Sequences

Lists and Sequences

B8

9/2/2002 3:15 AM Sequences 1

9/2/2002 3:15 AM

Outline and Reading

#Singly linked list

#Position ADT and List ADT (82.2.2)
#Doubly linked list (§ 2.2.2)
#Sequence ADT (§ 2.2.3)

Implementations of the sequence ADT
(8 2.2.3)

#lterators (2.2.3)

9/2/2002 3:15 AM Sequences 2

‘Singly Linked List

4 A singly linked list is a AT T T 11 \

concrete data structure ‘ next |
consisting of a sequence | i

|
of nodes | i
| I
4 Each node stores i i
= element | elem node |

= link to the next node B B e i

Ly [

! !
i

9/2/2002 3:15 AM Sequences 3

‘Stack with a Singly Linked List

We can implement a stack with a singly linked list
The top element is stored at the first node of the list

The space used is O(n) and each operation of the
Stack ADT takes O(1) time

T

2 vy

{ w
I = I
e s 5 1
i ‘.“ |
L elements /

9/2/2002 3:15 AM Sequences 4

Queue with a Singly Linked List

4 We can implement a queue with a singly linked list
= The front element is stored at the first node
= The rear element is stored at the last node

The space used is O(n) and each operation of the

Queue ADT takes O(1) time r
(nodes 3
! |
| I
NGNS
; v v \\}
) < !
B |
S ‘ elements /
9/2/2002 3:15 AM Sequences 5

Position ADT

The Position ADT models the notion of
place within a data structure where a
single object is stored

It gives a unified view of diverse ways
of storing data, such as
= a cell of an array
= a node of a linked list

Just one method:

= object element(): returns the element
stored at the position

9/2/2002 3:15 AM Sequences 6

Sequences

List ADT

The List ADT models a Accessor methods:
sequence of positions = first(), last()
storing arbitrary objects = before(p), after(p)

- It establishes a % Update methods:
before/after relation replaceElement(p, 0),
between positions swapElements(p, q)

- Generic methods: ?”Seri?for(e(p’)o)'

) R insertAfter(p, o),
Q-UZI:;(:T‘I;EI:(]JP(;ZO insertFirst(o),

insertLast(o)
= isFirst(p), isLast(p) remove(p)

@

@
.

&

9/2/2002 3:15 AM Sequences 7

9/2/2002

‘Doubly Linked List

% A doubly linked list provides a natural ,//
implementation of the List ADT i
4 Nodes implement Position and store: i
= element |
|
|
\

= link to the previous node
= link to the next node DN N S S S —

% Special trailer and header nodes

header | nodes/positions | trailer
|
\

E@»I{rl@l{rl@l{l@l;l@

,

. elements)

9/2/2002 3:15 AM Sequences 8

Insertion
4 We visualize operation insertAfter(p, X), which returns position q

p
B@ﬂl(l@lrl@l(l“@@

A B C

p q
BCZI*I(I@I(I@I(I@I(I’QE
A\ A AN B A\ X AN c
9/2/2002 3:15 AM Sequences 9

Deletion
| & We visualize remove(p), where p = last() .
p
EF R B R A R A
‘A \g ‘c . \p

F B A A E T
(\A (\B (\C

. \p
N K A P S ey
A ‘B ‘c
9/2/2002 3:15 AM Sequences 10

Performance

#In the implementation of the List ADT

by means of a doubly linked list

= The space used by a list with n elements is
O(n)

= The space used by each position of the list
is O(1)

= All the operations of the List ADT run in
O(1) time

= Operation element() of the
Position ADT runs in O(1) time

9/2/2002 3:15 AM Sequences 11

‘Sequence ADT

The Sequence ADT is the 4 List-based methods:
union of the Vector and = first(), last(),

List ADTs before(p), after(p),

4 Elements accessed by replaceElement(p, 0),
= Rank, or swapElements(p, q),
= Position insertBefore(p, 0),

') insertAfter(p, o),
4 Generic methods: insertFirst(o),

» size(), isEmpty() insertLast(0),
Vector-based methods: remove(p)
. elerInAtsi';lFr;k(rlzi ; % Bridge methods:
replaceAtRank(r, o),
insertAtRank(r, o), = atRank(r), rankOf(p)
removeAtRank(r)

9/2/2002 3:15 AM Sequences 12

Sequences

Applications of Sequences

The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered
collection of elements

% Direct applications:

= Generic replacement for stack, queue, vector, or
list
» small database (e.g., address book)
Indirect applications:
= Building block of more complex data structures

9/2/2002 3:15 AM Sequences 13

9/2/2002

% We use a
circular array
storing
positions

% A position
object stores:

= Element I
= Rank I

% Indices f and | ~ =

keep track of

|
|
|
J

first and last

s

[3[¢]

Sequence Implementations

Operation Array List

=
=

size, iISEmpty

atRank, rankOf, elemAtRank

first, last, before, after

replaceElement, swapElements

replaceAtRank

insertAtRank, removeAtRank

insertFirst, insertLast

insertAfter, insertBefore

=R = N e B N e
S L = = = I

remove

9/2/2002 3:15 AM Sequences 15

positions
f |
9/2/2002 3:15 AM Sequences 14
Iterators
An iterator abstracts the % An iterator is typically

process of scanning through
a collection of elements
Methods of the Objectlterator &
ADT:
= object object()
= boolean hasNext()
= object nextObject()
= reset() ¢
Extends the concept of
Position by adding a traversal
capability
Implementation with an array
or singly linked list

9/2/2002 3:15 AM Sequences

associated with an another
data structure
We can augment the Stack,
Queue, Vector, List and
Sequence ADTs with method:
= Objectlterator elements()
Two notions of iterator:
= snapshot: freezes the
contents of the data
structure at a given time
= dynamic: follows changes to
the data structure

