(2,4) Trees

(2,4) Trees

9/2/2002 3:15 AM (2,4) Trees 1

9/2/2002 3:15 AM

Outline and Reading

Multi-way search tree (83.3.1)
= Definition
= Search
#(2,4) tree (83.3.2)
= Definition
= Search
= Insertion
= Deletion

Comparison of dictionary implementations

9/2/2002 3:15 AM (2,4) Trees 2

‘Multi-Way Search Tree

A multi-way search tree is an ordered tree such that
= Each internal node has at least two children and stores d -1
key-element items (k;, 0,), where dis the number of children
= For a node with children v, v, ... v, storing keys k; k; ... k; ;
+ keys in the subtree of v, are less than k,
* keys in the subtree of v; are between k_jand k; (i=2, ...,d-1)
+ keys in the subtree of v, are greater than k_,
= The leaves store no items and serve as placeholders

9/2/2002 3:15 AM (2,4) Trees 3

‘Multi-Way Inorder Traversal

@ We can extend the notion of inorder traversal from binary trees
to multi-way search trees

4 Namely, we visit item (k;, 0,) of node v between the recursive
traversals of the subtrees of v rooted at children v, and v, , ;

@ An inorder traversal of a multi-way search tree visits the keys in
increasing order

9/2/2002 3:15 AM (2,4) Trees 4

Multi-Way Searching

4 Similar to search in a binary search tree
A each internal node with children v, v, ... v,y and keys k, k; ... Ky,
= k=k(i=1, ..., d-1): the search terminates successfully
= k <k,: we continue the search in child v,
= ki <k<k(i=2 ...,d-1): we continue the search in child v,
= k >k, ,: we continue the search in child v,
4 Reaching an external node terminates the search unsuccessfully
4 Example: search for 30

9/2/2002 3:15 AM (2,4) Trees 5

(2,4) Tree

@ A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way
search with the following properties
= Node-Size Property: every internal node has at most four children
= Depth Property: all the external nodes have the same depth
Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

9/2/2002 3:15 AM (2,4) Trees 6

(2,4) Trees

9/2/2002 3:15 AM

Height of a (2,4) Tree

Theorem: A (2,4) tree storing n items has height O(log n)

A4

Proof:
= Let h be the height of a (2,4) tree with n items
= Since there are at least 2' items at depthi =0, ... ,h—1and no

items at depth h, we have
nN21+2+4+.. +21=2h—1
= Thus, h<log(n+1)
% Searching in a (2,4) tree with n items takes O(log n) time
depth items

0 1
1 2

h-1 2nt
h 0 ——————-

9/2/2002 3:15 AM (2,4) Trees 7

“Insertion

& We insert a new item (k, 0) at the parent v of the leaf reached by

searching for k
= We preserve the depth property but
= We may cause an overflow (i.e., node v may become a 5-node)
Example: inserting key 30 causes an overflow

9/2/2002 3:15 AM (2,4) Trees 8

Overflow and Split

4 We handle an overflow at a 5-node v with a split operation:
= letv, ... v; be the children of vand k, ... k, be the keys of v
= node vis replaced nodes vV and v*
+ V'is a 3-node with keys k; k, and children v; v, v3
+ V' is a 2-node with key k, and children v, v5
= key k; is inserted into the parent u of v (a new root may be created)
The overflow may propagate to the parent node u

VOV, Vp Y, Vg ViV, Vy oV, Vg

9/2/2002 3:15 AM (2,4) Trees 9

‘Analysis of Insertion

@ Let T be a (2,4) tree
with n items
= Tree T has O(log n)
height
= Step 1 takes O(log n)
time because we visit
2. We add the new item (k, 0) at node v O(log n) nodes
Step 2 takes O(1) time
Step 3 takes O(log n)
time because each split

Algorithm insertltem(k, 0)

1. We search for key k to locate the
insertion node v

3. while overflow(v)

if isRoot(v) takes O(1) time and we
create anew empty root above v perform O(log n) splits
v« split(v) # Thus, an insertion in a
(2,4) tree takes O(log n)
time
9/2/2002 3:15 AM (2,4) Trees 10

Deletion

4 We reduce deletion of an item to the case where the item is at the
node with leaf children

4 Otherwise, we replace the item with its inorder successor (or,
equivalently, with its inorder predecessor) and delete the latter item

4 Example: to delete key 24, we replace it with 27 (inorder successor)

9/2/2002 3:15 AM (2,4) Trees 11

‘Underflow and Fusion

Deleting an item from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys
4 To handle an underflow at node v with parent u, we consider two
cases
Case 1: the adjacent siblings of v are 2-nodes
= Fusion operation: we merge v with an adjacent sibling w and move
an item from u to the merged node V'
= After a fusion, the underflow may propagate to the parent u

9/2/2002 3:15 AM (2,4) Trees 12

(2,4) Trees 9/2/2002 3:15 AM

“Underflow and Transfer ‘Analysis of Deletion

% To handle an underflow at node v with parent u, we consider - ; .
two cases P % et T be a(2,4) tree with n items
4 Case 2: an adjacent sibling w of v is a 3-node or a 4-node = Tree T has O(Iog n) height
= Transfer operation: & | deleti ti
1. we move a child of wto v e n a deleton Opera on
2. we move an item from u to v = We visit O(log n) nodes to locate the node from
3. we move an item from wto u which to delete the item
= We handle an underflow with a series of O(log n)

= After a transfer, no underflow occurs

fusions, followed by at most one transfer
= Each fusion and transfer takes O(1) time
@ Thus, deleting an item from a (2,4) tree takes
O(log n) time

u

9/2/2002 3:15 AM (2,4) Trees

13

9/2/2002 3:15 AM (2,4) Trees

Implementing a Dictionary

4 Comparison of efficient dictionary implementations

Search | Insert | Delete |Notes

no ordered dictionary
Hash 1 1 1

methods
Table expected| || expected expected # simple to implement

P 4 randomized insertion
Skip List _Iog 0 _Iog 0 _Iog a) i
high prob. | highprob. | highprob. |4 simple to implement

(2’4) IOg n IOg n IOg n # complex to implement
Tree worst-case | worst-case | worst-case

15

9/2/2002 3:15 AM (2,4) Trees

