Hash Tables

Hash Tables

025-612-0001

451-229-0004}—(981-101-0004)

9/2/2002 3:15 AM Hash Tables 1

9/2/2002 3:15 AM

Outline and Reading

#Hash functions and hash tables (82.5.2)
#Hash function details

= Hash code map (82.5.3)

= Compression map (82.5.4)
4 Collision handling (82.5.5)

= Chaining

= Linear probing

= Double hashing

9/2/2002 3:15 AM Hash Tables 2

‘Hash Functions and Hash Tables

"4& A hash function h maps
keys of a given type to
integers in a fixed interval
[O,N~-1]

Example:

h(x) =x mod N

is a hash function for
integer keys

The integer h(x) is called
the hash value of key x

The goal of a hash
function is to uniformly
disperse keys in the
range [0, N - 1]

4 A hash table for a given key
type consists of
= Hash function h
= Array (called table) of size N
4 When implementing a dictionary
with a hash table, the goal is to
store item (k, 0) at index i = h(k)
A collision occurs when two
keys in the dictionary have
the same hash value
Collision handing schemes:
= Chaining: colliding items
are stored in a sequence
= Open addressing: the
colliding item is placed in a
different cell of the table

9/2/2002 3:15 AM Hash Tables 3

‘Example

4 We design a hash table
for a dictionary storing
items (SSN, Name),
where SSN (social
security number) is a
nine-digit positive
integer

4 Our hash table uses an
array of size N = 10,000
and the hash function 999710
h(x) = last four digitsof x 9998

025-612-0001

451-229-0004}—(981-101-0004)

A WNRFRO

. 9999 [0
We use chaining to
handle collisions
9/2/2002 3:15 AM Hash Tables 4

‘Hash Functions

A hash function is

usually specified as the

composition of two
functions:

Hash code map:
h;: keys - integers
Compression map:

The hash code map
is applied first, and
the compression map
is applied next on the
result, i.e.,

h(x) = hy(h,(x))

The goal of the hash

function is to

‘Hash Code Maps

/ # Memory address:

4 Component sum:

= We partition the bits of
the key into components
of fixed length (e.g., 16
or 32 bits) and we sum
the components
(ignoring overflows)
Suitable for numeric keys
of fixed length greater
than or equal to the

= We reinterpret the memory
address of the key object as
an integer (default hash code
of all Java objects)

Good in general, except for
numeric and string keys

Integer cast:

= We reinterpret the bits of the
key as an integer

h,: integers - [0, N — 1]

9/2/2002 3:15 AM Hash Tables

“disperse” the keys
in an apparently
random way

Suitable for keys of length
less than or equal to the
number of bits of the integer
type (e.g., byte, short, int
and float in Java)

9/2/2002 3:15 AM Hash Tables

number of bits of the
integer type (e.g., long
and double in Java)

Hash Tables

9/2/2002 3:15 AM

% Polynomial accumulation:

= We partition the bits of the
key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 hits)

88y .. Ay

We evaluate the polynomial
P@)=a,+az+a,z2+ ..

at a fixed value z, ignoring
overflows

of 50,000 English words)

..ota 7t

Especially suitable for strings
(e.g., the choice z=33 gives
at most 6 collisions on a set

‘Hash Code Maps (cont.)

Polynomial p(2) can be
evaluated in O(n) time
using Horner'’s rule:

= The following
polynomials are
successively computed,
each from the previous
one in O(1) time
Po(d =
P(D=a,1+ 42
i=12..n-1)
4 We have p(2 =p,.1(2

9/2/2002 3:15 AM Hash Tables 7

‘Compression Maps

Division:

= hy(y) =ymodN

= The size N of the
hash table is usually
chosen to be a prime

= The reason has to do
with number theory
and is beyond the
scope of this course

9/2/2002 3:15 AM Hash Tables 8

% Multiply, Add and
Divide (MAD):
= hy(y) = (ay +b) mod N
= aand b are
nonnegative integers
such that
amodN #0
= Otherwise, every
integer would map to
the same value b

‘Linear Probing

Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available
table cell

Each table cell inspected
is referred to as a
“probe”

Colliding items lump
together, causing future
collisions to cause a
longer sequence of
probes

@ Example:
= h(x) =xmod 13
= Insert keys 18, 41,
22, 44,59, 32, 31,
73, in this order

01234567 89101112

4

[T Taa[T Txsfadfs9[32[22]31[73]]

01234567 89101112

9/2/2002 3:15 AM Hash Tables 9

‘Search with Linear Probing

4 Consider a hash table A
that uses linear probing

findElement(k)
= We start at cell h(k)
= We probe consecutive
locations until one of the
following occurs
+ An item with key k is
found, or
+ An empty cell is found,
or
+ N cells have been
unsuccessfully probed

9/2/2002 3:15 AM Hash Tables 10

Algorithm findElement(k)
i« h(k)
p-o0
repeat
¢« Ali]
ifc=0
return NO_SUCH_KEY
eseifckey () =k
return c.element()
else
i« (i+1)modN
peptl
until p=N

return NO_SUCH_KEY

To handle insertions and
deletions, we introduce a
special object, called
AVAILABLE, which replaces
deleted elements

4 removeElement(k)

= We search for an item with

key k

If such an item (K, 0) is

found, we replace it with the

special item AVAILABLE

and we return element 0

Else, we return

NO_SUCH_KEY

Updates with Linear Probing

@ insert Item(k, 0)
= We throw an exception
if the table is full
= We start at cell h(k)
= We probe consecutive
cells until one of the
following occurs
+ Acelliis found that is
either empty or stores
AVAILABLE, or
+ N cells have been
unsuccessfully probed
= We store item (k, 0) in
cell i

9/2/2002 3:15 AM Hash Tables 11

‘Double Hashing

4 Double hashing uses a
secondary hash function
d(k) and handles
collisions by placing an
item in the first available
cell of the series

(i +jd(k)) mod N
forj=0,1,...,N-1

The secondary hash
function d(k) cannot have
zero values

The table size N must be
a prime to allow probing
of all the cells

9/2/2002 3:15 AM Hash Tables 12

4 Common choice of
compression map for the
secondary hash function:

d,(k)=g-kmodq
where
= <N
= Qis aprime

The possible values for

d,(k) are
1,2 ...,9

Hash Tables 9/2/2002 3:15 AM

Example of Double Hashing Performance of Hashing
. k h(k) d(k) Probes # In the worst case, searches, 4 The expected runnin
Consider a haSh 18 5 3 | 5] insertions and removals on a time ofpa” the dictiongary
table storing integer a2 1 [2] hash table take O(n) time ADT operations in a
keys that handles ii g g g 0 # The worst case occurs when hash table is O(1)
collision with double so 7 4 [7 all the keys inserted into the X s
hashin 2 6 3|6 dictionary collide # In practice, hashing is
9 31 5 4[5 9 0 # The load factor @=n/N very fast provided the
= N=13 73 8 4 [8] affects the performance of a load factor is not close
« h(k) =k mod 13 hash table to 100%
s dk)=7-kmod7 [TITTTITTITT] # Assuming that the hash # Applicati f hash
N 0123456789101112 values are like random pplications of has
Insert keys 18, 41, a numbers, it can be shown tables:
22,44, 59, 32, 31, that the expected number of = small databases
73, in this order [TJaa] T Tas[32]59[73[22fa4] [] probes for an insertion with = compilers
' 012345678 9101112 open addressing is = browser caches
1/1-a)
9/2/2002 3:15 AM Hash Tables 13 9/2/2002 3:15 AM Hash Tables 14

