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Minimum Spanning Tree
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Outline and Reading
Minimum Spanning Trees (§7.3)
! Definitions
! A crucial fact

Prim-Jarnik’s Algorithm (§7.3.2)
Kruskal’s Algorithm (§7.3.1)
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Minimum Spanning Tree
Spanning subgraph

! Subgraph of a graph G
containing all the vertices of G

Spanning tree
! Spanning subgraph that is 

itself a (free) tree

Minimum spanning tree (MST)
! Spanning tree of a weighted 

graph with minimum total 
edge weight

Applications
! Communications networks
! Transportation networks
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Cycle Property
Cycle Property:

! Let T be a minimum 
spanning tree of a 
weighted graph G

! Let e be an edge of G
that is not in T and C let 
be the cycle formed by e
with T

! For every edge f of C,
weight(f) ≤≤≤≤ weight(e)

Proof:
! By contradiction
! If weight(f) > > > > weight(e) we 

can get a spanning tree 
of smaller weight by 
replacing e with f
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Replacing f with e yields
a better spanning tree 
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U V

Partition Property
Partition Property:

! Consider a partition of the vertices of 
G into subsets U and V

! Let e be an edge of minimum weight 
across the partition

! There is a minimum spanning tree of 
G containing edge e

Proof:
! Let T be an MST of G
! If T does not contain e, consider the 

cycle C formed by e with T and let  f
be an edge of C across the partition

! By the cycle property,
weight(f) ≤≤≤≤ weight(e)

! Thus, weight(f) = = = = weight(e)
! We obtain another MST by replacing 

f  with e
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Replacing f with e yields
another MST
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Prim-Jarnik’s Algorithm
Prim-Jarnik’s algorithm for computing an MST is 
similar to Dijkstra’s algorithm
We assume that the graph is connected
We pick an arbitrary vertex s and we grow the MST 
as a cloud of vertices, starting from s
We store with each vertex v a label d(v) representing 
the smallest weight of an edge connecting v to a 
vertex in the cloud 
At each step
! We add to the cloud the vertex u outside the cloud with the 

smallest distance label
! We update the labels of the vertices adjacent to u
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Prim-Jarnik’s Algorithm (cont.)
A priority queue stores 
the vertices outside the 
cloud
! Key: distance
! Element: vertex

Locator-based methods
! insert(k,e) returns a 

locator
! replaceKey(l,k) changes 

the key of an item
We store three labels 
with each vertex:
! Distance
! Parent edge in MST
! Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞∞∞∞)

setParent(v, ∅∅∅∅ )
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬ Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Example
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Example (contd.)
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Analysis
Graph operations
! Method incidentEdges is called once for each vertex

Label operations
! We set/get the distance, parent and locator labels of vertex z O(deg(z))

times
! Setting/getting a label takes O(1) time

Priority queue operations
! Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time
! The key of a vertex w in the priority queue is modified at most deg(w) 

times, where each key change takes O(log n) time 
Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure
! Recall that ΣΣΣΣv deg(v) = 2m

The running time is O(m log n) since the graph is connected

9/2/2002 3:16 AM Minimum Spanning Tree 11

Dijkstra vs. Prim-Jarnik
Algorithm PrimJarnikMST(G)

Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞∞∞∞)

setParent(v, ∅∅∅∅ )
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬ Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Algorithm DijkstraShortestPaths(G, s)
Q ← new heap-based priority queue

for all v ∈ G.vertices()
if v = s

setDistance(v, 0)
else

setDistance(v, ∞∞∞∞)
setParent(v, ∅∅∅∅ )
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬ Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Kruskal’s Algorithm
A priority queue stores 
the edges outside the 
cloud
! Key: weight
! Element: edge

At the end of the 
algorithm
! We are left with one 

cloud that encompasses 
the MST

! A tree T which is our 
MST

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of " {v}
let Q be a priority queue.
Insert all edges into Q using their 
weights as the key
T " ∅∅∅∅
while T has fewer than n-1 edges do

edge e = T.removeMin()
Let u, v be the endpoints of e
if Cloud(v) ≠≠≠≠ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T


