
A RESEARCH AND
ALUMNI NEWS MAGAZINE
DEPARTMENT OF COMPUTER SCIENCE
BROWN UNIVERSITY

The CRA-E White Paper:

Some Additional Perspectives

DE:

� IPP Symposium on Cloud Computing

� John von Neumann Days and The Genome

and the Computational Sciences

� P4P: A Syntax Proposal

Notes from the Chair:
the Latest News from 115 Waterman

Greetings to all CS alums, supporters and friends.

The fall semester is well underway and the CIT is a hub of activity.

Terrific things continue to happen in the department and I am

thrilled to be able to share the highlights with you.

Congratulations are in order for Chad Jenkins, who was

promoted to Associate Professor with tenure, effective July 1,

2010. Chad’s research addresses problems in robot learning and

human-robot interaction. He was selected as a Sloan Research

Fellow in 2009. He is the recipient of a Presidential Early Career

Award for Scientists and Engineers (PECASE) for his work in

physics-based human tacking and of a CAREER Award from the

National Science Foundation for his work on robot learning from

multivalued human demonstrations. He also received Young

Investigator awards from the Office of Naval Research (ONR)

and from the Air Force Office of Scientific Research (AFOSR).

In recent months, several of our faculty members have been

bestowed with honors:

• Michael Black was awarded the 2010 Koenderink Prize for

Fundamental Contributions in Computer Vision. The Prize

was given at the European Conference on Computer Vision

(ECCV) in Hersonissos, Crete for work that has withstood

the test of time.

• Sorin Istrail was given an honorary professorship (Professor

Honoris Causa) by his alma mater, Alexandru Ioan Cuza

University in Iasi, Romania as part of the celebration of its

150th anniversary.

• Eli Upfal was selected as Chalmers Jubilee Distinguished

Visiting Professor for 2010. Chalmers is a Swedish university

of technology in which research and teaching are conducted

on a broad front within technology, natural science and

architecture.

• Maurice Herlihy has been awarded the Fulbright

Distinguished Chair in the Natural Sciences and Engineering

Lecturing Fellowship for the 2010-2011 academic year.

He is visiting the Technion in Haifa, Israel, working on

multiprocessor synchronization.

The Artemis Project, the departmental outreach program led

by Amy Greenwald, recently received funding from the NSF,

Google, Microsoft Research and The National Center for Women

& Information Technology (NCWIT) via the NCWIT Academic

Alliance Seed Fund. These awards will be used to expand

Artemis into new directions and to track outcomes of former

Artemis participants. In the summer of 2010, in addition to the

four coordinators from Brown,

a Boston University student

was also hired with the goal of

expanding the program to the

greater Boston area in future

years.

I am also excited to report that

enrollment in our introductory

classes continues to rise. The

number of students taking CS15

has grown by 104% since 2007

while the CS17 enrollment has

increased 85% in this timeframe.

We are delighted to see so many

students taking an interest in our

curriculum.

In other news, the Industrial Partners Program has been

revamped and now includes a start-up level as well as the option

of a collaborative membership with Engineering. Ten new

partners joined the program this Fall and we are thrilled to

provide more even more job opportunities for our students. We’d

also like to congratulate our colleagues in the recently created

School of Engineering on their new designation!

I also wanted to let you know that we’ve set up regional Brown CS

pages and an Artemis page on Facebook so that you connect with

other CS alums and current students. More information can be

found on page 47.

Finally, we urge you to contribute your professional and

personal stories for inclusion in upcoming issues of Conduit.

Your support of and participation in departmental activities are

always appreciated and we are grateful to have such a tight-knit

community— thank you!

Roberto Tamassia

Plastech Professor of Computer Science

Chair, Department of Computer Science

Fall 2010

Published by the Department of Computer

Science at Brown University, Conduit is

distributed free to all computer science

alumni, faculty, staff, students and industrial

partners.

