
Dictionaries 9/2/2002 3:15 AM

1

9/2/2002 3:15 AM Dictionaries 1

Dictionaries

6

92

41 8

<

>
=

9/2/2002 3:15 AM Dictionaries 2

Outline and Reading
Dictionary ADT (§2.5.1)
Log file (§2.5.1)
Binary search (§3.1.1)
Lookup table (§3.1.1)
Binary search tree (§3.1.2)
! Search (§3.1.3)
! Insertion (§3.1.4)
! Deletion (§3.1.5)
! Performance (§3.1.6)

9/2/2002 3:15 AM Dictionaries 3

Dictionary ADT
The dictionary ADT models a 
searchable collection of key-
element items
The main operations of a 
dictionary are searching, 
inserting, and deleting items
Multiple items with the same 
key are allowed
Applications:
! address book
! credit card authorization
! mapping host names (e.g., 

cs16.net) to internet addresses 
(e.g., 128.148.34.101)

Dictionary ADT methods:
! findElement(k): if the 

dictionary has an item with 
key k, returns its element, 
else, returns the special 
element NO_SUCH_KEY 

! insertItem(k, o): inserts item 
(k, o) into the dictionary

! removeElement(k): if the 
dictionary has an item with 
key k, removes it from the 
dictionary and returns its 
element, else returns the 
special element 
NO_SUCH_KEY 

! size(), isEmpty()
! keys(), Elements()

9/2/2002 3:15 AM Dictionaries 4

Log File
A log file is a dictionary implemented by means of an unsorted 
sequence
! We store the items of the dictionary in a sequence (based on a 

doubly-linked lists or a circular array), in arbitrary order
Performance:
! insertItem takes O(1) time since we can insert the new item at the 

beginning or at the end of the sequence
! findElement and removeElement take O(n) time since in the worst 

case (the item is not found) we traverse the entire sequence to 
look for an item with the given key

The log file is effective only for dictionaries of small size or for 
dictionaries on which insertions are the most common 
operations, while searches and removals are rarely performed 
(e.g., historical record of logins to a workstation)

9/2/2002 3:15 AM Dictionaries 5

Binary Search
Binary search performs operation findElement(k) on a dictionary 
implemented by means of an array-based sequence, sorted by key
! similar to the high-low game
! at each step, the number of candidate items is halved
! terminates after a logarithmic number of steps

Example: findElement(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h
9/2/2002 3:15 AM Dictionaries 6

Lookup Table
A lookup table is a dictionary implemented by means of a sorted 
sequence
! We store the items of the dictionary in an array-based sequence, 

sorted by key
! We use an external comparator for the keys

Performance:
! findElement takes O(log n) time, using binary search
! insertItem takes O(n) time since in the worst case we have to shift 

n/2 items to make room for the new item
! removeElement take O(n) time since in the worst case we have to 

shift n/2 items to compact the items after the removal
The lookup table is effective only for dictionaries of small size or 
for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations)



Dictionaries 9/2/2002 3:15 AM

2

9/2/2002 3:15 AM Dictionaries 7

Binary Search Tree
A binary search tree is a 
binary tree storing keys 
(or key-element pairs) 
at its internal nodes and 
satisfying the following 
property:
! Let u, v, and w be three 

nodes such that u is in 
the left subtree of v and 
w is in the right subtree 
of v. We have 
key(u) ≤ key(v) ≤ key(w)

External nodes do not 
store items

An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order

6

92

41 8

9/2/2002 3:15 AM Dictionaries 8

Search
To search for a key k, 
we trace a downward 
path starting at the root
The next node visited 
depends on the 
outcome of the 
comparison of k with 
the key of the current 
node
If we reach a leaf, the 
key is not found and we 
return NO_SUCH_KEY
Example: 
findElement(4)

Algorithm findElement(k, v)
if T.isExternal (v)

return NO_SUCH_KEY
if k < key(v)

return findElement(k, T.leftChild(v))
else if k = key(v)

return element(v)
else { k > key(v) }

return findElement(k, T.rightChild(v))

6

92

41 8

<

>
=

9/2/2002 3:15 AM Dictionaries 9

Insertion
To perform operation 
insertItem(k, o), we search 
for key k
Assume k is not already in 
the tree, and let let w be 
the leaf reached by the 
search
We insert k at node w and 
expand w into an internal 
node
Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

9/2/2002 3:15 AM Dictionaries 10

Deletion
To perform operation 
removeElement(k), we 
search for key k
Assume key k is in the tree, 
and let let v be the node 
storing k
If node v has a leaf child w, 
we remove v and w from the 
tree with operation 
removeAboveExternal(w)
Example: remove 4

6

92

41 8

5

v
w

6

92

51 8

<

>

9/2/2002 3:15 AM Dictionaries 11

Deletion (cont.)
We consider the case where 
the key k to be removed is 
stored at a node v whose 
children are both internal
! we find the internal node w 

that follows v in an inorder 
traversal

! we copy key(w) into node v
! we remove node w and its 

left child z (which must be a 
leaf) by means of operation 
removeAboveExternal(z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

9/2/2002 3:15 AM Dictionaries 12

Performance
Consider a dictionary 
with n items 
implemented by means 
of a binary search tree 
of height h
! the space used is O(n)
! methods findElement , 

insertItem and 
removeElement take 
O(h) time

The height h is O(n) in 
the worst case and 
O(log n) in the best 
case


