Breadth-First Search

Breadth-First Search

9/2/2002 3:16 AM

Breadth-First Search 1

9/2/2002 3:16 AM

Outline and Reading

Breadth-first search (§6.3.3)
= Algorithm
= Example
= Properties
= Analysis
= Applications
DFS vs. BFS (86.3.3)
= Comparison of applications
= Comparison of edge labels

9/2/2002 3:16 AM Breadth-First Search 2

Breadth-first search
(BFS) is a general
technique for traversing
a graph

A BFS traversal of a
graph G

= Visits all the vertices and
edges of G

= Determines whether G is
connected

= Computes the connected

‘Breadth-First Search

4 BFS on a graph with n
vertices and m edges
takes O(n +m) time

BFS can be further
extended to solve other
graph problems

= Find and report a path
with the minimum
number of edges
between two given

components of G vertices
= Computes a spanning = Find a simple cycle, if
forest of G there is one
9/2/2002 3:16 AM Breadth-First Search 3

'BFS Algorithm

The algorithm uses a

mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G)
Input graph G
Output labeling of the edges
and partition of the
vertices of G
for all u O G.vertices()
setlabel (U, UNEXPLORED)
for all e 0 G.edges()
setlabel (e, UNEXPLORED)
for all v O G.vertices()
if getLabel(v) = UNEXPLORED
BFS(G, V)

Algorithm BFS(G, s)
L, « new empty sequence
LyinsertLast(s)
setLabel (s, VISITED)
i-0
while = L;.isEmpty()
L;,, « new empty sequence
for all vOL,.elements()
for all e G.incidentEdges(v)
if getlLabel(e) = UNEXPLORED
W «— opposite(V,e)
if getLabel(w) = UNEXPLORED
setLabel (e, DISCOVERY)
setlabel (w, VISITED)
L; .y insertLast(w)
se

setlabel (e, CROSS)
i—i+l

9/2/2002 3:16 AM

Breadth-First Search 4

@ unexplored vertex

(® visited vertex
— unexplored edge
— discovery edge
== =» cross edge

9/2/2002 3:16 AM

Breadth-First Search 5

‘Example (cont.)

9/2/2002 3:16 AM

Breadth-First Search 6

Breadth-First Search 9/2/2002 3:16 AM

Properties

Notation (a)

G,: connected component of s ‘\
Property 1 &) Q'Q

BFS(G,) visits all the vertices and '
edges of G,

Property 2 ®© ©
The discovery edges labeled by

BFS(G, s) form a spanning tree T
of G¢

Property 3
For each vertex vin L;
= The path of T fromstovhasi

edges
= Every path from sto vin G has at
least i edges
9/2/2002 3:16 AM Breadth-First Search 7 9/2/2002 3:16 AM Breadth-First Search 8
Analysis Applications

Setting/getting a vertex/edge label takes O(1) time

. i # Using the template method pattern, we can
4 Each vertex is labeled twice

- once as UNEXPLORED specialize the BFS traversal of a graph G to
= once as VISITED solve the following problems in O(n + m) time
Each edge is labeled twice = Compute the connected components of G

= once as UNEXPLORED

= once as DISCOVERY or CROSS
4 Each vertex is inserted once into a sequence L; forest
Method |n.C|dentEdges.|s called'once for each Yertex « Given two vertices of G, find a path in G between
4 BFS runs in O(n + m) time provided the graph is

represented by the adjacency list structure them with the minimum number of edges, or
report that no such path exists
= Recall that 2, deg(v) = 2m

= Compute a spanning forest of G
= Find a simple cycle in G, or report that G is a

9/2/2002 3:16 AM Breadth-First Search 9 9/2/2002 3:16 AM Breadth-First Search 10

DFS vs. BFS DFS vs. BFS (cont.)

Applications DFS | BFS Back edge (v,w) Cross edge (v,w)

Spanning forest, connected v J = Wis an ancestor of vin = Wwis in the same level as

components, paths, cycles the tree of discovery v or in the next level in
edges the tree of discovery

Shortest paths v edges

Biconnected components v

K‘*

9/2/2002 3:16 AM Breadth-First Search 11 9/2/2002 3:16 AM Breadth-First Search 12