Queries about this publication can be

directed to: or

115 Waterman Street

Campus Box 1910

Providence, RI 02912

PUBL ISHER

Industrial Partners Program,

Department of Computer Science

ED I TOR- IN - CH IEF

Amy Tarbox

GR APH IC DE S IGN

Brown Graphic Services

F E AT URED COLUMNIS T S

Sorin Istrail

Shriram Krishnamurthi

Rodrigo Fonseca

Andy van Dam & Rosemary M. Simpson

CONDU¡T ON T HE W EB

John Bazik

Kathy Kirman

PR IN T ING A ND DIS T R IBU T ION

Brett Turner, Information Services

Brown Graphic Services

FE ATURES

The CRA-E White Paper:
Some Additional Perspectives................................... PAGE 4

The Artemis Project ... PAGE 20

RESE ARCH

IPP Symposium on Cloud Computing.. PAGE 22

John von Neumann Days and
The Genome and the Computational Sciences PAGE 26

DEPARTMEN T NE WS AND HAPPENINGS

Commencement ... PAGE 29

Department News and Awards ... PAGE 30

Recent PhDs ... PAGE 34

PhD Profiles .. PAGE 35

P4P: An Experiment in Syntax .. PAGE 36

ALUMNI

Alumni Update... PAGE 42

CS Reunion .. PAGE 4 4

FACULT Y

Faculty Notes... PAGE 46

P ING! ... BACK COVER

Conduit is printed on Burgo’s ChorusArt, an acid free and elemental chlorine free paper containing

50% recycled content and 15% post-consumer waste. You are the difference — reduce, reuse, recycle.

Cover image by Thomas Doeppner,

also the cover image for his new book,

Operating Systems in Depth (Wiley).

3 Condu¡t Fall 2010

Volume 19, Number 2 Fall 2010

25%

Cert no. SCS-COC-001154

4 Condu¡t Fall 2010

The CRA-E White Paper:
Some Additional Perspectives
By Andy van Dam & Rosemary M. Simpson

In the Spring of 2008, the CRA (Computing Research Association) asked Andy to

form and chair a committee to consider the question of how to provide guidelines

to educators, administrators and government (funding) agencies for the college-

level education of future computationally oriented researchers in both Computer

Science and in other disciplines making significant use of computation and data.

The CRA-E (CRA-Education) committee was

formed with this mission statement:

“Our charter is to explore the issues of under-

graduate education in computing and computa-

tional thinking for those who will do research in

disciplines from the sciences to the humanities.

As technology and teaching methodologies con-

tinue to evolve, how should programs in com-

puter science, computational science, and infor-

mation science co-evolve? Can we communicate

a core set of ideas, principles, and methodolo-

gies that is domain-independent?”

When the committee first met at the bi-annual

CRA meeting in Snowbird Utah during the sum-

mer of 2008, they identified several major themes

that they wanted to address relative to this char-

ter. These themes included: identification of a lean

core and pathways for addressing specialized inter-

ests, including fully integrated joint majors; per-

sistent skills that would be needed throughout a

computationally oriented researcher’s career; is-

sues of mastery across the curriculum; how to at-

tract students into the field and research practices

of computer science; and innovative ways in which

computer technology could be used to support

pedagogical goals.

Over the next two years, the committee investigat-

ed and wrote about these themes in a white paper,

accessible on the CRA website. The recommenda-

tions are outlined in a sidebar at the end of this ar-

ticle. Unfortunately, because of time and manpow-

er constraints we were not able to address the role

of educational technology in the white paper. Since

this area has been both a personal and professional

interest of Andy’s since graduate school, and since

it played a significant role in the growth and his-

tory of the Brown Computer Science department,

we have decided to address some of the pedagog-

ical and educational technology issues, including

Brown’s historic and current role, and conclude

with some observations about the state of educa-

tional technology and a few grand challenge prob-

lems in this important area.

