
A LATEX Package for Typesetting

Crossword Puzzles∗

Gerd Neugebauer
Mainzer Straße 8

56321 Rhens (Germany)
Net: gerd@informatik.uni-koblenz.de

Documentation date: 1996/11/25

Abstract

cpwuzzle.dtx provides a package to typeset crossword puzzles. There is
an graphical user interface written in Tcl/Tk which does most of the work
in creating a file which is conform with this style. Thus it is clear that the
macros provided are not tailored towards a human user.

The package can be used to produce several types of puzzles like the
classical crossword puzzle, a number puzzle, and fill-in puzzles.

Contents

1 About Crossword Puzzles 2

1.1 Classical Crossword Puzzles . 2
1.2 Number Crossword Puzzles . 2
1.3 Fill-In Crossword Puzzles . 2
1.4 Solutions . 3

2 Input of Crossword Puzzles 3

3 Parameters and Options 6

4 The Related Program 7

5 Further Plans 7

6 The Implementation 8

6.1 Basic Definitions and Parameters 8
6.2 The Frame of the Crossword Puzzle 8
6.3 Clues . 10
6.4 Numbers . 11

∗This file documents cwpuzzle.dtx version 1.4 as of 1996/11/25.

1

1 About Crossword Puzzles

Crossword puzzles are can be a an amusing but also a challenging hobby. Unfor-
tunately at the time of this writing I am not aware of any good package to typeset
crossword puzzles with LATEX. Thus I decided to make one which at least fits my
needs.

There are several types of crossword puzzles aroung. This package can only
be used to typeset several of them. The basic assumption in this package is that
puzzles are rectangular arragnements of boxes. Some of these boxes are black and
others are prepared to take single letters. Each word in the grid is enclosed in
black boxes or the outside.

Optionally there may be rectangular regions left blank inside the puzzle. They
can be used to place ads or other informative texts inside the puzzle.

1.1 Classical Crossword Puzzles
1

2 3 4

5

Across 1 unit of measure
2 ∗ 5 sectioning unit

Down 1 η 3 unit of mea-
sure 4 nonproportional
font

The “classical” type of a crossword puzzle words are marked with numbers and
each word is acomapanied with a clue which should help (or confuse) the reader.
Those clues are listed after the frame of the puzzle.

1.2 Number Crossword Puzzles
6 1

5 2 7 7

4 5 3 7

The following letters are used: AEPRSTX

1 2 3 4 5 6 7

The “number puzzle” variant contains only numbers instead of letters. Differ-
ent numbers denote different letters. There are no clues. The reader is assumed to
find a complete list of letters by filling appropriate words into the grid. Sometimes
a word is already entered into the grid to ease the start.

1.3 Fill-In Crossword Puzzles

Words of length 2: EX SP TT
Words of length 3: AST ETA
Words of length 4: PART

The “fill-in puzzle” variant consists of a frame containing only black and white
boxes. Additionally a list of words is given which have to be put into the frame
until none is left and the frame is completed.

2

1.4 Solutions

E X

A S T T

P A R T

Often it is not only desirable to typeset the unsolved crossword puzzle but also
the solution. This means that all the letters have to be filled in. This should
be possible with the same source as the questions to avoid typos or redundancies
leading to additional work.

Several variants of solutions come to mind. Primarily the solution should show
the letters and suppress any clues. One major distinction is also wether or not the
numbers of the words should be shown in the solution as well.

E
1

X

A
2

S
3

T T
4

P
5

A R T

Finally there are the lists of letters in numbered puzzles. In the solution they
will show the letters in them as well.

E X

A S T T

P A R T

The following letters are used: AEPRSTX

X S R P A E T

2 Input of Crossword Puzzles

The basic idea behind this package is that a crossword puzzle is specified in a
seperate file. The actual appearance of the puzzle is controlled by several options.
Thus it should be possible to produce the unsolved and the solved puzzle from the
same source. Before we describe the various options we will have a look at the
basic environments and macros used to specified a crossword puzzle.

This package provides the environment Puzzle which typesets the frame of aPuzzle

crossword puzzle. This environment takes two arguments. These arguments are
the number of columns and the number of the rows of the puzzle. This means
that essentially only rectangular puzzles can be typeset.

