Tries

9/2/2002 3:16 AM

9/2/2002 3:16 AM Tries

Outline and Reading

4 Standard tries (89.2.1)

@ Compressed tries (§9.2.2)

4@ Suffix tries (89.2.3)

#Huffman encoding tries (89.3.1)

9/2/2002 3:16 AM Tries

Preprocessing Strings

Preprocessing the pattern speeds up pattern matching
queries

= After preprocessing the pattern, KMP's algorithm performs
pattern matching in time proportional to the text size
If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern
A trie is a compact data structure for representing a
set of strings, such as all the words in a text

= A tries supports pattern matching queries in time
proportional to the pattern size

9/2/2002 3:16 AM Tries

~Standard Trie (1)

|® The standard trie for a set of strings S is an ordered tree such that:
= Each node but the root is labeled with a character
= The children of a node are alphabetically ordered
= The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings

S = { bear, bell, bid, bull, buy, sell, stack, stop }

9/2/2002 3:16 AM Tries

~Standard Trie (2)

A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:

n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

9/2/2002 3:16 AM Tries

‘Word Matching with a Trie

I ® We insert the [s[ele[[a[[b[e[a[r[2] [s[e[T[1] [s[t[o[c[k[']]
WOrdSOfthE 0123456 7 8 91011121314151617181920212223

prords OT1he . [STelel Tal TBIuITITIZ] TbIuly] TsTt[olclkI1]
trie 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 45
[b[i[d[Ts[t[ofc[k[' [b[i[d[[s[t[o[clk[I]]
@ Each leaf 47 48 49 50 51 52 53 54 55 56 57 58 50 60 61 62 63 64 65 66 67 68
stores the [h[e[a[r[[t[h[e[[b[e[i[i]2] [s[tfo[p[!]
OCCUITENCEeS 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
of the
associated
word in the
text

9/2/2002 3:16 AM Tries 51, 62

Tries

Compressed Trie

A compressed trie has
internal nodes of degree
at |least two

% It is obtained from
standard trie by
compressing chains of

“redundant” nodes

9/2/2002 3:16 AM Tries 7

9/2/2002 3:16 AM

Compact Representation

[# Compact representation of a compressed trie for an array of strings:
= Stores at the nodes ranges of indices instead of substrings

= Uses O(s) space, where sis the number of strings in the array

= Serves as an auxiliary index structure

01234 0123 0123
s(o]= s@= [BIU[ITI] sm= [hlelalr]
sij= [ble[alr] sis]= [BIuly] sigl= [Ble[I]T]
si21= [s[e[l]T] sie] = spo1= [s[tlo[p]

sa= [s[t[ofc]K]

9/2/2002 3:16 AM Tries 8

~Suffix Trie (1)

@ The suffix trie of a string X is the compressed trie of all the
suffixes of X

[m[i[n]i[m[i]z]e]
01234567

9/2/2002 3:16 AM Tries 9

~Suffix Trie (2)

Compact representation of the suffix trie for a string X of size n
from an alphabet of size d

= Uses O(n) space

= Supports arbitrary pattern matching queries in X in O(dm) time,
where m is the size of the pattern

[m[i[n[im[iTz]e]

012345617

9/2/2002 3:16 AM Tries 10

Encoding Trie (1)

@ Acodeisa mapping of each character of an alphabet to a binary
code-word

A prefix code is a binary code such that no code-word is the prefix
of another code-word
4 An encoding trie represents a prefix code
= Each leaf stores a character

= The code word of a character is given by the path from the root to
the leaf storing the character (0 for a left child and 1 for a right child

00 | 010|011 | 10 | 11

9/2/2002 3:16 AM Tries

Encoding Trie (2)

4 Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X
= Frequent characters should have long code-words
= Rare characters should have short code-words
4 Example
= X =abracadabra

= T, encodes X into 29 bits
= T, encodes X into 24 bits

9/2/2002 3:16 AM Tries 12

Tries

®

&

®

Given a string X,
Huffman’s algorithm
construct a prefix
code the minimizes
the size of the
encoding of X

It runs in time

O(n +dlog d), where
n is the size of X
and d is the number
of distinct characters
of X

A heap-based
priority queue is
used as an auxiliary
structure

9/2/2002 3:16 AM

9/2/2002 3:16 AM

“Huffman’s Algorithm

Algorithm HuffmanEncoding(X)

Input string X of sizen
Output optimal encoding trie for X
C « digtinctCharacters(X)
computeFrequencies(C, X)
Q « new empty heap
forallcOC

T « new single-node tree storing ¢

Q.insert(getFrequency(c), T)
while Q.size() > 1

) « QminKey()

T, « QremoveMin()

f, « QminKey()

T, — QremoveMin()

T «join(T,, Ty

Qiinsert(f, +f,, T)
return Q.removeMin()

Tries 13

“Example

| X = abracadabra
Frequencies

a|b d|r
5|2 1]2
[a] [e] [c]] []
5 2 102

@ -E

9/2/2002 3:16 AM

é
gudun s dbgn

Tries

4

