Minimum Spanning Tree

9/2/2002 3:16 AM

Minimum Spanning Tree

9/2/2002 3:16 AM Minimum Spanning Tree 1

Outline and Reading

@ Minimum Spanning Trees (87.3)
= Definitions
= A crucial fact
Prim-Jarnik’s Algorithm (87.3.2)
#Kruskal's Algorithm (87.3.1)

9/2/2002 3:16 AM Minimum Spanning Tree 2

‘Minimum Spanning Tree

Spanning subgraph
= Subgraph of a graph G
containing all the vertices of G
Spanning tree
= Spanning subgraph that is
itself a (free) tree
Minimum spanning tree (MST)
= Spanning tree of a weighted
graph with minimum total
edge weight
Applications
= Communications networks
= Transportation networks

9/2/2002 3:16 AM Minimum Spanning Tree 3

Cycle Property

Cycle Property:
= Let T be a minimum
spanning tree of a
weighted graph G
= Let ebe an edge of G
that is not in T and C let
be the cycle formed by e

\'/:vith T s taric ﬂ Replacing f with eyields
= For every edge f of C, i
ey e a better spanning tree
Proof:

= By contradiction

= If weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f

9/2/2002 3:16 AM Minimum Spanning Tree 4

Partition Property

Partition Property:
= Consider a partition of the vertices of
G into subsets U and V
= Let e be an edge of minimum weight
across the partition
= There is @ minimum spanning tree of
G containing edge e
Proof: ﬂReplaoing f with eyields
= Let T be an MST of G another MST
= If T does not contain e, consider the
cycle C formed by e with T and let f
be an edge of C across the partition
= By the cycle property,
weight(f) < weight(e)
= Thus, weight(f) = weight(e)
= We obtain another MST by replacing
f with e
9/2/2002 3:16 AM Minimum Spanning Tree 5

Prim-Jarnik’s Algorithm

4 Prim-Jarnik’s algorithm for computing an MST is
similar to Dijkstra’s algorithm
4 We assume that the graph is connected
4 We pick an arbitrary vertex s and we grow the MST
as a cloud of vertices, starting from s
4 We store with each vertex v a label d(v) representing
the smallest weight of an edge connecting vto a
vertex in the cloud
At each step
= We add to the cloud the vertex u outside the cloud with the
smallest distance label
= We update the labels of the vertices adjacent to u

9/2/2002 3:16 AM Minimum Spanning Tree 6

Minimum Spanning Tree 9/2/2002 3:16 AM

“Prim-Jarnik’s Algorithm (cont.)

A priority queue stores
the vertices outside the
cloud

= Key: distance
= Element: vertex
4% Locator-based methods

= insert(k,e) returns a
locator

= replaceKey(l,k) changes
the key of an item

% We store three labels
with each vertex:

= Distance

= Parent edge in MST

= Locator in priority queue

9/2/2002 3:16 AM

Algorithm PrimJarnikMST(G)
Q « new heap-based priority queue
s — avertex of G
for all v O G.vertices()
if v=s
o setDistance(v, 0)

setDistance(V, o)
setParent(v, 0)
| — Q.insert(getDistance(v), v)
setLocator (vl %
while = Q. |sEmply()
u « Q.removeMin()
for all e O G.incidentEdges(u)
-G opposne(u €)
r « weight(e)
if r <getDistance(z)
setDistance(zr)
setParent(z,e)
Q.replaceKey(getLocator (2),r)

Minimum Spanning Tree 7

'Example

9/2/2002 3:16 AM

Minimum Spanning Tree

"Example (contd.)

9/2/2002 3:16 AM

Minimum Spanning Tree 9

“Analysis

) # Graph operations

= Method incidentEdges is called once for each vertex

Label operations

= We set/get the distance, parent and locator labels of vertex z O(deg(2))

times

= Setting/getting a label takes O(1) time

Priority queue operations

= Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time

= The key of a vertex w in the priority queue is modified at most deg(w)

times, where each key change takes O(log n) time

Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the

graph is represented by the adjacency list structure

= Recall that Z,deg(v) =

The running time is O(m log n) since the graph is connected

9/2/2002 3:16 AM

Minimum Spanning Tree

Dijkstra vs. Prim-Jarnik

for all v O G.vertices()
if v=s
s setDistance(v, 0)

se(Dlslance(v)
se(Paren t(v, O

setLocalor vl
while = Q. |sEmpty()
u « Q.removeMin

Algorithm DijkstrashortestPaths(G, s)
Q « new heap-based priority queue

~ Qiinsert(%aD\s{ance(v) V)

()
for all e O G.incidentEdges(u)

Q.replaceKey(getLocator (2),r)

Algorithm PrimJarnikM ST(G)
Q «~ new heap-based priority queue
s — avertex of G
for all v O G.vertices()
if v=s
o setDistance(v, 0)

selD‘stance(v)
selParem(0)
- Qmsert(etDistance(v), v)
setLocalor(v\
while - Q.isEmpty()
u — Q.removeMin()
for all e O G.incidentEdges(u)

z ~ G.opposite(u,e) z ~ G.opposite(u,e)

r— getD&ance(u) + weight(e) r— wengE

if r <getDistance(z) if r< gaDlsance(z)
setDistance(zr) setDistance(zr)
setParent(z,e) setParent(z,e)

Q.replaceKey(getLocator (2),r)

9/2/2002 3:16 AM

Minimum Spanning Tree 1

‘Kruskal’s Algorithm

#® A priority queue stores
the edges outside the
cloud

= Key: weight
= Element: edge
#® At the end of the
algorithm
= We are left with one
cloud that encompasses
the MST
= Atree 7Twhich is our
MST

9/2/2002 3:16 AM

Algorithm Kruskal MST(G)
or each vertex V in G do
definea Cloud(v) of < {v}
let Q beapriority queue.
Insert all edgesinto Q using their
weights as the key

T€0O
whlIeT has fewer than n-1 edges do
edge e = T.removeMin()
Let u, v be the endpoints of e
if Cloud(v) # Cloud(u) then
Add edgeeto T
Merge Cloud(v) and Cloud(u)
return T

Minimum Spanning Tree

