
The vector package∗

Nick Efford†

nde@dcre.leeds.ac.uk

1994/09/16

Abstract

This package provides a set of new commands for representing vectors

in various ways. The commonly-used bold and underlined notations are

supported, as is the ‘hat’ notation for representing unit vectors. Macros are

also provided to represent a row or column vector as a set of elements.

1 Introduction

LATEX2ε provides the \vec command to represent vectors in math mode;
\vec{a}, for example, produces ~a. In the author’s experience, vectors are more
commonly represented either in bold face roman type or else by means of underlin-
ing. Another convenient notation is the use of the ‘hat’ to indicate a unit-length
vector. This package defines more suitable representations for vectors and unit
vectors, using different fonts (boldface roman and sans serif) and two kinds of
underlining (straight and wavy). It also defines macros which represent row or
column vectors as implicit or explicit sequences of elements.

2 Examples

Six new commands are defined for representing vectors with a single (possibly
composite) symbol. They are shown, with sample output, in table 1. Unlike \vec,
the new commands can be used in text mode as well as math mode.

By default, \uvec and \uuvec underline a symbol using a straight line. If a\uvec

\uuvec wavy line is prefered, then the wavy package option should be specified.
Another set of commands are defined which can represent a vector as a row or\irvec

\icvec column of elements. \irvec and \icvec generate ‘implicit’ row and column vec-
tors, respectively. Here, only the first and last elements actually appear; \ldots
is used to imply the existance of the rest. Both macros take one mandatory argu-
ment, a character which names the vector. By default, the first and last elements
are constructed from this character and the subscripts ‘1’ and n, respectively. An
optional argument allows final subscripts other than n to be specified. The sub-
script for the first element cannot be altered in this way, but then it is not likely
that you will want to change this often. If you do need to change it, the command\firstelement

\firstelement can be used. Table 2 shows some sample output for \irvec.

∗This file is v1.0, last revised 1994/09/16.
†Address: School of Computer Studies, University of Leeds, Leeds LS2 9JT, United Kingdom

1

The syntax for \icvec is the same as that for \irvec. One important difference
is that \icvec can only be used in math mode, whereas \irvec can be used in both
math and text modes. For example, \buvec{q} = \left(\icvec{q}\right) pro-
duces

q̂ =

q1

...

qn

The final pair of macros, \rvec and \cvec, provide explicit representations of\rvec

\cvec a vector as a row or column of elements, i.e., all elements of the vector are shown1.
Three mandatory arguments are used to specify the name of the vector, an integer
subscript for the first element and an integer subscript for the final element. For
instance, \bvec{x} = \{\rvec{x}{1}{6}\} produces

x = {x1, x2, x3, x4, x5, x6}

and \bvec{y} = \left[\cvec{y}{0}{3}\right] gives

y =

y0

y1

y2

y3

As with the implicit macros, \rvec may be used in both math and text modes,
whereas \cvec may only be used in math mode.

3 The Macros

1 〈∗package〉

We require that the ifthen and calc packages are loaded:
2 \RequirePackage{ifthen}

3 \RequirePackage{calc}

A boolean variable is defined and set to true if the wavy package option has been
specified:
4 \newboolean{@wavy}

5 \DeclareOption{wavy}{\setboolean{@wavy}{true}}

6 \ProcessOptions

\bvec \bvec represents a vector using a bold series roman character.

7 \newcommand{\bvec}[1]{\ensuremath{\mathbf{#1}}}

\buvec \buvec represents a unit vector as a bold roman character with a hat.

8 \newcommand{\buvec}[1]{\ensuremath{\mathbf{\hat{#1}}}}

\svec \svec represents a vector as a sans serif character. family.

9 \newcommand{\svec}[1]{\ensuremath{\mathsf{#1}}}

1Clearly, these macros are suitable only for vectors with comparatively small numbers of
elements!

2

\suvec \suvec represents a unit vector as a sans serif character with a hat.

10 \newcommand{\suvec}[1]{\ensuremath{\mathsf{\hat{#1}}}}

How we define underlined vectors depends on the value of boolean variable @wavy:

11 \ifthenelse{\boolean{@wavy}}{%

12 \PackageInfo{vector}{wavy underlining selected}

If @wavy is set then we define a macro \undertilde2, which places a tilde symbol
underneath its argument:

13 \newcommand{\undertilde}[1]{\mathord{\vtop{\ialign{##\crcr

14 $\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern1.5pt\nointerlineskip}

15 $\hfil\tilde{}\hfil$\crcr\noalign{\kern1.5pt}}}}}

\uvec We then define \uvec in terms of \undertilde:

16 \newcommand{\uvec}[1]{\ensuremath{\undertilde{#1}}}

\uuvec And similarly define \uuvec:

17 \newcommand{\uuvec}[1]{\ensuremath{\hat{\undertilde{#1}}}}}{%

If @wavy is not set, then we define \uvec and \uuvec in terms of \underline:

18 \newcommand{\uvec}[1]{\ensuremath{\underline{#1}}}

19 \newcommand{\uuvec}[1]{\ensuremath{\hat{\underline{#1}}}}}

\firstelement Now we define a variable to store the subscript used for the first element of a row
or column vector, along with a command which can be used to alter that variable:

20 \def\first@element{1}

21 \newcommand{\firstelement}[1]{\def\first@element{#1}}

\irvec The \irvec command is very simple:

22 \newcommand{\irvec}[2][n]{\ensuremath{{#2}_{\first@element},\ldots,{#2}_{#1}}}

\icvec The \icvec command uses an array environment, and so can only be used in a
math environment:

23 \newcommand{\icvec}[2][n]{%

24 \begin{array}{c}

25 {#2}_{\first@element}\\ \vdots\\ {#2}_{#1}

26 \end{array}}

For \rvec and \cvec, we must define a loop counter which stores the current
subscript of a vector element:

27 \newcounter{vec@elem}

\rvec Now we define \rvec. We must check that the last subscript for the vector elements
(#3) is greater than the first subscript (#2). If this is so, then we use \whiledo

to loop over specified range of values, generating a vector element with subscript
vec@elem followed by a comma on each iteration. Otherwise, we simply generate
a single vector element.

28 \newcommand{\rvec}[3]{%

29 \ensuremath{%

30 \ifthenelse{#3 > #2}{%

2Note that I didn’t write this macro. Unfortunately, I cannot give proper credit as I do not
recall how I came by it!

3

31 \setcounter{vec@elem}{#2}

32 \whiledo{\value{vec@elem} < #3}%

33 {{#1}_{\thevec@elem}, \stepcounter{vec@elem}}%

34 {#1}_{#3}}{{#1}_{#2}}}}

\cvec We define \cvec in a similar way to \rvec, only here we iterate within an array

environment and generate a vector element and a linebreak on each iteration.

35 \newcommand{\cvec}[3]{%

36 \ifthenelse{#3 > #2}{%

37 \setcounter{vec@elem}{#2}

38 \begin{array}{c}

39 \whiledo{\value{vec@elem} < #3}%

40 {{#1}_{\thevec@elem} \\ \stepcounter{vec@elem}}%

41 {#1}_{#3}

42 \end{array}}{{#1}_{#2}}}

4

\bvec{a}, \buvec{a} a, â

\svec{a}, \suvec{a} a, â

\uvec{a}, \uuvec{a} a, â / a
˜
, â
˜

Table 1: new commands for symbolic vectors.

\irvec{a} a1, . . . , an

\irvec[4]{a} a1, . . . , a4

\firstelement{0}

\irvec[9]{a} a0, . . . , a9

Table 2: row vectors with implicit elements.

5

