Stacks

=%

Outline and Reading

#The Stack ADT (82.1.1)
#Applications of Stacks (§2.1.1)
#Array-based implementation (82.1.1)
#Growable array-based stack (81.5)

Stacks 2

Abstract Data Types (ADTSs)

® An abstract data @ Example: ADT modeling a
type (ADT) isan simple stock trading system

abstraction of a = The data stored are buy/sell
data structure

The Stack ADT

% The Stack ADT stores 4 Auxiliary stack

arbitrary objects operations:

Insertions and deletions = object top(): returns the
follow the last-in first-out last inserted element
scheme without removing it

Think of a spring-loaded = integer size(): returns the
plate dispenser number of elements

stored

Main stack operations:
= push(object): inserts an
element
= object pop(): removes and
returns the last inserted
element

boolean isEmpty():
indicates whether no
elements are stored

Stacks 4

: orders
@ An ADT specifies: = The operations supported are
= Data stored « order buy(stock, shares, price)
= Operations on the + order sell(stock, shares, price)
data « void cancel(order)
= Error conditions = Error conditions:
gSZ?‘glt?(t)iz with + Buy/sell a nonexistent stock
P + Cancel a nonexistent order
Stacks 3
Exceptions

Attempting the # In the Stack ADT,

execution of an operations pop and
operation of ADT may top cannot be
sometimes cause an performed if the
error condition, called stack is empty
an exception @ Attempting the

Exceptions are said to execution of pop or
be “thrown” by an top on an empty
operation that cannot stack throws an
be executed EmptyStackException

Stacks 5

Applications of Stacks

#Direct applications
= Page-visited history in a Web browser
= Undo sequence in a text editor

= Chain of method calls in the Java Virtual
Machine

#ndirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Stacks 6

‘Method Stack in the JVM

The Java Virtual Machine (JVM) m‘?‘i’t‘o{
i

keeps track of the chain of inti=5;
active methods with a stack foo(i);
4 When a method is called, the }
JVM pushes on the stack a foofintj) {
frame containing int k-
= Local variables and return value K= j'+l'

= Program counter, keeping track of K
the statement being executed bar(k);
€ When a method ends, its frame }
is popped from the stack and .
control is passed to the method bar(int m) {
on top of the stack .

}

Stacks

bar
PC=

m=6

1

foo

PC =
=5
k=6

3

main
PC=
iI=15

2

‘Array-based Stack

Algorithm size()
returnt+1

€ A simple way of
implementing the
Stack ADT uses an
array Algorithm pop()

4 We add elements if isEmpty() then
from left to right throw EmptyStackException

A variable keeps dse

track of the index of tet-1
the top element return Sft + 1]
sLITTTTTIN - NETTTT1]
012 t
Stacks 8

Array-based Stack (cont.)

4 The array storing the

stack elements may
become full

4 A push operation will
then throw a

Algorithm push(o)

if t = Slength — 1 then
throw FullStackException

FullStackException else
= Limitation of the array- tet+l
based implementation St <o
= Not intrinsic to the
Stack ADT
sLITITTTINNLIITTTT]
012 t

Stacks

9

Performance and Limitations

@ Performance
= Let n be the number of elements in the stack
= The space used is O(n)
= Each operation runs in time O(1)

Limitations

= The maximum size of the stack must be defined a
priori and cannot be changed

= Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 10

‘Computing Spans

7
We show how to use a stack g

as an auxiliary data structure —
in an algorithm —
. 4
4 Given an an array X, the span -
gi] of X[i] is the maximum 3 -
number of consecutive 2
elements X[j] immediately 1
preceding X[i] and such that
X[i] < X[i]
4 Spans have applications to 011234
financial analysis
= E.g., stock at 52-week high 61341512
1111231

Stacks

‘Quadratic Algorithm

Algorithm spans1(X, n)
Input array X of n integers
Output array S of spans of X
S « new array of n integers
fori « Oton-1do
S<1
whiles<i OX][i — 5] < X[i] 1+2+...+(n-1)
S—s+1 1+2+..+(n-1)
Si] <« s n
return S 1

o R

4 Algorithm spansl runs in O(n?) time

Stacks 12

‘Computing Spans with a Stack

4 We keep in a stack the
indices of the elements
visible when “looking
back”

We scan the array from
left to right
= Letibe the current index
= We pop indices from the
stack until we find index j
such that X[i] < X[j] 01234567
We set §[i] «i—j
We push x onto the stack

OFRPNWHMOIOON

Stacks 13

‘Linear Algorithm

4 Each index of the Algorithm spans2(X, n) #

array S ~ new array of nintegers n

= Is pushed into the A — new empty stack 1

stack exactly one fori — Oton-1do n

= Is popped from while (= AisEmpty() O

g:ﬁ:;tack at most X[top()] £ X[i])do n

. j « A.po n

The statements in ”]A isEn?pt‘;(()) then i

the while-loop are S[.i] i1 n
executed at most dse

n times S i i

Algorithm spans2 A.push(i) n

runs in O(n) time return S 1

Stacks 14

‘Growable Array-based Stack

@ In a push operation, When [z;aorithm push(o)
the array is full, instead of | i\ = 5jength - 1 then
throwing an exception, we A < new array of
can replace the array with size ...

a larger one fori — Ototdo

How large should the new Alil < Hi]
array be? S<A

= incremental strategy: tet+l
increase the size by a St ~o
constant c

= doubling strategy: double
the size

Stacks 15

‘Comparison of the Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations

We assume that we start with an empty
stack represented by an array of size 1

We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Stacks 16

Incremental Strategy Analysis

We replace the array k = n/c times

The total time T(n) of a series of n push
operations is proportional to

n+c+2c+3c+4c+... +kc=
n+c(l+2+3+...+k)=
n + ck(k + 1)/2
@ Since cis a constant, T(n) is O(n + k?), i.e.,
0o(n?)
The amortized time of a push operation is O(n)

Stacks 17

‘Doubling Strategy Analysis

We replace the array k= log, n
times

The total time T(n) of a series
of n push operations is
proportional to

N+ 1+2+4+8+ . . +2=
n+2k+1-1 =2n-1

@ T(n) is O(n)

The amortized time of a push
operation is O(1)

geometric series

Stacks 18

‘Stack Interface in Java

4 Java interface
corresponding to
our Stack ADT

@ Requires the
definition of class
EmptyStackException

4 Different from the
built-in Java class
java.util.Stack

public interface Stack {
public int size();
public boolean isEmpty();

public Object top()
throws EmptyStackException;

public void push(Object 0);

public Object pop()
throws EmptyStackException;

Stacks 19

Array-based Stack in Java

public class ArrayStack
implements Stack {

private Object S[J;

private int top = -1;

public ArrayStack(int capacity) {
S = new Object[capacity]);
}

public Object pop()
throws EmptyStackException {
if ISEmpty()
throw new EmptyStackException
(“Empty stack: cannot pop”);
Object temp = Stop];

Sftop] = null;
top=top-1;
return temp;

Stacks

20

