
Hash Tables 9/2/2002 3:15 AM

1

9/2/2002 3:15 AM Hash Tables 1

Hash Tables

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

9/2/2002 3:15 AM Hash Tables 2

Outline and Reading

Hash functions and hash tables (§2.5.2)
Hash function details
! Hash code map (§2.5.3)
! Compression map (§2.5.4)
Collision handling (§2.5.5)
! Chaining
! Linear probing
! Double hashing

9/2/2002 3:15 AM Hash Tables 3

Hash Functions and Hash Tables
A hash function h maps
keys of a given type to
integers in a fixed interval
[0, N − 1]
Example:

h(x) = x mod N
is a hash function for
integer keys
The integer h(x) is called
the hash value of key x
The goal of a hash
function is to uniformly
disperse keys in the
range [0, N − 1]

A hash table for a given key
type consists of
! Hash function h
! Array (called table) of size N

When implementing a dictionary
with a hash table, the goal is to
store item (k, o) at index i = h(k)
A collision occurs when two
keys in the dictionary have
the same hash value
Collision handing schemes:
! Chaining: colliding items

are stored in a sequence
! Open addressing: the

colliding item is placed in a
different cell of the table

9/2/2002 3:15 AM Hash Tables 4

Example
We design a hash table
for a dictionary storing
items (SSN, Name),
where SSN (social
security number) is a
nine-digit positive
integer
Our hash table uses an
array of size N = 10,000
and the hash function
h(x) = last four digits of x
We use chaining to
handle collisions

∅

∅
∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-229-0004 981-101-0004

200-751-9998

025-612-0001

9/2/2002 3:15 AM Hash Tables 5

Hash Functions
A hash function is
usually specified as the
composition of two
functions:
Hash code map:

h1: keys → integers
Compression map:

h2: integers → [0, N − 1]

The hash code map
is applied first, and
the compression map
is applied next on the
result, i.e.,

h(x) = h2(h1(x))
The goal of the hash
function is to
“disperse” the keys
in an apparently
random way

9/2/2002 3:15 AM Hash Tables 6

Hash Code Maps
Memory address:
! We reinterpret the memory

address of the key object as
an integer (default hash code
of all Java objects)

! Good in general, except for
numeric and string keys

Integer cast:
! We reinterpret the bits of the

key as an integer
! Suitable for keys of length

less than or equal to the
number of bits of the integer
type (e.g., byte, short, int
and float in Java)

Component sum:
! We partition the bits of

the key into components
of fixed length (e.g., 16
or 32 bits) and we sum
the components
(ignoring overflows)

! Suitable for numeric keys
of fixed length greater
than or equal to the
number of bits of the
integer type (e.g., long
and double in Java)

Hash Tables 9/2/2002 3:15 AM

2

9/2/2002 3:15 AM Hash Tables 7

Hash Code Maps (cont.)
Polynomial accumulation:
! We partition the bits of the

key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)

a0 a1 … an−1
! We evaluate the polynomial

p(z) = a0 + a1 z + a2 z2 + …
… + an−1zn−1

at a fixed value z, ignoring
overflows

! Especially suitable for strings
(e.g., the choice z = 33 gives
at most 6 collisions on a set
of 50,000 English words)

Polynomial p(z) can be
evaluated in O(n) time
using Horner’s rule:
! The following

polynomials are
successively computed,
each from the previous
one in O(1) time

p0(z) = an−1

pi (z) = an−i−1 + zpi−1(z)
(i = 1, 2, …, n −1)

We have p(z) = pn−1(z)

9/2/2002 3:15 AM Hash Tables 8

Compression Maps

Division:
! h2 (y) = y mod N
! The size N of the

hash table is usually
chosen to be a prime

! The reason has to do
with number theory
and is beyond the
scope of this course

Multiply, Add and
Divide (MAD):
! h2 (y) = (ay + b) mod N
! a and b are

nonnegative integers
such that

a mod N ≠ 0
! Otherwise, every

integer would map to
the same value b

9/2/2002 3:15 AM Hash Tables 9

Linear Probing
Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available
table cell
Each table cell inspected
is referred to as a
“probe”
Colliding items lump
together, causing future
collisions to cause a
longer sequence of
probes

Example:
! h(x) = x mod 13
! Insert keys 18, 41,

22, 44, 59, 32, 31,
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

9/2/2002 3:15 AM Hash Tables 10

Search with Linear Probing
Consider a hash table A
that uses linear probing
findElement(k)
! We start at cell h(k)
! We probe consecutive

locations until one of the
following occurs
" An item with key k is

found, or
" An empty cell is found,

or
" N cells have been

unsuccessfully probed

Algorithm findElement(k)
i ← h(k)
p ← 0
repeat

c ← A[i]
if c = ∅

return NO_SUCH_KEY
else if c.key () = k

return c.element()
else

i ← (i + 1) mod N
p ← p + 1

until p = N
return NO_SUCH_KEY

9/2/2002 3:15 AM Hash Tables 11

Updates with Linear Probing
To handle insertions and
deletions, we introduce a
special object, called
AVAILABLE, which replaces
deleted elements
removeElement(k)
! We search for an item with

key k
! If such an item (k, o) is

found, we replace it with the
special item AVAILABLE
and we return element o

! Else, we return
NO_SUCH_KEY

insert Item(k, o)
! We throw an exception

if the table is full
! We start at cell h(k)
! We probe consecutive

cells until one of the
following occurs
" A cell i is found that is

either empty or stores
AVAILABLE, or

" N cells have been
unsuccessfully probed

! We store item (k, o) in
cell i

9/2/2002 3:15 AM Hash Tables 12

Double Hashing
Double hashing uses a
secondary hash function
d(k) and handles
collisions by placing an
item in the first available
cell of the series

(i + jd(k)) mod N
for j = 0, 1, … , N − 1
The secondary hash
function d(k) cannot have
zero values
The table size N must be
a prime to allow probing
of all the cells

Common choice of
compression map for the
secondary hash function:

d2(k) = q − k mod q
where
! q < N
! q is a prime

The possible values for
d2(k) are

1, 2, … , q

Hash Tables 9/2/2002 3:15 AM

3

9/2/2002 3:15 AM Hash Tables 13

Consider a hash
table storing integer
keys that handles
collision with double
hashing
! N = 13
! h(k) = k mod 13
! d(k) = 7 − k mod 7

Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

9/2/2002 3:15 AM Hash Tables 14

Performance of Hashing
In the worst case, searches,
insertions and removals on a
hash table take O(n) time
The worst case occurs when
all the keys inserted into the
dictionary collide
The load factor αααα = n/N
affects the performance of a
hash table
Assuming that the hash
values are like random
numbers, it can be shown
that the expected number of
probes for an insertion with
open addressing is

1 / (1 − αααα)

The expected running
time of all the dictionary
ADT operations in a
hash table is O(1)
In practice, hashing is
very fast provided the
load factor is not close
to 100%
Applications of hash
tables:
! small databases
! compilers
! browser caches