Pedagogy

Pedagogy, which comprises the goals and methods

of teaching and learning, precedes and motivates

the use of educational technology. Arguably, the

most important educational decisions must come

from this concern, and must address the fact that

people learn in many different ways. The lines be-

tween who is a teacher and who is a learner and be-

tween formal and informal learning, which have

5 Condu¡t Fall 2010

always been blurred, are becoming increasingly

more so. Rapid change in what is to be taught and

learned and how it is to be taught and learned de-

mands flexibility. Thus, the CRA-E white paper rec-

ommends a lean core that focuses on the core con-

cepts and cognitive skills that undergird changing

subject matter. By building a framework for lifelong

learning with these elements, students are better

prepared to adapt to whatever circumstances they

face in the future.

Successful teaching of persistent core concepts and

cognitive skills necessitates understanding of the

difficulties that students encounter with the chang-

ing levels and kinds of abstractions involved with

modeling, representation, and mapping between

process, data, and structure at different levels. For

example, understanding an algorithm and then

representing it in the formal symbolic language of

a program is difficult and needs constant practice.

Shriram Krisnamurthi’s middle school Bootstrap

curriculum uses programming games as a moti-

vation to help students see symbolic and structur-

al parallels between program structure and math

structure. Other approaches include Phil Klein’s

intertwining of three areas for each topic in CS-53

(computational linear algebra) - math, algorithms,

and applications - in a spiral approach that builds

understanding by continually revisiting earlier con-

cepts in new contexts.

Some points to consider include:

• Knowing a core set of concepts and skills facili-

tates flexibility in educational approaches, as ex-

emplified by our quite different gateway course

sequences that offer students great choice - CS

15/16, 17/18, and 19.

• Learning the language of computer science -

computational thinking - across different sub-

jects and different methods helps build more

powerful mental models.

• Representing a concept in different ways can re-

sult in what Roberto Tamassia refers to as “deep

understanding”; one of the strengths of the Bal-

sa algorithm animation system was its ability to

present different simultaneous visualizations of

an algorithm.

• Scalability issues arise in pedagogy as in every-

thing else, e.g., how to give individual attention

in very large onsite classes, let alone online class-

es. Brown’s pioneering and highly successful use

of UTAs is one approach that provides greatly

increased individual attention to students need-

ing help and just as importantly, enriches the

student UTAs themselves. The UTA system is an

example of the creative blurring of the line be-

tween teaching and learning.

• Incorporating the informal learning process with-

in the formal class structure is an evolving process.

Students today are online learners who are teach-

ing themselves through access both to informa-

tion they seek and to information they encoun-

ter as a side effect. The effects of the latter can be

problematical in that they may incorporate inac-

curate assumptions and faulty analytical strategies,

which affect their understanding and approach to

classroom material

Purpose of Educational Technology

As stated above, the purpose of educational tech-

nology is to support the goals and processes of

teaching and learning, i.e., the pedagogy. Thus, to

assess the value of any given technology one must

ask: does it engage the student, does it help the stu-

dent in understanding the core skills and concepts

of modeling, abstraction and relationship creation,

and in critical thinking? Being able to hack out a

solution to a programming assignment is not suf-

ficient. It is commonplace now to use visualization

tools for courses dealing with computational pro-

cesses and data, such as MatLab and Mathematica.

But how can we measure their effectiveness?

Fig 1: Immune Attack game showing game controller at bottom of screen.

6 Condu¡t Fall 2010

Another issue is how to engage students on their

turf, leveraging their experiences. Certainly our

field is more attuned to providing examples and

problems from the modern world our students are

helping to shape, e.g., focusing on various prob-

lems relating to using and improving the Internet.

In her recent talk at Brown danah boyd (CS ’)

showed two simple ways of using the Internet as ed-

ucational technology: 1) Wikipedia discussion pages

- making meaning as very detailed discussions evolve

with people who have names, not just anonymous

comments - and 2) an example of an instructor-stu-

dent dialog on the course blog discussing why learn-

ing a particular topic is important. While these ex-

amples address issues of incorporating the Internet

into formal education, it is far from sufficient.

