
Tries 9/2/2002 3:16 AM

1

9/2/2002 3:16 AM Tries 1

Tries

e nimize

nimize ze

zei mi

mize nimize ze

9/2/2002 3:16 AM Tries 2

Outline and Reading

Standard tries (§9.2.1)
Compressed tries (§9.2.2)
Suffix tries (§9.2.3)
Huffman encoding tries (§9.3.1)

9/2/2002 3:16 AM Tries 3

Preprocessing Strings
Preprocessing the pattern speeds up pattern matching 
queries
! After preprocessing the pattern, KMP’s algorithm performs 

pattern matching in time proportional to the text size

If the text is large, immutable and searched for often 
(e.g., works by Shakespeare), we may want to 
preprocess the text instead of the pattern
A trie is a compact data structure for representing a 
set of strings, such as all the words in a text
! A tries supports pattern matching queries in time 

proportional to the pattern size

9/2/2002 3:16 AM Tries 4

Standard Trie (1)
The standard trie for a set of strings S is an ordered tree such that:
! Each node but the root is labeled with a character
! The children of a node are alphabetically ordered
! The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

9/2/2002 3:16 AM Tries 5

Standard Trie (2)
A standard trie uses O(n) space and supports 
searches, insertions and deletions in time O(dm), 
where:
n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet 

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

9/2/2002 3:16 AM Tries 6

Word Matching with a Trie
We insert the 
words of the 
text into a 
trie
Each leaf 
stores the 
occurrences 
of the 
associated 
word in the 
text 

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
a r

87 88

a

e

b

l

s

u

l

e t

e

0, 24

o

c

i

l

r

6
l

78

d

47, 58
l

30

y

36
l

12 k

17, 40,
51, 62

p

84

h

e

r

69

a



Tries 9/2/2002 3:16 AM

2

9/2/2002 3:16 AM Tries 7

Compressed Trie
A compressed trie has 
internal nodes of degree 
at least two
It is obtained from 
standard trie by 
compressing chains of 
“redundant” nodes

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

9/2/2002 3:16 AM Tries 8

Compact Representation
Compact representation of a compressed trie for an array of strings:
! Stores at the nodes ranges of indices instead of substrings
! Uses O(s) space, where s is the number of strings in the array
! Serves as an auxiliary index structure

s e e
b e a r
s e l l
s t o c k

b u l l
b u y
b i d

h e
b e l l
s t o p

0 1 2 3 4
a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

1, 1, 1

1, 0, 0 0, 0, 0

4, 1, 1

0, 2, 2

3, 1, 2

1, 2, 3 8, 2, 3

6, 1, 2

4, 2, 3 5, 2, 2 2, 2, 3 3, 3, 4 9, 3, 3

7, 0, 3

0, 1, 1

9/2/2002 3:16 AM Tries 9

Suffix Trie (1)
The suffix trie of a string X is the compressed trie of all the 
suffixes of X

e nimize

nimize ze

zei mi

mize nimize ze

m i n i z em i
0 1 2 3 4 5 6 7

9/2/2002 3:16 AM Tries 10

Suffix Trie (2)
Compact representation of the suffix trie for a string X of size n
from an alphabet of size d
! Uses O(n) space
! Supports arbitrary pattern matching queries in X in O(dm) time, 

where m is the size of the pattern

7, 7 2, 7

2, 7 6, 7

6, 7

4, 7 2, 7 6, 7

1, 1 0, 1

m i n i z em i
0 1 2 3 4 5 6 7

9/2/2002 3:16 AM Tries 11

Encoding Trie (1)
A code is a mapping of each character of an alphabet to a binary
code-word
A prefix code is a binary code such that no code-word is the prefix 
of another code-word
An encoding trie represents a prefix code
! Each leaf stores a character
! The code word of a character is given by the path from the root to 

the leaf storing the character (0 for a left child and 1 for a right child

a

b c

d e

111001101000

edcba

9/2/2002 3:16 AM Tries 12

Encoding Trie (2)
Given a text string X, we want to find a prefix code for the characters 
of X that yields a small encoding for X
! Frequent characters should have long code-words
! Rare characters should have short code-words

Example
! X = abracadabra
! T1 encodes X into 29 bits
! T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2



Tries 9/2/2002 3:16 AM

3

9/2/2002 3:16 AM Tries 13

Huffman’s Algorithm
Given a string X, 
Huffman’s algorithm 
construct a prefix 
code the minimizes 
the size of the 
encoding of X
It runs in time
O(n + d log d), where 
n is the size of X
and d is the number 
of distinct characters 
of X
A heap-based 
priority queue is 
used as an auxiliary 
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap 
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()
9/2/2002 3:16 AM Tries 14

Example

rdcba

21125

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11