The example from section 1.1 has been entered as follows:

\begin{Puzzle}{5}{3}%

|* |* |[1]E|X |* |.

|[2]A|[3]S|T |* |[4]T|.

|* |[5]P|A |R |T |.

\end{Puzzle}

3

In this example we can see that inside the Puzzle environment there is one special
character. This is the bar |. This bar is an activge character in TEX. Thus you
can think of it like a macro.

The | macro takes two arguments. The first argument is optional, i.e. enclosed
in brackets if present. This optional argument denotes the number for numbered
boxes.

The second argument is either empty {} or it consists of a single character.
This argument describes the action to be performed.

• If this argument is a letter then it is simply shown in the solution and
suppressed in the unsolved crossword puzzle.

• If this argument is an asterisk * then a black box is produced.

• If this argument is a dot . then this marks the end of the current row. The
next box is typeset at the beginning of the following row.

• If this argument is empty {} then a white box is typeset. This box does not
contain a letter, nor does it have a frame. This macro can be used to leave
room for larger boxed with ads. Alternatively this can be used to disable
certain boxes to make a non-rectangular crossword puzzle.

\begin{Puzzle}{5}{5}

|{} |{} |[1]S|.

|{} |[2]M|I |[3]D|.

|[4]T|I |M |E |S |.

|{} |[5]N|E |G |.

|{} |{} |Q |.

\end{Puzzle}

1

2 3

4

5

Across: 2 | 4 × 5 ¬ Down: 1 ' 2 loglike
function 3 loglike func-
tion

Note that whitespace is ignored after the arguments but not between the bar
and the arguments.

The macro \Frame can be used to typeset ads or other text into larger boxes\Frame

inside the frame of the crossword puzzle. For this purpose five arguments are
required. The first two arguments are used to specify the leower left corner of the
frame. The lower left corner has the coordinates 0,0 and the numbers increase
upwards and to the right.

The third argument is the width of the frame and the fourth argument is the
height of the frame measured in number of boxes. Finally, the fifth argument
contains the text to be typeset. Per default it is typeset in a minipage of the
appropriate width centered horizontally and vertically.

4

\begin{Puzzle}{8}{6}

\Frame{2}{2}{4}{2}{\sf Crossword\\Puzzle}

|[1]E|* |[2]N |U |L |[3]L |* |[4]V|.

|[5]T|[6]R|I |A |N |G |[7]L|E |.

|A |U |{} |{} |{} |{} |[8]C|C |.

|* |L |{} |{} |{} |{} |E |* |.

|[9]B|E |T |[10]A|* |[11]L|I |M |.

|F |* |[12]L|A |B |E |L |* |.

\end{Puzzle}

Crossword

Puzzle

1 2 3 4

5 6 7

8

9 10 11

12

Across: 2 empty
5 4 8 carbon copy
(letter.sty) 9 β 11

limes 12 mark it

Down: 1 η 2 3
3 logarithm 4 ~ 6

black rectangle 7 d
9 bold face 10 Å 11

≤

The clues in the classical crossword puzzle are typeset with the use of thePuzzleClues

environment PuzzleClues. This environment takes one argument which is typeset
before the clues. The environment takes roughly the half of the textwidth and
make a minipage with this width. Thus two invocations of this environment are
typeset side by side.

Alternatively if the solution is typeset then the environment PuzzleClues has
no effect.

\begin{PuzzleClues}{\textbf{Across}}%

\Clue{1}{EX}{unit of measure}%

\Clue{2}{AST}{\(\ast\)}%

\Clue{5}{PART}{sectioning unit}%

\end{PuzzleClues}%

\begin{PuzzleClues}{\textbf{Down}}%

\Clue{1}{ETA}{\(\eta\)}%

\Clue{3}{SP}{unit of measure}%

\Clue{4}{TT}{nonproportional font}%

\end{PuzzleClues}%

The environment PuzzleClues defines one local macro. This macro is namedClue

\Clue and takes three arguments. The first argument is the number of the word.
This should correspond to the number in the puzzle frame. The second argument
is the word itself. Currently this not used at all. Finally the third argument is
the clue for the word.

If the unsolved puzzle is typeset then the first and the third argument are used.
Otherwise all arguments are silently absorbed.