There are two major skills that students need to

learn to effectively deal with the challenges they

will face post-graduation: (1) working with model-

ing and cognitive skills to gain a deep understand-

ing of the meaning and use of different concepts in

different contexts, and (2) working with other peo-

ple with diverse points of view. How can education-

al technology help/support this?

A Brief, Brown-centric Excursion into
Educational Technology History

Understanding abstractions and relationships among

levels of abstraction is hard; modeling with abstrac-

tions and relationships is even harder. Humans in

general do not naturally work with formal symbols

and higher-level abstractions and need to ground

their understanding in the concrete to comprehend

what the abstraction is actually representing.

Since the purpose of educational technology is to

support teaching and learning, the range of tools

created for that purpose is very large. Looking back

in time one sees tools like the abacus, books, slates,

chalkboard, slide rule, index cards, Montessori aids

(e.g., her timeline), Cuisinaire rods, and even ditto

machines, film strips, and Legos.

We naturally focus on computer-based tools, includ-

ing authoring support software. Our concern is not

computer literacy but proficiency, the understand-

ing of core concepts and cognitive skills and the abil-

ity to manifest that understanding in the creation

of appropriate artifacts: designs, programs, theo-

rems, etc. Our scope includes, but does not discuss,

knowledge worker tools including such familiar gen-

eral applications as word processing, spreadsheets

(non-linear programming), simple databases like

Filemaker, personal content assistants for visualiz-

ing, analyzing, and sharing, like Tinderbox, as well

as more targeted simulation and math tools such

as MatLab and Mathematica, and simulation-based

games such as SimCity and Spore.

The types of educational software specifically de-

signed for educational purposes vary from light-

weight single-concept applets to “serious” simula-

tion-based games to AI-based intelligent tutors to

educational programming and authoring environ-

ments. The projects described below are just illus-

trative examples of educational technology use;

many more projects existed and many others are

currently underway.

Algorithm and Concept
Animation and Simulation

Andy tells the story of how his college textbook

on Fluid Mechanics only had interleaved text and

equations, with not a single visualization, except

on the cover, to help relate the math to the dynam-

ics of fluid flow. This frustrating experience of ap-

pealing to only mathematical insight and experi-

ence stimulated his lifelong interest in interactive

illustrations, which later led to use of algorithm and

concept animation via Balsa and Exploratories.

While Ken Knowlton’s 1966 movie1 on list process-

ing that used animation to visualize program behav-

ior is arguably the first algorithm animation mov-

ie, Ron Baecker’s 1981 movie “Sorting out Sorting”

that compared nine different sorting2 algorithms

really kicked the field off.

The Electronic Classroom

Brown’s Electronic Classroom, also known as the

Apollo Lab after the original workstations used,

was inaugurated in 1982 as a pioneering facility

for using interactive materials during the normal

lecture course. The Apollo lab was “a laboratory/

lecture hall containing 60 high-performance sci-

entific workstations (Apollos) with bitmap graph-

ic displays, connected together on a high band-

width resource-sharing local area network. Courses

in introductory programming, algorithms and

data structures, differential equations, and assem-

bly language have been taught in the lab using the

7 Condu¡t Fall 2010

software environment described in this paper as

the principal medium of communication. Rath-

er than explain a concept using a blackboard or a

viewgraph projector, instructors in these courses

use dynamic graphic presentations.”3 Our present

day Sun Lab is the second incarnation of this idea,

although regrettably it is used less as an interactive

classroom these days and more as lab a for doing

programming assignments.

