Analysis of Algorithms

3 TRk

Input Algorithm

Outline and Reading

#Running time (81.1)

#®Pseudo-code (§1.1)

#Counting primitive operations (81.1)
#Asymptotic notation (81.2)
#®Asymptotic analysis (81.2)

#Case study (81.3.1, §1.4)

Analysis of Algorithms 2

‘Running Time

4 The running time of an 0 best case

algorithm varies with the e e
input and typically grows 120

with the input size

4 Average case difficult to
determine

4 We focus on the worst
case running time

100

80

60

40

Running Time

= Easier to analyze 20
= Crucial to applications such o
as games, finance and 1000 2000 3000 4000
robotics Input Size
Analysis of Algorithms 3

Experimental Studies

# Write a program 9000 =
implementing the 8000 :
algorithm 7000 .

# Run the program with 6000 { :

inputs of varying size £ 5000
and composition

; & 4000 4 '

4 Use a method like F 2000 | _—

System.currentTimeMillis() to 2000 | oA

get an accurate measure o

of the actual running o001 A

time o+* ‘

o] 50 100
# Plot the results Input Size
Analysis of Algorithms 4

Limitations of Experiments

@It is necessary to implement the
algorithm, which may be difficult
#Results may not be indicative of the
running time on other inputs not

included in the experiment.

#In order to compare two algorithms, the
same hardware and software
environments must be used

Analysis of Algorithms 5

‘Theoretical Analysis

#Uses a high-level description of the
algorithm instead of an implementation

#Takes into account all possible inputs

#Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Analysis of Algorithms 6




Pseudocode

4 High-level description Example: find max

of an algorithm element of an array

#® More structured than | Algorithm arrayMax(A, n)
English prose Input array A of n integers

# Less detailed than a Output maximum element of A
program

# Preferred notation for | currentMax — A[0]
describing algorithms | for i — 1ton-1do

# Hides program design | If All] > currentMax then
issues currentMax ~ A[i]
return currentMax

Analysis of Algorithms 7

Pseudocode Details

4 Control flow 4 Method call
= if ...then ... [else...] var.method (arg [, arg...])
= while... do ... % Return value
= repeat ... until ... return expression
= for ... do... % Expressions
= Indentation replaces braces - /aﬁfignme?t )
. ike = in Java
* Methqd declaration = Equality testing
Algorithm method (arg [, arg...]) (like == in Java)
Input ... n2 Superscripts and other
Output ... mathematical
formatting allowed
Analysis of Algorithms 8

Primitive Operations

# Basic computations % Examples:
performed by an algorithm Evaluating an

. . expression
# |dentifiable in pseudocode Assigning a value

# Largely independent from to a variable
the programming language Indexing into an
- array
@ Exact definition not Calling a method
important (we will see why Returning from a
later) method

Analysis of Algorithms 9

Counting Primitive Operations

# By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax — A[0]
fori « 1ton-1do 2+n
if A[i] > currentMax then 2(n-1)
currentMax « AJi] 2n-1)
{ increment counter i } 2(n-1)
return currentMax 1
Total 7n-1
Analysis of Algorithms 10

'Estimating Running Time

# Algorithm arrayMax executes 7n — 1 primitive
operations in the worst case

# Define
a Time taken by the fastest primitive operation
b Time taken by the slowest primitive operation
# Let T(n) be the actual worst-case running
time of arrayMax. We have
a(fn-1)<T(n) <b(7Tn-1)
# Hence, the running time T(n) is bounded by
two linear functions

Analysis of Algorithms 11

Growth Rate of Running Time

#Changing the hardware/ software
environment
= Affects T(n) by a constant factor, but
= Does not alter the growth rate of T(n)
#®The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

Analysis of Algorithms 12




Growth Rates

Constant Factors

B . 1E+26 :
% The growth rate is  1g+24 - - Quadrai
not affected by 1E+22 17— Quadrat
1E+20 - - - Linear
= constant factors or  1g+18 {4 — Linear
= lower-order terms __ 1E+16
i T 1E+14
€ Examples = 1E+12
= 10°n +105is a linear 15;3 L
function 1E+6 1
= 10°n?+10°nis a 1E+4 7
quadratic function ~ 1E+2
1E+0