The macro \PuzzleLetters can be used to typeset the list of used letters\PuzzleLetters

in numbered crossword puzzles. It has one argument which are the used letters
(preferably in alphabethical order.

The macro \PuzzleNumbers can be used to generate a numbered list of boxes\PuzzleNumbers

5

for the numbered crossword puzzles. The user is supposed to collect the found
letters here.

The environment PuzzleWords can be sued to typeset the list of words for aPuzzleWords

fill-in puzzle. It takes one argument. This is the length of the words listed. For
each length there should be an invocation of this environment. The words in this
environment are supposed to be ordered alphabetically.

The macro \Word is defined inside the environment PuzzleWords. It takes one\Word

argument which is the word itself.

\begin{PuzzleWords}{2}

\Word{EX}%

\Word{SP}%

\Word{TT}%

\end{PuzzleWords}%

\begin{PuzzleWords}{3}

\Word{AST}%

\Word{ETA}%

\end{PuzzleWords}%

\begin{PuzzleWords}{4}

\Word{PART}%

\end{PuzzleWords}%

3 Parameters and Options

The length \PuzzleUnitlength deternimes the width and height of each single\PuzzleUnitlength

box in the frame of a crossword puzzle. The default value is 20pt.
The macro \PuzzleBlackBox contains the commands to produce the black\PuzzleBlackBox

boxes. It has to produce at most of width and height of \PuzzleUnitlength. Per
default it just produces a black rectangle of this size.

The following list shows some variants which can be achieved by redefining the
macro \PuzzleBlackBox.

\renewcommand{\PuzzleBlackBox}{\rule{.75\PuzzleUnitlength}%

{.75\PuzzleUnitlength}}

\renewcommand{\PuzzleBlackBox}{\framebox(.75,.75){%

\framebox(.5,.5){}}}

Additional effects can be achieved by using shades of gray (with the graphics

package).
The macro \PuzzleFont contains the font changing command issued before\PuzzleFont

the frame of the crosword puzzle.
The macro \PuzzleNumberFont contains the font changing command issued\PuzzleNumberFont

before a number in the frame of the crosword puzzle is typeset.
The macro \PuzzleClueFont contains the font changing command issued be-\PuzzleClueFont

fore the clues are typeset.
The macro \PuzzleWordsText contains the text which is typeset at the begin-\PuzzleWordsText

ning of the environment PuzzleWords. It has one argument which contains the
length of the words listed.

The macro \PuzzleLettersText contains the text which is typeset at the\PuzzleLettersText

beginning of the macro PuzzleLetters.

6

The macro \PuzzleSolution arranges everything that the following puzzles\PuzzleSolution

are typeset in the “solution” mode, i.e. the letters are shown and the clues are
suppressed.

This macros has one optional argument which has to be true or false. This
argument determines whether or not the numbers should also be shown in the
solution. The default is false which means that the numbers are suppressed in
the solution.

The macro \PuzzleUnsolved arranges everything that the following puzzles\PuzzleUnsolved

are typeset in the “unsolved” mode, i.e. the letters are suppressed and the clues
are shown.

The macro \PuzzleHook is called at the end of the Puzzle environment. It\PuzzleHook

can be used to place additional graphical elements in the puzzle frame.
The following example shows a crossword puzzle which we have seen before

and the definition for the \PuzzleHook.

1

2 3

4

5@
@

@
@

�
�

�
�

�
�

�
�

@
@

@
@

\newcommand\PuzzleHook{

\put(0,2){\line(1,-1){2}}

\put(0,3){\line(1,1){2}}

\put(5,2){\line(-1,-1){2}}

\put(5,3){\line(-1,1){2}}

}

4 The Related Program

There is a related program written in Tcl/Tk. This program can be used to
manually construct crosswrod puzzles and save them in a format suitable for
this package. Alternativly it can also store the crossword puzzle prepared for
crosswrd.sty.

Other features include the creation of a proper frame and filling with words.
Right now I have not prepared a distribution of this program yet since this

program requires dictionaries which I can not distribute legally.
The examples in this documentation have been computed with the help of the

cwp program.

5 Further Plans

Maybe I will add a mode for further variants of crossword puzzles sometimes.

7

6 The Implementation

The crossword puzzle is basically implemented with the LATEX picture environ-
ment. This gives us enough flexibility and provides an high enough abraction such
that we do not have to fiddle around with to many low level details.