BALSA3

In the early 1980s, Professor Robert Sedgewick and

his Ph.D. student Marc Brown developed BALSA

(Brown ALgorithm Simulator and Animator). They

conceived of BALSA as a “laboratory for experimen-

tation with dynamic real-time representations of al-

gorithms”, and divided the task of developing al-

gorithm animations into four roles: user - who was

viewed as reader of a dynamic book, scriptwriter - the

person preparing material for users, algorithm de-

signer - a domain-expert programmer, and animator

- programmer who designs and implements the ani-

mations using the BALSA facilities. BALSA provided

the student interactive capabilities in the choice and

sizing of views, of data to put into the algorithms,

the speed with which to view the animations, and

even the ability to run the programs in reverse.

Subsequently Marc Brown developed MacBalsa

as part of his Ph.D. thesis, Algorithm Animation,

which recieved the ACM Distinguished Dissertation

award. He continued work through the mid 90’s at

DEC’s Systems Research Center (now HP Labs) fo-

cusing on the use of interactive 3D visualization,

color, and sound for algorithm animations.

TANGO4

In the mid 1980s, as a follow-on to BALSA, Steve

Reiss’ Ph.D. student John Stasko created Tango, a

framework for algorithm animation that provided

a clear mapping between the algorithm and the

graphical depiction of the state transitions. This

framework embodied a formal model, the Path-

Transition Paradigm, that helped designers and

programmers to articulate the process of algo-

rithm animation.

Stasko later went to Georgia Tech, where he contin-

ued research and teaching with algorithm anima-

tions, and created a frontend, Samba, an interactive

animation interpreter. Samba was a simple anima-

tion scripting language that allowed students to cre-

ate their own 2D animations of such algorithms as

sorting and graph computations as two-week home-

work assignments.

MOCHA5, 6

In the early 1990s the Web provided a distributed

communications infrastructure that supported hy-

permedia accessible via Java. This environment al-

lowed secure Web-based deployment, and Roberto

Tamassia and his group, in collaboration with Isabel

Cruz, extended the possibilities of algorithm anima-

tion to the Web through the Mocha model. Mocha,

which had a model-view-controller architecture,

permitted multimedia algorithm animations to be

embedded in a narrative hypermedia structure on

the Web.

Fig 3: Mocha animation showing the Delaunay triangulation algorithm.

Fig 2: MacBalsa animation showing four different sort algorithms.

8 Condu¡t Fall 2010

JDSL Visualizer7

In collaboration with Michael Goodrich at Johns

Hopkins University, Tamassia’s group leveraged the

lessons learned about effective student use of algo-

rithm animation from their extensive experience

in teaching data structures and algorithms. They fo-

cused on extending their Java library, JDSL,8 to pro-

vide animations for student-written implementa-

tions of fundamental data structures that follow the

JDSL API. In addition, they developed testers for au-

tomatically comparing the functionality of user-writ-

ten data structures with that of the reference JDSL

implementation. Student evaluations of their experi-

ence using these tools in their programming assign-

ments in CS-16 strongly supported the value of these

tools for learning data structures and algorithms.

PILOT9

While the JDSL Visualizer focused on data struc-

tures based on lists and trees, PILOT addressed

the visualization of algorithms for fundamental

graph problems, such as minimum spanning tree

and shortest path. PILOT displays and automati-

cally draws a graph instance, and allows the user to

step through the execution of the algorithm. It can

be used both for learning an algorithm and to au-

tomatically grade the execution of an algorithm by

the student. In learning mode, the user repeated-

ly indicates the next step of the algorithm (e.g., se-

lect the next edge to be added to the shortest-path

tree) and is given immediate feedback from the sys-

tem. In exam mode, the user executes all the steps

of the algorithm and receives feedback at the end

of the execution together with a grade. After an ini-

tial prototype of PILOT was created as a collabora-

tive effort by the groups of Michael Goodrich and

Roberto Tamassia, extensions and classroom exper-

iments in CS-16 were developed by Brown under-

graduates Ryan Baker and Susannah Raub.

