
Minimum Spanning Tree 9/2/2002 3:16 AM

1

9/2/2002 3:16 AM Minimum Spanning Tree 1

Minimum Spanning Tree

9/2/2002 3:16 AM Minimum Spanning Tree 2

Outline and Reading
Minimum Spanning Trees (§7.3)
! Definitions
! A crucial fact

Prim-Jarnik’s Algorithm (§7.3.2)
Kruskal’s Algorithm (§7.3.1)

9/2/2002 3:16 AM Minimum Spanning Tree 3

Minimum Spanning Tree
Spanning subgraph

! Subgraph of a graph G
containing all the vertices of G

Spanning tree
! Spanning subgraph that is

itself a (free) tree

Minimum spanning tree (MST)
! Spanning tree of a weighted

graph with minimum total
edge weight

Applications
! Communications networks
! Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

9/2/2002 3:16 AM Minimum Spanning Tree 4

Cycle Property
Cycle Property:

! Let T be a minimum
spanning tree of a
weighted graph G

! Let e be an edge of G
that is not in T and C let
be the cycle formed by e
with T

! For every edge f of C,
weight(f) ≤≤≤≤ weight(e)

Proof:
! By contradiction
! If weight(f) > > > > weight(e) we

can get a spanning tree
of smaller weight by
replacing e with f

8
4

2 3
6

7

7

9

8
e

C
f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

9/2/2002 3:16 AM Minimum Spanning Tree 5

U V

Partition Property
Partition Property:

! Consider a partition of the vertices of
G into subsets U and V

! Let e be an edge of minimum weight
across the partition

! There is a minimum spanning tree of
G containing edge e

Proof:
! Let T be an MST of G
! If T does not contain e, consider the

cycle C formed by e with T and let f
be an edge of C across the partition

! By the cycle property,
weight(f) ≤≤≤≤ weight(e)

! Thus, weight(f) = = = = weight(e)
! We obtain another MST by replacing

f with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

9/2/2002 3:16 AM Minimum Spanning Tree 6

Prim-Jarnik’s Algorithm
Prim-Jarnik’s algorithm for computing an MST is
similar to Dijkstra’s algorithm
We assume that the graph is connected
We pick an arbitrary vertex s and we grow the MST
as a cloud of vertices, starting from s
We store with each vertex v a label d(v) representing
the smallest weight of an edge connecting v to a
vertex in the cloud
At each step
! We add to the cloud the vertex u outside the cloud with the

smallest distance label
! We update the labels of the vertices adjacent to u

Minimum Spanning Tree 9/2/2002 3:16 AM

2

9/2/2002 3:16 AM Minimum Spanning Tree 7

Prim-Jarnik’s Algorithm (cont.)
A priority queue stores
the vertices outside the
cloud
! Key: distance
! Element: vertex

Locator-based methods
! insert(k,e) returns a

locator
! replaceKey(l,k) changes

the key of an item
We store three labels
with each vertex:
! Distance
! Parent edge in MST
! Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞∞∞∞)

setParent(v, ∅∅∅∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬ Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

9/2/2002 3:16 AM Minimum Spanning Tree 8

Example

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 ∞∞∞∞

∞∞∞∞

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞∞∞∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞∞∞∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

9/2/2002 3:16 AM Minimum Spanning Tree 9

Example (contd.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

9/2/2002 3:16 AM Minimum Spanning Tree 10

Analysis
Graph operations
! Method incidentEdges is called once for each vertex

Label operations
! We set/get the distance, parent and locator labels of vertex z O(deg(z))

times
! Setting/getting a label takes O(1) time

Priority queue operations
! Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time
! The key of a vertex w in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time
Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure
! Recall that ΣΣΣΣv deg(v) = 2m

The running time is O(m log n) since the graph is connected

9/2/2002 3:16 AM Minimum Spanning Tree 11

Dijkstra vs. Prim-Jarnik
Algorithm PrimJarnikMST(G)

Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞∞∞∞)

setParent(v, ∅∅∅∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬ Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Algorithm DijkstraShortestPaths(G, s)
Q ← new heap-based priority queue

for all v ∈ G.vertices()
if v = s

setDistance(v, 0)
else

setDistance(v, ∞∞∞∞)
setParent(v, ∅∅∅∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬ Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

9/2/2002 3:16 AM Minimum Spanning Tree 12

Kruskal’s Algorithm
A priority queue stores
the edges outside the
cloud
! Key: weight
! Element: edge

At the end of the
algorithm
! We are left with one

cloud that encompasses
the MST

! A tree T which is our
MST

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of " {v}
let Q be a priority queue.
Insert all edges into Q using their
weights as the key
T " ∅∅∅∅
while T has fewer than n-1 edges do

edge e = T.removeMin()
Let u, v be the endpoints of e
if Cloud(v) ≠≠≠≠ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T

