
Vectors 9/2/2002 3:14 AM

1

9/2/2002 3:14 AM Vectors 1

Vectors

9/2/2002 3:14 AM Vectors 2

Outline and Reading

The Vector ADT (§2.2.1)
Array-based implementation (§2.2.1)

9/2/2002 3:14 AM Vectors 3

The Vector ADT
The Vector ADT 
extends the notion of 
array by storing a 
sequence of arbitrary 
objects
An element can be 
accessed, inserted or 
removed by specifying 
its rank (number of 
elements preceding it)
An exception is 
thrown if an incorrect 
rank is specified (e.g., 
a negative rank)

Main vector operations:
! object elemAtRank(integer r): 

returns the element at rank r 
without removing it

! object replaceAtRank(integer r, 
object o): replace the element at 
rank with o and return the old 
element

! insertAtRank(integer r, object o): 
insert a new element o to have 
rank r

! object removeAtRank(integer r): 
removes and returns the element 
at rank r

Additional operations size() and 
isEmpty()

9/2/2002 3:14 AM Vectors 4

Applications of Vectors

Direct applications
! Sorted collection of objects (elementary 

database)

Indirect applications
! Auxiliary data structure for algorithms
! Component of other data structures

9/2/2002 3:14 AM Vectors 5

Array-based Vector
Use an array V of size N
A variable n keeps track of the size of the vector 
(number of elements stored)
Operation elemAtRank(r) is implemented in O(1)
time by returning V[r]

V
0 1 2 nr

9/2/2002 3:14 AM Vectors 6

Insertion
In operation insertAtRank(r, o), we need to make 
room for the new element by shifting forward the 
n − r elements V[r], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 nr

V
0 1 2 n

o
r



Vectors 9/2/2002 3:14 AM

2

9/2/2002 3:14 AM Vectors 7

Deletion
In operation removeAtRank(r), we need to fill the 
hole left by the removed element by shifting 
backward the n − r − 1 elements V[r + 1], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 n

o
r

V
0 1 2 nr

9/2/2002 3:14 AM Vectors 8

Performance
In the array based implementation of a Vector
! The space used by the data structure is O(n)
! size, isEmpty, elemAtRank and replaceAtRank run in 

O(1) time
! insertAtRank and removeAtRank run in O(n) time

If we use the array in a circular fashion,
insertAtRank(0) and removeAtRank(0) run in 
O(1) time
In an insertAtRank operation, when the array 
is full, instead of throwing an exception, we 
can replace the array with a larger one