Exploratories10

Andy’s Exploratories project, an interactive Web-

based algorithm and concept visualization project,

started in 1996 with contributions by Jean LaLeuf

fulltime for several years, multiple undergraduates,

including Dan Gould and Jeff Beall, and professor

John Hughes. It uses Java applets to aid students

in exploring the concepts and

algorithms for CS- , intro-

duction to computer graph-

ics. An exploratory is a com-

puter-based combination of an

exploratorium and laborato-

ry that provides a microworld

for modeling objects, phenom-

ena, and concepts. Particular

exploratories are used in class

and then students have the op-

portunity to play with them in

lab to gain a deeper understanding of the concepts

involved. Lab assignments include both algorithm

descriptions and programming projects. One stu-

dent, Alexandra Schultz, describes her experience

in this semester’s course thus: “Playing with the ap-

plets helped me understand the signal processing

concepts much better; I think I could have done

the programming assignment since I understood

how to use filter kernels, but I definitely would have

failed the preparatory algorithm assignment, and I

wouldn’t have known why my code worked.”

PhET (Physics Educational Technology)

Online Simulations11

The University of Colorado’s PhET website, found-

ed by Nobelist Carl Wieman, contains interactive,

domain and education research-based simulations

that are available on the Web as interactive Flash

animations and are downloadable as Java JAR files.

The Java applets are embedded in context-provid-

ing web pages that contain links to explanatory

teaching tips, related simulations, and teacher activ-

ity information. The website contains research pub-

lications and guides for teachers as to how to in-

corporate the simulations into their teaching. The

project is a well-funded, multi-year effort led by a

multi-disciplinary team.

“Is it a hit or is it a miss?”

Looking back at all these efforts, one can say that

the glass is half full – there are certainly successful

aspects to the algorithm animation projects done

at Brown, but they aren’t as integral a part of the

curriculum as we early enthusiasts and evangelists

had hoped. It takes a huge amount of effort to cre-

ate and maintain any educational software, and

Fig 4: Exploratories screen showing the

difference between mixing light and

mixing paint*** showing additive and

subtractive color mixing with reflective

and transmissive material.

9 Condu¡t Fall 2010

additional effort to integrate it into the pedago-

gy and assignment structure for a course. Also stu-

dents have to see significant value in spending the

extra time playing with the software when they are

typically time-pressured to get their assignments

done, and they may be satisfied with just an in-class

demonstration. Algorithm animation, like so many

things, is much more effective when done actively

by students rather than observed passively, and hav-

ing students interact with them is somewhere in be-

tween these two modes in terms of utility.

CAI (Computer-Assisted Instruction)

and Cognitive Tutors

CAI originated as a “programmed instruction” strat-

egy for breaking information into single-concept

chunks that lent themselves to questions that test-

ed student understanding of each chunk. Mastery of

early material was a prerequisite to continuing with

the presentation of topics, and the structure permit-

ted simple test-based branching and looping back

for remediation to ensure mastery. The simplistic

and mechanical aspects of CAI could degrade to

what is known as ‘drill and kill,’ but its fundamental

strategy laid the groundwork for the much deeper

modeling of ICAI, which included artificial intelli-

gence and cognitive science research understanding.

PLATO (Programmed Logic for

Automated Teaching Operations)12

In June 2010 the Computer History Museum host-

ed the PLATO@50 Conference, celebrating the

50th anniversary of “the computer system that

many credit with presaging the networked world

of social media and interactive education.” As part

of their collaboration in the educational and CAI

courseware development processes, the PLATO

community, under PI Don Bitzer’s leadership, de-

veloped many currently familiar tools such as fo-

rums, message boards, online testing, e-mail, chat

rooms, instant messaging, remote screen sharing,

and multi-player games as well as creating the first

plasma display panel. Brian Dear, the PLATO@50

conference organizer who was a programmer and

courseware designer during 1979–1984 comments:

“here was a computer that was all about connecting

people, whereas micros were lonely islands...”

