Digraphs

Digraphs

9/2/2002 3:16 AM Digraphs

9/2/2002 3:16 AM

Outline and Reading

#Digraphs

Traversals of digraphs (86.4.1)
#Transitive closure (86.4.2)
#Floyd-Warshall's algorithm (86.4.2)
#Directed acyclic graphs (86.4.3)
#®Topological ordering (§6.4.3)

9/2/2002 3:16 AM Digraphs 2

‘Digraphs

#® A digraph is a
directed graph whose
edges are all directed

Applications

= one-way streets
= flights
= task scheduling

9/2/2002 3:16 AM Digraphs

Directed DFS

4 We can specialize the
traversal algorithms (DFS and
BFS) to digraphs by
traversing edges only along
their direction

4 In the directed DFS
algorithm, we have four
types of edges

= discovery edges
= back edges

= forward edges
= cross edges

% A directed DFS starting a a
vertex s determines the
vertices reachable from s

9/2/2002 3:16 AM Digraphs 4

‘Transitive Closure

Given a digraph G, the transitive
closure of G is the digraph G*
such that

= G* has the same vertices as G

= if G has a directed path from u to
v (u #v), G* has a directed edge
fromutov

The transitive closure provides
reachability information about a
digraph

4 We can compute the transitive
closure in time O(n(n +m)) by
repeated applications of directed
DFS

9/2/2002 3:16 AM Digraphs

Floyd-Warshall's Algorithm

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G

Floyd-Warshall's
algorithm numbers the
vertices of a digraph G as

i1
Vi, ooy Vy 8N COMPULES @ | 11 411y 0 Guvertices()
series of digraphs deriotev as v,
i
Gg -y Gy il
» G=G G, -G

for k « 1tondo
Gk - Gk -1
fori « 1ton (i #k)do
forj — 1ton(j #i, k) do
if G, _,.areAdjacent(v;, v) O
G, _,.areAdjacent(v,,)
if = G,.areAdjacent(v, v)

G.insertDirectedEdge(y;, v, , k)

return G,

= G has a directed edge

(v, v)) if G has a directed
path from v, to v, with
intermediate vertices in
the set {vy, ..., v}

4 We have that G, = G*

In phase k, digraph G, is

computed from G, _,

9/2/2002 3:16 AM Digraphs 6

Digraphs

Example

9/2/2002 3:16 AM

Digraphs 7

9/2/2002 3:16 AM

'DAGs and Topological Ordering

% A directed acyclic graph (DAG) is a 9 e
digraph that has no directed cycles
% A topological ordering of a digraph e

is a numbering

Vi,V
of the vertices such that for every e DAG G
edge (v, V), we have i <j

€ Example: in a task scheduling \Z Vg

digraph, a topological ordering a

task sequence that satisfies the v,

precedence constraints
Theorem

A digraph admits a topological V.

ordering if and only if it is a DAG P

Topological
ordering of G
9/2/2002 3:16 AM Digraphs 8

