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Outline and Reading

Hash functions and hash tables (§2.5.2)
Hash function details
! Hash code map (§2.5.3)
! Compression map (§2.5.4)
Collision handling (§2.5.5)
! Chaining
! Linear probing
! Double hashing
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Hash Functions and Hash Tables
A hash function h maps 
keys of a given type to 
integers in a fixed interval 
[0, N − 1]
Example:

h(x) = x mod N
is a hash function for 
integer keys
The integer h(x) is called 
the hash value of key x
The goal of a hash 
function is to uniformly 
disperse keys in the 
range [0, N − 1]

A hash table for a given key 
type consists of
! Hash function h
! Array (called table) of size N

When implementing a dictionary 
with a hash table, the goal is to 
store item (k, o) at index i = h(k)
A collision occurs when two 
keys in the dictionary have 
the same hash value
Collision handing schemes:
! Chaining: colliding items 

are stored in a sequence
! Open addressing: the 

colliding item is placed in a 
different cell of the table
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Example
We design a hash table 
for a dictionary storing 
items (SSN, Name), 
where SSN (social 
security number) is a 
nine-digit positive 
integer
Our hash table uses an 
array of size N = 10,000
and the hash function
h(x) = last four digits of x
We use chaining to 
handle collisions
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Hash Functions
A hash function is 
usually specified as the 
composition of two 
functions:
Hash code map:

h1: keys → integers
Compression map:

h2: integers → [0, N − 1]

The hash code map 
is applied first, and 
the compression map 
is applied next on the 
result, i.e., 

h(x) = h2(h1(x))
The goal of the hash 
function is to  
“disperse” the keys 
in an apparently 
random way
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Hash Code Maps
Memory address:
! We reinterpret the memory 

address of the key object as 
an integer (default hash code 
of all Java objects)

! Good in general, except for 
numeric and string keys

Integer cast:
! We reinterpret the bits of the 

key as an integer
! Suitable for keys of length 

less than or equal to the 
number of bits of the integer 
type (e.g., byte, short, int 
and float in Java)

Component sum:
! We partition the bits of 

the key into components 
of fixed length (e.g., 16 
or 32 bits) and we sum 
the components 
(ignoring overflows)

! Suitable for numeric keys 
of fixed length greater 
than or equal to the 
number of bits of the 
integer type (e.g., long 
and double in Java)
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Hash Code Maps (cont.)
Polynomial accumulation:
! We partition the bits of the 

key into a sequence of 
components of fixed length 
(e.g., 8, 16 or 32 bits)

a0 a1 … an−1
! We evaluate the polynomial

p(z) = a0 + a1 z + a2 z2 + … 
… + an−1zn−1

at a fixed value z, ignoring 
overflows

! Especially suitable for strings 
(e.g., the choice z = 33 gives 
at most 6 collisions on a set 
of 50,000 English words)

Polynomial p(z) can be 
evaluated in O(n) time 
using Horner’s rule:
! The following 

polynomials are 
successively computed, 
each from the previous 
one in O(1) time

p0(z) = an−1

pi (z) = an−i−1 + zpi−1(z)
(i = 1, 2, …, n −1)

We have p(z) = pn−1(z) 
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Compression Maps

Division:
! h2 (y) = y mod N
! The size N of the 

hash table is usually 
chosen to be a prime 

! The reason has to do 
with number theory 
and is beyond the 
scope of this course

Multiply, Add and 
Divide (MAD):
! h2 (y) = (ay + b) mod N
! a and b are 

nonnegative integers 
such that

a mod N ≠ 0
! Otherwise, every 

integer would map to 
the same value b

9/2/2002 3:15 AM Hash Tables 9

Linear Probing
Linear probing handles 
collisions by placing the 
colliding item in the next 
(circularly) available 
table cell
Each table cell inspected 
is referred to as a 
“probe”
Colliding items lump 
together, causing future 
collisions to cause a 
longer sequence of 
probes

Example:
! h(x) = x mod 13
! Insert keys 18, 41, 

22, 44, 59, 32, 31, 
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12
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Search with Linear Probing
Consider a hash table A
that uses linear probing
findElement(k)
! We start at cell h(k) 
! We probe consecutive 

locations until one of the 
following occurs
" An item with key k is 

found, or
" An empty cell is found, 

or
" N cells have been 

unsuccessfully probed 

Algorithm findElement(k)
i ← h(k)
p ← 0
repeat

c ← A[i]
if c = ∅

return NO_SUCH_KEY
else if c.key () = k

return c.element()
else

i ← (i + 1) mod N
p ← p + 1

until p = N
return NO_SUCH_KEY
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Updates with Linear Probing
To handle insertions and 
deletions, we introduce a 
special object, called 
AVAILABLE, which replaces 
deleted elements
removeElement(k)
! We search for an item with 

key k
! If such an item (k, o) is 

found, we replace it with the 
special item AVAILABLE
and we return element o

! Else, we return 
NO_SUCH_KEY

insert Item(k, o)
! We throw an exception 

if the table is full
! We start at cell h(k) 
! We probe consecutive 

cells until one of the 
following occurs
" A cell i is found that is 

either empty or stores 
AVAILABLE, or

" N cells have been 
unsuccessfully probed

! We store item (k, o) in 
cell i
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Double Hashing
Double hashing uses a 
secondary hash function 
d(k) and handles 
collisions by placing an 
item in the first available 
cell of the series

(i + jd(k)) mod N
for j = 0,  1, … , N − 1
The secondary hash 
function d(k) cannot have 
zero values
The table size N must be 
a prime to allow probing 
of all the cells

Common choice of 
compression map for the 
secondary hash function: 

d2(k) = q − k mod q
where
! q < N
! q is a prime

The possible values for 
d2(k) are

1, 2, … , q
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Consider a hash 
table storing integer 
keys that handles 
collision with double 
hashing
! N = 13
! h(k) = k mod 13
! d(k) = 7 − k mod 7

Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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Performance of Hashing
In the worst case, searches, 
insertions and removals on a 
hash table take O(n) time
The worst case occurs when 
all the keys inserted into the 
dictionary collide
The load factor αααα = n/N 
affects the performance of a 
hash table
Assuming that the hash 
values are like random 
numbers, it can be shown 
that the expected number of 
probes for an insertion with 
open addressing is

1 / (1 − αααα)

The expected running 
time of all the dictionary 
ADT operations in a 
hash table is O(1)
In practice, hashing is 
very fast provided the 
load factor is not close 
to 100%
Applications of hash 
tables:
! small databases
! compilers
! browser caches