1E+0  1E+2 1E+4 1E+6 1E+8 1E+10
n

Analysis of Algorithms 14

" 1E+30 T
€ Growth rates of 16428 1 _ cupic
i . 1E+26 T
functions: 15vo0 11 — Quadratic
= Linear=n 1E+22
|| —Linear
= Quadratic = n? Eﬁg
= Cubic =n3 = 1E+16
= 1E+14
1E+12
# In alog-log chart, 110
the slope of the line  JE:2
corresponds to the 1E+4
1E+2
growth rate of the 1E+0 1
function 1E+0  1E+2  1E+4 1E+6  1E+8 1E+10
n
Analysis of Algorithms 13
Big-Oh Notation
T ) 10,000
# Given functions f(n) and o3n
g(n), we say that f(n) is 1000 ] —2me0
O(g(n)) if there are '
positive constants -

c and ny such that 100

f(n) < cg(n) forn=n, —
10 =
@ Example: 2n + 10 is O(n)
= 2n+10<cn

= (C-2)n=10
1 10 100 1,000
= n210/(c-2) n
= Pick c=3and n,=10
Analysis of Algorithms 15

‘Big-Oh Notation (cont.)

1,000,000
. —n"2
4 Example: the function "
2 100,000 H “ 100
n2is not O(n) - 10n
= n2<cn 10,000 £ —n

= n<c
= The above inequality 1,000
cannot be satisfied

since ¢ must be a 100 =
constant
10 +
1 T
1 10 100 1,000
n
Analysis of Algorithms 16

‘Big-Oh and Growth Rate

# The big-Oh notation gives an upper bound on the
growth rate of a function

# The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

# We can use the big-Oh notation to rank functions
according to their growth rate

f(n)is O(g(n)) | g(n)is O(f(n))
g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

Analysis of Algorithms 17

Classes of Functions

% Let {g(n)} denote the class (set) of functions
that are O(g(n))

% We have
{030} O} 0O{n}0..

where the containment is strict
{n%}
{n?%}
{n}

Analysis of Algorithms 18




'Big-Oh Rules

# If is f(n) a polynomial of degree d, then f(n) is
O(n9), i.e.,
1. Drop lower-order terms
2. Drop constant factors
4 Use the smallest possible class of functions
= Say “2n is O(n)” instead of “2n is O(n?)”
% Use the simplest expression of the class
= Say “3n +5is O(n)” instead of “3n +5is O(3n)”

Analysis of Algorithms 19

Asymptotic Algorithm Analysis

# The asymptotic analysis of an algorithm determines
the running time in big-Oh notation
@ To perform the asymptotic analysis

= We find the worst-case number of primitive operations
executed as a function of the input size

= We express this function with big-Oh notation
@ Example:
= We determine that algorithm arrayMax executes at most
7n - 1 primitive operations
= We say that algorithm arrayMax “runs in O(n) time”
% Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

Analysis of Algorithms 20

‘Computing Prefix Averages

# We further illustrate

X o 35 T——
asymptotic analysis with mXx
two algorithms for prefix D1ga
averages 25
# The i-th prefix average of ]
an array X is average of the
first (i + 1) elements of X 15
Ali] = X[0] +X[1] + ... +X][i] 10 1
# Computing the array A of 54
prefix averages of another
array X has applications to AT
financial analysis 1234587
Analysis of Algorithms 21

Prefix Averages (Quadratic)

/ # The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X  #operations
A — new array of n integers n
fori « Oton-1do n
s « X[0] n
forj « 1toido 1+2+...+(n-1)
s « s+ X[j] 1+2+..+(n-1)
Ali] « s/(i+1) n
return A 1
Analysis of Algorithms 22

Arithmetic Progression

# The running time of

prefixAveragesl is
O(1+2+...+n)
4 The sum of the first n
integersisn(n+1)/2
= There is a simple visual
proof of this fact
# Thus, algorithm
prefixAveragesl runs in

o B N W b~ 00O N

0O(n?) time

Analysis of Algorithms 23

Prefix Averages (Linear)

/0 The following algorithm computes prefix averages in

linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X #operations

A ~ new array of n integers n
s 0 1
fori « Oton-1do n
S « s+ X]i] n
Ali] « s/(i+1) n
return A 1

# Algorithm prefixAverages2 runs in O(n) time

Analysis of Algorithms 24