PAT (PUMP Algebra Tutor)13

PAT was developed in the early 1980s as an ap-

proach to teaching algebra in urban environments

- hence the name PUMP (Pittsburgh Urban Math

Project). CMU’s John Anderson’s work on the

ACT* theory of learning and problem solving pro-

vided the foundation for what became a successful

cognitive tutoring system. A cognitive tutor under-

takes deep modeling of a student’s mental models

and provides interactive individualized instruction

based on the student’s responses. Studies over the

years have validated the results with students; thus,

PAT is a successful example of one approach to

providing a “Teacher for every Learner”, the CRA

Grand Challenges project led by Andy. It is an ITS

(Intelligent Tutoring System), which embodies the

principle that in order for students to attain both

deep understanding and skill facility they must

model the process and concepts they are trying to

learn through working with multiple representa-

tions of the problem.

Wayang Outpost14

Bev Woolf (UMass Amherst)’s Wayang Outpost

(2009…) is a multiplatform online ITS for mid-

dle school and high school level mathematics that

uses multimedia and animated adventures com-

bined with affective intelligent agents that re-

spond to how the students are using the system.

The system employs machine learning techniques

and individualized strategies that use affective in-

telligent ‘companions’.

Hypertext/hypermedia Systems

Memex15

In the August 1945 issue of The Atlantic Monthly,
MIT’s Vannevar Bush wrote a visionary article about

a system, which he called Memex, that could pro-

vide persistent associative trails through a library of

documents stored on microfilm. He thus provid-

ed a model for an integrated library of documents

that supported non-linear webs through the do-

main. This system for non-linear collecting, reading,

annotating, and trail blazing was the inspiration for

later hypertext/hypermedia systems.

10 Condu¡t Fall 2010

HES (Hypertext Editing System)16

HES (1967–1969), was the earliest hypertext re-

search project done on commercial equipment,

Brown’s mainframe computer (the IBM /360 mod

50 with 512K (!) memory and a 2250 vector graph-

ics display). It was implemented by team of under-

graduates including Steve Carmody (currently a

senior information architect at CIS). In his key-

note given at the first ACM Hypertext conference

(HT ’87), Andy commented on the origin and

goals of HES:

“I ran into Ted Nelson completely by accident

at the 1967 Spring Joint Computer Confer-

ence, and gossiped with him about what we had

both been doing since we left Swarthmore Col-

lege. He told me about his ideas on hypertext,

and one thing led to another and Ted started

coming to Providence, using, as he is proud to

say in Computer Lib, his own money. We start-

ed working on the Hypertext Editing System,

which was essentially dual-purpose. One pur-

pose was to produce printed documents nice-

ly and efficiently, since at that time the technol-

ogy on IBM/360 systems was batch cards for

editing (mag card selectrics were not yet com-

mon). But the main purpose was to explore

this hypertext concept.”

HES’s non-linear links among text fragments and

string search facilities enabled authors to interac-

tively create individual components that they could

later select and structure into linear documents for

production. In this, it laid the groundwork for fu-

ture creative process support systems as well as pro-

duction systems. Ted created one of the first webs, a

hypertext on electroplating patents.

While it was a ‘first pancake’ proof-of-concept system,

instructors used it to develop and produce course

materials, and later when IBM, the main sponsor,

sold it to NASA, it was used to produce documenta-

tion that went as microfilm with the Apollo missions.

FRESS17

In 1968, the era of punched cards and guarded

fortress mainframes, Andy went to the FJCC (Fall

Joint Computer Conference) and saw what was lat-

er known as “The Mother of All Demos”: Doug En-

gelbart’s demonstration of NLS (oNLine System).

