Quick-Sort

9/2/2002 3:15 AM

Quick-Sort

(74982246709 ]

=2 ) () (-9

9/2/2002 3:15 AM Quick-Sort 1

#Quick-sort (84.3)
= Algorithm
= Partition step
= Quick-sort tree

= Execution example

Outline and Reading

4@ Analysis of quick-sort (4.3.1)
4% |n-place quick-sort (84.8)
@Summary of sorting algorithms

9/2/2002 3:15 AM

Quick-Sort 2

Quick-Sort

% Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

X
DDDIHD
= Divide: pick a random

element x (called pivot) and I

partition S into |:| o A

+ L elements less than x

+ E elements equal x L E G
+ G elements greater than x

= Recur: sort L and G

= Conquer: join L, Eand G D D |:|

9/2/2002 3:15 AM Quick-Sort 3

Partition

% We partition an input
sequence as follows:
= We remove, in turn, each

element y from S and
We insertyinto L, E or G,
depending on the result of
the comparison with the
pivot x
# Each insertion and removal

Algorithm partition(S, p)

I nput sequence S, position p of pivot

Output subsequencesL, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ~ empty sequences

X « S.remove(p)

while = SisEmpty()
y « S.remove(Sfirst())

. e if

is at the beginning or at the ! yE TnsertLast( )
end of a sequence, and elseif oy )

hence takes O(1) time E iynsertLas(y)

# Thus, the partition step of dse{y>x}
quick-sort takes O(n) time G.insertLast(y)
returnlL, E, G
9/2/2002 3:15 AM Quick-Sort 4

Quick-Sort Tree

4 An execution of quick-sort is depicted by a binary tree
= Each node represents a recursive call of quick-sort and stores
+ Unsorted sequence before the execution and its pivot
+ Sorted sequence at the end of the execution
= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962 . 24679)

-2 (] () =9

9/2/2002 3:15 AM Quick-Sort 5

#Pivot selection

Execution Example

(72943761

9/2/2002 3:15 AM

Quick-Sort 6




Quick-Sort

Execution Example (cont.)

#Partition, recursive call, pivot selection

(72043761 )

___________

9/2/2002 3:15 AM Quick-Sort 7

9/2/2002 3:15 AM

Execution Example (cont.)

#Partition, recursive call, base case

(12943761 )

9/2/2002 3:15 AM Quick-Sort 8

Execution Example (cont.)

#Recursive call, ..., base case, join

(729043761 )

(2431 1234

- ~
(-2) (a8-.84 [}
)
9/2/2002 3:15 AM Quick-Sort 9

Execution Example (cont.)

#Recursive call, pivot selection

(729043761 )
~
(24a31.1234) 791
(1-1] [42-.24 L
.
9/2/2002 3:15 AM Quick-Sort 10

Execution Example (cont.)

#Partition, ..., recursive call, base case

(729043761 )
(2431.1234) 791
NN
(1-1) (43 - 34 (] b9
) &3

9/2/2002 3:15 AM Quick-Sort 11

Execution Example (cont.)

4#Join, join
(72943761 123467709 |
— A
(24311234 707 . 719

(1-1) (43 - 34 (] 9.9
mag

9/2/2002 3:15 AM Quick-Sort 12

N




Quick-Sort

‘Worst-case Running Time

# The worst case for quick-sort occurs when the pivot is the unique

minimum or maximum element

4 One of L and G has size n — 1 and the other has size 0

€ The running time is proportional to the sum
n+(n-1)+..+2+1

4 Thus, the worst-case running time of quick-sort is O(n?)

depth time
0 n

9/2/2002 3:15 AM Quick-Sort 13

9/2/2002 3:15 AM

Expected Running Time

Thus, we have

@

% Consider a recursive call of quick-

sort on a sequence of size s = For a node of depth
= Good call: the sizes of L and G 2log,,n, the expected
are each less than 3s/4 size of the_ input
= Bad call: one of L and G has size sequence is one
greater than 3s/4 = The expected height
4 A call is good with probability 1/2 iosféh(leog?qu)ck-sort tree
4 Probabilistic Fact: The expected -
number of coin tosses required in N \I/r:)erkog(e)ﬁ:lain:ﬁg%toﬁigs
order to get k heads is 2k of the same depth of
4 Hence, for a node of depth i, we the quick-sort tree is
expect that o(n)
= i/2 parent nodes are associated # Thus, the expected
xléhsig;;o:fct:?input sequence for running time|of quick:
. b
the current call is at most (3/4)2n sortis O(n logn)
9/2/2002 3:15 AM Quick-Sort 14

In-Place Quick-Sort

# Quick-sort can be implemented
to run in-place
# In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that
= the elements less than the
pivot have rank less than h
= the elements equal to the pivot
have rank between h and k
= the elements greater than the
pivot have rank greater than k
# The recursive calls consider
= elements with rank less than h
= elements with rank greater
than k

Algorithm inPlaceQuickSort(S, I, r)
I nput sequence S, ranks | and r
Output sequence S with the
elements of rank between | and r
rearranged in increasing order
ifl=r
return
i « arandom integer between| and r
X « S.elemAtRank(i)
(h, k) — inPlacePartition(x)
inPlaceQuickSort(S, I, h - 1)
inPlaceQuickSort(S, k + 1, r)

9/2/2002 3:15 AM Quick-Sort 15

‘Summary of Sorting Algorithms

Algorithm Time Notes
selection-sort O(nz) : is?t;cia(cg:ood for small inputs)
insertion-sort O(nz) : isrl]t;cia(‘;od for small inputs)
quick-sort O(nlogn) | in-place, randomized

expected @ fastest (good for large inputs)

@ in-place

heap-sort O(n IOg n) @ fast (good for large inputs)

@ sequential data access

merge-sort O(nlogn) |4 et (good for huge inputs)

9/2/2002 3:15 AM Quick-Sort 16




