
Quick-Sort 9/2/2002 3:15 AM

1

9/2/2002 3:15 AM Quick-Sort 1

Quick-Sort

7 4 9 6 2 →→→→ 2 4 6 7 9

4 2 →→→→ 2 4 7 9 →→→→ 7 9

2 →→→→ 2 9 →→→→ 9

9/2/2002 3:15 AM Quick-Sort 2

Outline and Reading

Quick-sort (§4.3)
! Algorithm
! Partition step
! Quick-sort tree
! Execution example
Analysis of quick-sort (4.3.1)
In-place quick-sort (§4.8)
Summary of sorting algorithms

9/2/2002 3:15 AM Quick-Sort 3

Quick-Sort
Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:
! Divide: pick a random

element x (called pivot) and
partition S into
" L elements less than x
" E elements equal x
" G elements greater than x

! Recur: sort L and G
! Conquer: join L, E and G

x

x

L GE

x

9/2/2002 3:15 AM Quick-Sort 4

Partition
We partition an input
sequence as follows:
! We remove, in turn, each

element y from S and
! We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time
Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬ S.isEmpty()

y ← S.remove(S.first())
if y < x

L.insertLast(y)
else if y = x

E.insertLast(y)
else { y > x }

G.insertLast(y)
return L, E, G

9/2/2002 3:15 AM Quick-Sort 5

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree
! Each node represents a recursive call of quick-sort and stores

" Unsorted sequence before the execution and its pivot
" Sorted sequence at the end of the execution

! The root is the initial call
! The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 →→→→ 2 4 6 7 9

4 2 →→→→ 2 4 7 9 →→→→ 7 9

2 →→→→ 2 9 →→→→ 9

9/2/2002 3:15 AM Quick-Sort 6

Execution Example
Pivot selection

7 2 9 4 →→→→ 2 4 7 9

2 →→→→ 2

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

3 8 6 1 →→→→ 1 3 8 6

3 →→→→ 3 8 →→→→ 89 4 →→→→ 4 9

9 →→→→ 9 4 →→→→ 4

Quick-Sort 9/2/2002 3:15 AM

2

9/2/2002 3:15 AM Quick-Sort 7

Execution Example (cont.)
Partition, recursive call, pivot selection

2 4 3 1 →→→→ 2 4 7 9

9 4 →→→→ 4 9

9 →→→→ 9 4 →→→→ 4

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

3 8 6 1 →→→→ 1 3 8 6

3 →→→→ 3 8 →→→→ 82 →→→→ 2

9/2/2002 3:15 AM Quick-Sort 8

Execution Example (cont.)
Partition, recursive call, base case

2 4 3 1 →→→→→→→→ 2 4 7

1 →→→→ 1 9 4 →→→→ 4 9

9 →→→→ 9 4 →→→→ 4

7 2 9 4 3 7 6 1 →→→→ →→→→ 1 2 3 4 6 7 8 9

3 8 6 1 →→→→ 1 3 8 6

3 →→→→ 3 8 →→→→ 8

9/2/2002 3:15 AM Quick-Sort 9

Execution Example (cont.)
Recursive call, …, base case, join

3 8 6 1 →→→→ 1 3 8 6

3 →→→→ 3 8 →→→→ 8

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

2 4 3 1 →→→→ 1 2 3 4

1 →→→→ 1 4 3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9/2/2002 3:15 AM Quick-Sort 10

Execution Example (cont.)

Recursive call, pivot selection

7 9 7 1 →→→→ 1 3 8 6

8 →→→→ 8

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

2 4 3 1 →→→→ 1 2 3 4

1 →→→→ 1 4 3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9

9/2/2002 3:15 AM Quick-Sort 11

Execution Example (cont.)
Partition, …, recursive call, base case

7 9 7 1 →→→→ 1 3 8 6

8 →→→→ 8

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

2 4 3 1 →→→→ 1 2 3 4

1 →→→→ 1 4 3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9

9/2/2002 3:15 AM Quick-Sort 12

Execution Example (cont.)
Join, join

7 9 7 →→→→ 17 7 9

8 →→→→ 8

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 7 9

2 4 3 1 →→→→ 1 2 3 4

1 →→→→ 1 4 3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9

Quick-Sort 9/2/2002 3:15 AM

3

9/2/2002 3:15 AM Quick-Sort 13

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element
One of L and G has size n − 1 and the other has size 0
The running time is proportional to the sum

n + (n − 1) + … + 2 + 1
Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…

9/2/2002 3:15 AM Quick-Sort 14

Expected Running Time
Consider a recursive call of quick-
sort on a sequence of size s
! Good call: the sizes of L and G

are each less than 3s/4
! Bad call: one of L and G has size

greater than 3s/4
A call is good with probability 1/2
Probabilistic Fact: The expected
number of coin tosses required in
order to get k heads is 2k
Hence, for a node of depth i, we
expect that
! i/2 parent nodes are associated

with good calls
! the size of the input sequence for

the current call is at most (3/4)i/2n

Thus, we have
! For a node of depth

2log4/3n, the expected
size of the input
sequence is one

! The expected height
of the quick-sort tree
is O(log n)

The overall amount or
work done at the nodes
of the same depth of
the quick-sort tree is
O(n)
Thus, the expected
running time of quick-
sort is O(n log n)

9/2/2002 3:15 AM Quick-Sort 15

In-Place Quick-Sort
Quick-sort can be implemented
to run in-place
In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that
! the elements less than the

pivot have rank less than h
! the elements equal to the pivot

have rank between h and k
! the elements greater than the

pivot have rank greater than k
The recursive calls consider
! elements with rank less than h
! elements with rank greater

than k

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks l and r
Output sequence S with the

elements of rank between l and r
rearranged in increasing order

if l ≥ r
return

i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h − 1)
inPlaceQuickSort(S, k + 1, r)

9/2/2002 3:15 AM Quick-Sort 16

Summary of Sorting Algorithms

in-place, randomized
fastest (good for large inputs)

O(n log n)
expectedquick-sort

sequential data access
fast (good for huge inputs)O(n log n)merge-sort

in-place
fast (good for large inputs)O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

selection-sort

Algorithm Notes

in-place
slow (good for small inputs)

in-place
slow (good for small inputs)

