
Shortest Path 9/2/2002 3:16 AM

1

9/2/2002 3:16 AM Shortest Path 1

Shortest Path

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

9/2/2002 3:16 AM Shortest Path 2

Outline and Reading
Shortest path
! Weighted graph
! Shortest path problem
! Shortest path properties

Dijkstra’s algorithm (§7.1.1)
! Algorithm
! Edge relaxation
! Example
! Analysis

9/2/2002 3:16 AM Shortest Path 3

Weighted Graph
In a weighted graph, each edge has an associated numerical
value, called the weight of the edge
Edge weights may represent, distances, costs, etc.
Example:
! In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142

1205

9/2/2002 3:16 AM Shortest Path 4

Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight between u and v
Applications
! Flight reservations
! Driving directions
! Internet packet routing

Example:
! Shortest path between Providence and Honolulu

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142

1205

9/2/2002 3:16 AM Shortest Path 5

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233

337

2555

142

1205

9/2/2002 3:16 AM Shortest Path 6

Dijkstra’s Algorithm
The distance of a vertex
v from a vertex s is the
length of a shortest path
between s and v
Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s
Assumptions:
! the graph is connected
! the edges are

undirected
! the edge weights are

nonnegative

We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices
We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices
At each step
! We add to the cloud the vertex

u outside the cloud with the
smallest distance label

! We update the labels of the
vertices adjacent to u

Shortest Path 9/2/2002 3:16 AM

2

9/2/2002 3:16 AM Shortest Path 7

Edge Relaxation
Consider an edge e ==== (u,z)
such that
! u is the vertex most

recently added to the
cloud

! z is not in the cloud

The relaxation of edge e
updates distance d(z) as
follows
d(z) ← min(d(z),d(u) + weight(e)

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

9/2/2002 3:16 AM Shortest Path 8

Example

CB

A

E

D

F

0

428

∞∞∞∞ ∞∞∞∞

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

9/2/2002 3:16 AM Shortest Path 9

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

9/2/2002 3:16 AM Shortest Path 10

Dijkstra’s Algorithm
A priority queue stores
the vertices outside the
cloud
! Key: distance
! Element: vertex

Locator-based methods
! insert(k,e) returns a

locator
! replaceKey(l,k) changes

the key of an item
We store two labels
with each vertex:
! distance
! locator in priority

queue

Algorithm DijkstraDistances(G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞∞∞∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬ Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)

9/2/2002 3:16 AM Shortest Path 11

Analysis
Graph operations
! Method incidentEdges is called once for each vertex

Label operations
! We set/get the distance and locator labels of vertex z O(deg(z)) times
! Setting/getting a label takes O(1) time

Priority queue operations
! Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
! The key of a vertex in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
Dijkstra’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
! Recall that ΣΣΣΣv deg(v) = 2m

The running time can also be expressed as O(m log n) since the
graph is connected

9/2/2002 3:16 AM Shortest Path 12

Extension
Using the template
method pattern, we
can extend Dijkstra’s
algorithm to return a
tree of shortest paths
from the start vertex
to all other vertices
We store with each
vertex a third label:
! parent edge in the

shortest path tree
In the edge relaxation
step, we update the
parent label

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
setParent(v, ∅∅∅∅)
…

for all e ∈ G.incidentEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