The natural unit in a crossword puzzle is a box which is empty or black. Thus
the unitlength is set to the width (and height) of such a box.

6.1 Basic Definitions and Parameters

First we identify this package.

1 \ProvidesPackage{cwpuzzle}[\filedate gene]

The dimen register \PuzzleUnitlength stores the height and width of a box
of the puzzle. The default is 20pt which is also shown in this documentation.

2 \newdimen\PuzzleUnitlength

3 \PuzzleUnitlength=20pt

\PuzzleClueFont The macro \PuzzleClueFont contains font changings commands issued before the
clues are typeset.

4 \newcommand\PuzzleClueFont{\footnotesize}

\PuzzleFont The macro \PuzzleFont contains font changings commands issued before the
puzzle is typeset.

5 \newcommand\PuzzleFont{\rm\normalsize}

\PuzzleNumberFont The macro \PuzzleNumberFont contains font changings commands issued before
the numbers in a puzzle are typeset.

6 \newcommand\PuzzleNumberFont{\sf\scriptsize}

\PuzzleHook Puzzles are typeset with the LATEX picture environment. At the end of this en-
vironment the macro \PuzzleHook is called. The package prodised an empty
default. Users may want to use this place to typeset additional elements on top
of the puzzle.

The puzzle uses a \unitlength of \PuzzleUnitlength. Thus it is rather easy
to adress the boxes in the puzzle.

7 \let\PuzzleHook=\relax

6.2 The Frame of the Crossword Puzzle

To describe the coordinates where the next box should be typeset we need two
counters for the coordinates. These counters are now allocated (even though we
could use temporary counters from LATEX).

8 \newcount\Puzzle@X

9 \newcount\Puzzle@Y

10 \begingroup

11 \catcode‘\|=13

12 \gdef\Puzzle@@solution{

13 \let|=\Puzzle@Box@@solution

14 \let\Frame=\Puzzle@Frame@@solution

15 }

8

16 \gdef\Puzzle@@normal{

17 \let|=\Puzzle@Box@@normal

18 \let\Frame=\Puzzle@Frame@@normal

19 }

20 \endgroup

Puzzle The environment Puzzle typesets the frame of a crossword puzzle. It is
implemented utilizing a picture environment. The unilength is set to the
\PuzzleUnitlength. Thus the navigation is faily easy. The basic unit is width
and height of a single box.

The macros which are local to the environment are activated. Thus we avoid
collisions with other packages where the same macro names might be used.

Finally the counter which contain the x and the y coordinate have to be ini-
tialized.

The last action in the picture environment is the expansion of the macro
\PuzzleHook. This can be used to include additional material in the picture

environment. Primarily I have use this to include the ads. But now there is the
macro \Frame for this purpose.

21 \newenvironment{Puzzle}[2]{\par\noindent\mbox{}\hfill

22 \catcode‘\|=13

23 \@nameuse{Puzzle@@\Puzzle@TYPE}%

24 \unitlength=\PuzzleUnitlength

25 \Puzzle@Y=#2

26 \begin{picture}(#1,#2)

27 \Puzzle@Box@@normal.

28 }{%

29 \PuzzleHook

30 \end{picture}\hfill\null\par\noindent

31 }

\Puzzle@Frame@@normal The macro Puzzle@Frame is used to place additional rectangular regions into the
puzzle frame. This frame can contain arbitrary text which is typeset in a centered
environment.

This macro takes five arguments. The first two arguments are the coordinates
of the upper left corner of the frame. The coordinates are logical coordinates
starting from the lower left corner of the puzzle. The next two arguments are the
width and the height of the frame given in the number of boxes covered. Finally
the fifth argument contains the text which should apear in this frame.

32 \newcommand\Puzzle@Frame@@normal[5]{\put(#1,#2){\framebox(#3,#4){%

33 \begin{minipage}{#3\unitlength}\begin{center} #5

34 \end{center}\end{minipage}}}}

\Puzzle@Frame@@solution For the solution the framed ads are simply ignored.

35 \newcommand\Puzzle@Frame@@solution[5]{}

\PuzzleBlackBox The macro \PuzzleBlackBox is called to typeset the black boxes. It should pro-
duce a box of at most width and height of \PuzzleUnitlength.

