insertion- «rt and

selection ot
12

Vector-based Heap
Implementation (§2.4.3)

We can represent a heap with n
keys by means of a vector of
length n + 1

For the node at rank i

= the left child is at rank 2i
= the right child is at rank 2i + 1

Links between nodes are not

explicitly stored

The cell of at rank 0 is not used

®@® @

Operation insert corresponds to
inserting at rank n + 1 21516

@

Operation removeMin corresponds 0o 1 2
to removing at rank »

Yields in-place heap-sort

© 2004 Goodrich, Tamassia Heaps

13

Merging Two Heaps

We are given two two Q 2
heaps and a key & O S @ ©

We create a new heap
with the root node
storing k and with the
two heaps as subtrees

We perform downheap
to restore the heap
order property

© 2004 Goodrich, Tamassia Heaps 14

Bottom-up Heap
Construction (§2.4.3)

We can construct a heap
storing n given keys in
using a bottom p
construction with log n
phases ﬂ

In phase i, pairs of
heaps with 2/—1 keys are
merged into heaps with
2i+1-1 keys

© 2004 Goodrich, Tamassia Heaps

y
N

A

N\
/
N

’ ® & ®

@ ® & ® @

(
No

\

© 2004 Goodrich, Tamassia Heaps 16

Example (contd.)

© 2004 Goodrich, Tamassia Heaps 17

Example (contd.)

© 2004 Goodrich, Tamassia Heaps 18

Example (end)

© 2004 Goodrich, Tamassia Heaps 19

Analysis

@ We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

@ Thus, bottom-up heap construction runs in O(n) time

@ Bottom-up heap construction is faster than » successive insertions
and speeds up the first phase of heap-sort

© 2004 Goodrich, Tamassia Heaps 20

