
Digraphs 9/2/2002 3:16 AM

1

9/2/2002 3:16 AM Digraphs 1

Digraphs

B

A

D

C

E

9/2/2002 3:16 AM Digraphs 2

Outline and Reading
Digraphs
Traversals of digraphs (§6.4.1)
Transitive closure (§6.4.2)
Floyd-Warshall’s algorithm (§6.4.2)
Directed acyclic graphs (§6.4.3)
Topological ordering (§6.4.3)

9/2/2002 3:16 AM Digraphs 3

Digraphs

A digraph is a 
directed graph whose 
edges are all directed
Applications
! one-way streets
! flights
! task scheduling

A

C

E

B

D

9/2/2002 3:16 AM Digraphs 4

Directed DFS
We can specialize the 
traversal algorithms (DFS and 
BFS) to digraphs by 
traversing edges only along 
their direction
In the directed DFS 
algorithm, we have four 
types of edges
! discovery edges
! back edges
! forward edges
! cross edges

A directed DFS starting a a 
vertex s determines the 
vertices reachable from s

A

C

E

B

D

9/2/2002 3:16 AM Digraphs 5

Transitive Closure
Given a digraph G, the transitive 
closure of G is the digraph G*
such that
! G* has the same vertices as G
! if G has a directed path from u to 

v (u ≠≠≠≠ v), G* has a directed edge 
from u to v

The transitive closure provides 
reachability information about a 
digraph
We can compute the transitive 
closure in time O(n(n + m)) by 
repeated applications of directed 
DFS

B

A

D

C

E

B

A

D

C

E

G

G*
9/2/2002 3:16 AM Digraphs 6

Floyd-Warshall’s Algorithm
Floyd-Warshall’s 
algorithm numbers the 
vertices of a digraph G as 
v1 , …, vn and computes a 
series of digraphs
G0, …, Gn
! G0=G
! Gk has a directed edge 

(vi, vj) if G has a directed 
path from vi to vj with 
intermediate vertices in 
the set {v1 , …, vk}

We have that Gn = G*
In phase k, digraph Gk is 
computed from Gk −−−− 1

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ← 1
for all v ∈ G.vertices()

denote v as vi
i ← i + 1

G0 ← G
for k ← 1 to n do

Gk ← Gk −−−− 1
for i ← 1 to n (i ≠≠≠≠ k) do

for j ← 1 to n (j ≠≠≠≠ i, k) do
if Gk −−−− 1.areAdjacent(vi, vk) ∧∧∧∧

Gk −−−− 1.areAdjacent(vk, vj)
if ¬¬¬¬ Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn



Digraphs 9/2/2002 3:16 AM

2

9/2/2002 3:16 AM Digraphs 7

Example

B

A

D

C

E

B

A

D

C

E

B

A

D

C

E
G = G0 = G1 = G2

G3 G4 = G5 = G*

v1

v2

v3

v4
v5

v1

v2

v3

v4
v5

v1

v2

v3

v4
v5

9/2/2002 3:16 AM Digraphs 8

DAGs and Topological Ordering
A directed acyclic graph (DAG) is a 
digraph that has no directed cycles
A topological ordering of a digraph 
is a numbering 

v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i < j
Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints

Theorem
A digraph admits a topological 
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological 
ordering of G

v1

v2

v3

v4 v5


