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Divide-and-Conquer

Merge-Sort

# Divide-and conquer is a
general algorithm design
paradigm:

= Divide: divide the input data

Sin two disjoint subsets S;

and S,

Recur: solve the

subproblems associated

with S, and S,

Conquer: combine the

solutions for S, and S, into a

solution for S

# The base case for the
recursion are subproblems of
size 0 orl
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& Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm

@ Like heap-sort

= [t uses a comparator
= It has O(n log n) running
time

# Unlike heap-sort

= It does not use an
auxiliary priority queue

= It accesses data in a
sequential manner
(suitable to sort data on a
disk)

# Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into

two sequences S, and S,

of about n/2 elements

each

Recur: recursively sort S;

and

Conquer: merge S, and

S,into a unique sorted

sequence
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Algorithm mergeSort(S, C)

Input sequence Swithn
elements, comparator C

Output sequence S sorted
according to C

if Ssize() > 1
(S, S)) ~ partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S — merge(s, S))

Merging Two Sorted Sequences

merge(A, B)

Merge-Sort Tree

merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B

# Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time
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# The conquer step of Algorithm

Input sequences A and B with
n/2 eements each

Output sorted sequenceof A [0 B

S «~ empty sequence
while~A.isEmpty() O-B.isEmpty()
if Afirst().element() < B.first().element()
S.insertLast(A.remove(A first()))
else
S.insertLast(B.remove(B first()))

while ~A.isEmpty()
S.insertLast(A.remove(A first()))

while = B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Merge Sort 5

# An execution of merge-sort is depicted by a binary tree
= each node represents a recursive call of merge-sort and stores
+ unsorted sequence before the execution and its partition
+ sorted sequence at the end of the execution
= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[72|:|94-»2479]

[7|:I2 - 2 7] [9|:|4 - 4 9]
=0 623 (29 (29
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Execution Example Execution Example (cont.)

#Partition #Recursive call, partition

(7294038561 (7294m38561

Execution Example (cont.) Execution Example (cont.)
#Recursive call, partition #Recursive call, base case
(7294p3861 ) (7294p3861 )
[7 209 4 ] [ ]
foz_ ) | J ] J
¥
=3 O
Execution Example (cont.) Execution Example (cont.)
#Recursive call, base case #Merge
(7294D3861 ) (7294D38561 )
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Merge Sort

Execution Example (cont.)

#Recursive call, ..., base case, merge

(7294m38561 )

(7 2094 )

(7o2-27) (9449 i

2 o s
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Execution Example (cont.)

#Merge

(7294m38561 )

720944 24709
- ~N

(fo2-27 (94 ~49)]

e &9 @3
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Execution Example (cont.)

#Recursive call, ..., merge, merge

(7294p3861 )

[3861-.1386]

~ N

[72E|94-.2479]

7I:I2-.27] [94-.49] [38-.38 61-.16
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Execution Example (cont.)
#Merge

(7294pm3861 1234673839

7 ~

[72E|94-.2479]

[3861-.1386]

7I:I2-.27] [94-.49] [38-.38 61-.16
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Analysis of Merge-Sort

# The height h of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,
# The overall amount or work done at the nodes of depth i is O(n)
= we partition and merge 2' sequences of size n/2!
= we make 21! recursive calls
# Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n
2‘ B ég% ég%
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Generic Merging

@ Generalized merge | Algorithm genericMerge(A, B)
of two sorted S « empty sequence
sequences Aand B|  while~AisEmpty() O-B.isEmpty()
& Template method ﬁgﬁa.f\rs().demem(), b « B-first().element()
genericMerge alsLess(a, S); Aremove(A.first()
@ Auxiliary methods eseifb<a
= alsLess bisLess(b, S); B.remove(B.first())
ese{b=a
=-plsless t()olhArgEquaI(a, b, S)
= bothAreEqual Aremove(A first()); B.remove(B firsi())
# Runs in O(n,+ng) while = AisEmpty()
time provided the alsLess(a, S); A.remove(A first())
auxiliary methods while - B.isEmpty() )
run in O(1) time blsLess(b, S); B.remove(B.first())
return S
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~Set Operations

@ We represent a set by the
sorted sequence of its
elements
4 By specializing the auxliliary
methods he generic merge
algorithm can be used to
perform basic set
operations:

= union

= intersection

= subtraction

The running time of an

operation on sets Aand B is

O(ny+ng)

@
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@
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Set union:
= alsLess(a, S)
SinsertFirst(a)
« bisless(b, S)
SinsertLast(b)
= bothAreEqual(a, b, S)
S.insertLast(a)
Set intersection:
= alsLess(a, S)
{ do nothing }
= bisLess(b, S)
{ do nothing }
= bothAreEqual(a, b, S)
S.insertLast(a)
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“Summary of Sorting Algorithms

Algorithm Time |Notes
# slow
selection-sort O(n?) | #in-place
# for small data sets (< 1K)
# slow
insertion-sort O(n? | #in-place
# for small data sets (< 1K)
# fast
heap-sort O(n log n) |# in-place
# for large data sets (1K — 1M)
@ fast
merge-sort | O(nlogn) |# sequential data access
# for huge data sets (> 1M)
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