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Quick-Sort

7  4  9  6 2  →→→→ 2  4  6 7  9

4 2  →→→→ 2  4 7 9  →→→→ 7 9

2 →→→→ 2 9 →→→→ 9
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Outline and Reading

Quick-sort (§4.3)
! Algorithm
! Partition step
! Quick-sort tree
! Execution example
Analysis of quick-sort (4.3.1)
In-place quick-sort (§4.8)
Summary of sorting algorithms
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Quick-Sort
Quick-sort is a randomized 
sorting algorithm based 
on the divide-and-conquer 
paradigm:
! Divide: pick a random 

element x (called pivot) and 
partition S into 
" L elements less than x
" E elements equal x
" G elements greater than x

! Recur: sort L and G
! Conquer: join L, E and G

x

x

L GE

x
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Partition
We partition an input 
sequence as follows:
! We remove, in turn, each 

element y from S and 
! We insert y into L, E or G,

depending on the result of 
the comparison with the 
pivot x

Each insertion and removal 
is at the beginning or at the 
end of a sequence, and 
hence takes O(1) time
Thus, the partition step of 
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬ S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G
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Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree
! Each node represents a recursive call of quick-sort and stores

" Unsorted sequence before the execution and its pivot
" Sorted sequence at the end of the execution

! The root is the initial call 
! The leaves are calls on subsequences of size 0 or 1

7  4  9  6 2  →→→→ 2  4  6 7  9

4 2  →→→→ 2  4 7 9  →→→→ 7 9

2 →→→→ 2 9 →→→→ 9
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Execution Example
Pivot selection

7  2  9  4  →→→→ 2  4  7  9

2 →→→→ 2

7  2  9  4 3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

3  8  6  1  →→→→ 1  3  8  6

3 →→→→ 3 8 →→→→ 89  4  →→→→ 4  9

9 →→→→ 9 4 →→→→ 4
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Execution Example (cont.)
Partition, recursive call, pivot selection

2 4  3  1 →→→→ 2  4  7  9

9  4  →→→→ 4  9

9 →→→→ 9 4 →→→→ 4

7  2  9  4  3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

3  8  6  1  →→→→ 1  3  8  6

3 →→→→ 3 8 →→→→ 82 →→→→ 2
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Execution Example (cont.)
Partition, recursive call, base case

2 4  3  1 →→→→→→→→ 2  4  7  

1 →→→→ 1 9  4  →→→→ 4  9

9 →→→→ 9 4 →→→→ 4

7  2  9  4 3  7  6 1 →→→→ →→→→ 1  2  3  4  6  7  8  9

3  8  6  1  →→→→ 1  3  8  6

3 →→→→ 3 8 →→→→ 8
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Execution Example (cont.)
Recursive call, …, base case, join

3  8  6  1  →→→→ 1  3  8  6

3 →→→→ 3 8 →→→→ 8

7  2  9  4 3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

2 4  3  1 →→→→ 1  2 3  4

1 →→→→ 1 4  3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4
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Execution Example (cont.)

Recursive call, pivot selection

7  9  7 1  →→→→ 1  3  8  6

8 →→→→ 8

7  2  9  4 3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

2 4  3  1 →→→→ 1  2 3  4

1 →→→→ 1 4  3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9
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Execution Example (cont.)
Partition, …, recursive call, base case

7  9  7 1  →→→→ 1  3  8  6

8 →→→→ 8

7  2  9  4 3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

2 4  3  1 →→→→ 1  2 3  4

1 →→→→ 1 4  3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9
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Execution Example (cont.)
Join, join

7 9  7 →→→→ 17 7 9

8 →→→→ 8

7  2  9  4  3  7  6 1  →→→→ 1  2  3  4  6 7  7  9

2 4  3  1 →→→→ 1  2 3  4

1 →→→→ 1 4  3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9
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Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique 
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…
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Expected Running Time
Consider a recursive call of quick-
sort on a sequence of size s
! Good call: the sizes of L and G

are each less than 3s/4
! Bad call: one of L and G has size 

greater than 3s/4
A call is good with probability 1/2
Probabilistic Fact: The expected 
number of coin tosses required in 
order to get k heads is 2k
Hence, for a node of depth i, we 
expect that
! i/2 parent nodes are associated 

with good calls
! the size of the input sequence for 

the current call is at most (3/4)i/2n

Thus, we have
! For a node of depth 

2log4/3n, the expected 
size of the input 
sequence is one

! The expected height 
of the quick-sort tree 
is O(log n)

The overall amount or 
work done at the nodes 
of the same depth of 
the quick-sort tree is 
O(n)
Thus, the expected 
running time of quick-
sort is O(n log n)
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In-Place Quick-Sort
Quick-sort can be implemented 
to run in-place
In the partition step, we use 
replace operations to rearrange 
the elements of the input 
sequence such that
! the elements less than the 

pivot have rank less than h
! the elements equal to the pivot 

have rank between h and k
! the elements greater than the 

pivot have rank greater than k
The recursive calls consider
! elements with rank less than h
! elements with rank greater 

than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l ≥ r
return

i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h − 1)
inPlaceQuickSort(S, k + 1, r)
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Summary of Sorting Algorithms

in-place, randomized
fastest (good for large inputs)

O(n log n)
expectedquick-sort

sequential data access
fast  (good for huge inputs)O(n log n)merge-sort

in-place
fast (good for large inputs)O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

selection-sort

Algorithm Notes

in-place
slow (good for small inputs)

in-place
slow (good for small inputs)