36 \newcommand\PuzzleBlackBox{\rule{\PuzzleUnitlength}{\PuzzleUnitlength}}

\Puzzle@Box@@normal The macro \Puzzle@Box@@normal performs all tasks when a box should be typeset
in “normal” mode. The arguments are evaluated and the appropriate tpye of box
typeset or other actions performed.

9

37 \newcommand\Puzzle@Box@@normal[2][]{%

38 \def\Puzzle@tmp{#2}%

39 \if\Puzzle@tmp.

40 \Puzzle@X=0\relax \advance\Puzzle@Y-1

41 \else

42 \ifx\@empty\Puzzle@tmp

43 \else

44 \if\Puzzle@tmp*

45 \put(\Puzzle@X,\Puzzle@Y){\framebox(1,1){\PuzzleBlackBox}}

46 \else

47 \put(\Puzzle@X,\Puzzle@Y){\framebox(1,1){}}

48 \fi

49 \fi

50 \def\Puzzle@tmp{#1}%

51 \ifx\@empty\Puzzle@tmp\else

52 \put(\Puzzle@X,\Puzzle@Y){%

53 \makebox(1,.95)[tl]{\PuzzleNumberFont\,#1}}%

54 \fi

55 \advance\Puzzle@X 1

56 \fi

57 }

\Puzzle@Box@@solution The macro \Puzzle@Box@@solution performs all tasks when a box should be
typeset in “solution” mode. The arguments are evaluated and the appropriate
tpye of box typeset or other actions performed.

58 \newcommand\Puzzle@Box@@solution[2][]{%

59 \def\Puzzle@tmp{#2}%

60 \if\Puzzle@tmp.

61 \Puzzle@X=0\relax \advance\Puzzle@Y-1

62 \else

63 \ifx\Puzzle@tmp\@empty

64 \else\if\Puzzle@tmp*

65 \put(\Puzzle@X,\Puzzle@Y){\framebox(1,1){\PuzzleBlackBox}}

66 \else

67 \put(\Puzzle@X,\Puzzle@Y){\framebox(1,1){\uppercase{#2}}}%

68 \fi

69 \fi

70 \def\Puzzle@tmp{#1}%

71 \ifx\Puzzle@tmp\@empty\else

72 \ifPuzzle@SolutionNumbered

73 \put(\Puzzle@X,\Puzzle@Y){%

74 \makebox(1,.95)[tl]{\PuzzleNumberFont\,#1}}%

75 \fi

76 \fi

77 \advance\Puzzle@X 1

78 \fi

79 }

6.3 Clues

\Puzzle@Clue@@normal The first and the third argument are shown as clue. This macro is used for unsolved
puzzles.

80 \newcommand\Puzzle@Clue@@normal[3]{\textsf{#1} #3 }

10

\Puzzle@Clue@@solution In solutions clues are simply suppressed. Thus all three arguments are discarted.

81 \newcommand\Puzzle@Clue@@solution[3]{}

Puzzle@Clues@@normal The environment Puzzle@Clues@@normal is mapped to PuzzleClues in “normal”
mode. It typesets its contents in a minipage of appropriate half textwidth.

82 \newenvironment{Puzzle@Clues@@normal}[1]{%

83 \null\hfill

84 \let\Clue\Puzzle@Clue@@normal

85 \begin{minipage}[t]{.45\textwidth}%

86 \PuzzleClueFont{#1}%

87 }{\end{minipage}\hfill\null }

Puzzle@Clues@@solution The environment Puzzle@Clues@@solution is mapped to PuzzleClues in “solu-
tion” mode. It just suppressed any output.

88 \newenvironment{Puzzle@Clues@@solution}[1]{%

89 \let\Clue\Puzzle@Clue@@solution

90 }{}

\PuzzleWordsText The macro \PuzzleWordsText is the text typeset at the beginning of the envi-
ronment PuzzleWords. It takes one argument which is the length of the words
listed.

91 \newcommand\PuzzleWordsText[1]{Words of length #1: }

Puzzle@Words@@normal The environment Puzzle@Words@@normal will be mapped to the environment
PuzzleWords in “normal” mode. It just arranges that words are typeset after
the \PuzzleWordsText has shown the length of the words. Finally a new para-
graph is started.

