/** The actual execution of Dijkstra's algorithm.
* @param v source vertex. */
protected void dijkstraVisit (Vertex v) {
// initialize the priority queue Q and store all the vertices in it
Q = new ArrayHeap(new IntegerComparator());
for (VertexIterator vertices = graph.vertices(); vertices.hasNext();) {
Vertex u = vertices.nextVertex();
int u_dist;
if (u==v)
u_dist = 0;
else
u_dist = INFINITE;
// setDist(u, u_dist);
Locator u_loc = Q.insert(new Integer(u_dist), u);
setLoc(u, u_loc);
}
// grow the cloud, one vertex at a time
while (!Q.isEmpty()) {
// remove from Q and insert into cloud a vertex with minimum distance
Locator u_loc = Q.min();
Vertex u = getVertex(u_loc);
int u_dist = getDist(u_loc);
Q.remove(u_loc); // remove u from the priority queue
setDist(u, u_dist); // the distance of u is final
destroyLoc(u); // remove the locator associated with u
if (u_dist == INFINITE)
continue; // unreachable vertices are not processed
// examine all the neighbors of u and update their distances
for (EdgeIterator edges = graph.incidentEdges(u); edges.hasNext();) {
Edge e = edges.nextEdge();
Vertex z = graph.opposite(u,e);
if (hasLoc(z)) { // check that z is in Q, i.e., it is not in the cloud
int e_weight = weight(e);
Locator z_loc = getLoc(z);
int z_dist = getDist(z_loc);
if ( u_dist + e_weight < z_dist ) // relaxation of edge e = (u,z)
Q.replaceKey(z_loc, new Integer(u_dist + e_weight));
}
}
}
}