92 \newenvironment{Puzzle@Words@@normal}[1]{%

93 \PuzzleWordsText{#1}%

94 \let\Word\relax

95 }{\par}

Puzzle@Words@@solution The environment Puzzle@Words@@solution will be mapped to the environment
PuzzleWords in “solution” mode. It arranges things that the contents is silently
ignored.

96 \newenvironment{Puzzle@Words@@solution}[1]{%

97 \newcommand\Word[1]{}%

98 }{}

6.4 Numbers

\PuzzleNumbers The macro \PuzzleNumbers will produce a list of boxes with numbers for letters.
It is intended for numbered crossword puzzles.

99 \newcommand\PuzzleNumbers[1]{\begingroup

100 \@nameuse{Puzzle@@\Puzzle@TYPE}%

101 \Puzzle@Y=0

102 \Puzzle@X=1

103 \unitlength=\PuzzleUnitlength

104 \Puzzle@Numbers#1.\endgroup}

11

\Puzzle@Numbers The macro \Puzzle@Numbers loops through the arguments until it finds a dot.
For each argument it produces a box, either with the numbers or with the letters
or both, depending on the current settings.

The loop is implemented via recursion. The box is tyepset by the | macro
which takes care of the current settings. For this purpose this characterhas to be
made active temporarily.

105 \begingroup

106 \catcode‘\|=13

107 \gdef\Puzzle@Numbers#1{%

108 \if#1.

109 \let\next\relax

110 \else

111 \begin{picture}(1,1)

112 \xdef\X{\the\Puzzle@X}%

113 \Puzzle@X=0

114 |[\X]{#1}%

115 \end{picture}%

116 \let\next\Puzzle@Numbers

117 \advance\Puzzle@X 1

118 \fi

119 \next

120 }

121 \endgroup

\PuzzleLettersText The macro \PuzzleLettersText contains the text typeset at the beginning of the
\PuzzleLetters environment.

122 \newcommand\PuzzleLettersText{The following letters are used: }

\PuzzleLetters The macro \PuzzleLetters is intended to show the letters used in a numbered
crossword puzzle. The argument is the (sorted) list of characters used.

123 \newcommand\PuzzleLetters[1]{\PuzzleLettersText #1\par}

\Puzzle@TYPE The macro \Puzzle@TYPE contains the type of the puzzle. It is used find the
appropriate initialization macro.

124 \newcommand\Puzzle@TYPE{normal}

\PuzzleSolution The macro \PuzzleSolution arranges everything that the following puzzles are
typeset in the “solution” mode, i.e. the letters are shown and the clues are sup-
pressed.

This macros has one optional argument which has to be true or false. This
argument determines whether or not the numbers should also be shown in the
solution. The default is false which means that the numbers are suppressed in
the solution.

125 \newcommand\PuzzleSolution[1][false]{%

126 \@nameuse{Puzzle@SolutionNumbered#1}%

127 \let\PuzzleClues\Puzzle@Clues@@solution

128 \let\endPuzzleClues\endPuzzle@Clues@@solution

129 \let\PuzzleWords\Puzzle@Words@@solution

130 \let\endPuzzleWords\endPuzzle@Words@@solution

131 \xdef\Puzzle@TYPE{solution}}

12

\PuzzleUnsolved The macro \PuzzleUnsolved arranges everything that the following puzzles are
typeset in the “unsolved” mode, i.e. the letters are suppressed and the clues are
shown.

132 \newcommand\PuzzleUnsolved{%

133 \let\PuzzleClues\Puzzle@Clues@@normal

134 \let\endPuzzleClues\endPuzzle@Clues@@normal

135 \let\PuzzleWords\Puzzle@Words@@normal

136 \let\endPuzzleWords\endPuzzle@Words@@normal

137 \xdef\Puzzle@TYPE{normal}}

The boolean Puzzle@SolutionNumbered deternimes whether or not the solu-
tion should contain numbers. Initially it is set to “false”.

138 \newif\ifPuzzle@SolutionNumbered

139 \Puzzle@SolutionNumberedfalse

Finally we arrange that the default behaviour is to typeset an unsolved cross-
word puzzle.

140 \PuzzleUnsolved

That’s all.

13