The Stanford University Engelbart archives site de-

scribes it thus:

“On December 9, 1968, Douglas C. Engelbart

and the group of 17 researchers working with

him in the Augmentation Research Center at

Stanford Research Institute in Menlo Park, CA,

presented a 90-minute live public demonstra-

tion of the online system, NLS, they had been

working on since 1962. The public presentation

was a session of the Fall Joint Computer Confer-

ence held at the Convention Center in San Fran-

cisco, and it was attended by about 1,000 com-

puter professionals. This was the public debut

of the computer mouse. But the mouse was only

one of many innovations demonstrated that day,

including hypertext, object addressing and dy-

namic file linking, as well as shared-screen col-

laboration involving two persons at different

sites communicating over a network with audio

and video interface.18”

Andy was both stunned and inspired, and on his

return to Brown began work with his team of un-

dergraduates and several Masters students on what

became FRESS. FRESS was a multi-user, platform-

independent program that, like HES, supported

both the text and hypertext authoring process and

the production of documents. FRESS had a simple

windowing system, configurable views, keyword re-

trieval, inter-and intrafile linking, basic editing and

formatting, including what was probably the first

undo command in a text editor, line art, and both

network and hierarchical information structures.

In 1976 undergraduate students participated in an

NEH-sponsored poetry class taught by English Pro-

fessor Bob Scholes, founder of MCM, in which all

of the work was done online, including instructor

annotations and assignment criticisms, source ma-

terials (a database of more than 700 poems and

professional criticism), student assignments, and

student commentary. It was both an online scholar-

ly research and educational community.

Intermedia19

Intermedia (1985–1992) was a scholarly and educa-

tion research tool developed by IRIS (Institute for

Research in Information and Scholarship) under

CS graduate Norm Meyrowitz’s direction. IRIS, ini-

tially headed by Bill Shipp and later by Norm, was

a spinoff of the hypermedia work in Andy’s Graph-

ics Group. Intermedia’s information architecture

was database-backed and was notable for the sepa-

ration of hypertext structures and data. This feature

11 Condu¡t Fall 2010

enabled the support of multiple semantic webs over

the same corpus of multimedia materials, multiple

users with multiple levels of access rights, and au-

thor-reader transparency.

Intermedia was a fully object-oriented system that

supported a suite of editors for an arbitrary collec-

tion of media types including, among others, text,

graphics, timeline, and video, within a hypermedia

framework that providing interlinking, annotation,

and navigation facilities. An early paper by cultural

anthropologist Bill Beeman et al. pointed out that

“one of the key aims of Intermedia was to provide

the ability to link different materials creating seman-

tically meaningful relationships between different

information and ideas. Using this software environ-

ment, ‘authors’ (who may be students or instructors

depending on the guidelines determined by the in-

structor) could link and annotate materials to cre-

ate ‘semantic webs’ or trails of meaning.”19

Unlike today’s browser-based implementations of

the WWW, all Brown hypermedia systems — HES,

FRESS, and Intermedia — shared the characteris-

tic that there was no distinction between authors

and readers, and that the focus was as much on

process as on product.

Robots and Simulation games

Logo turtles - physical robots and virtual turtles20

Seymour Papert and Wally Feurzeig created Logo

and its turtle in 1967. The original Logo turtles

were physical robots that children moved around

a room using Logo commands such as “forward

50.” The educational intention was to combine

movement in physical space with instructions in

computational space, facilitating the mental map-

ping between symbolic operations and physical ge-

ometry operations as a way of having children learn

mathematical and logical thinking. Later ‘turtles’

were screen pointers that drew lines on the screen

in response to Logo commands. An interactive

Java applet replicates the experiences: http://www.

mathsnet.net/logo/turtlelogo/index.html21

Alan Kay’s Dynabook vision22

In 1968 a meeting with Seymour Papert, where he

learned about the pedagogical goals of Logo, in-

spired Alan Kay’s DynaBook vision. Kay envisioned

a personal portable computer usable by young chil-

dren that would include the ability for them to au-

thor both text and graphics in a multi-model, col-

laborative network that included simulation-based

software. Today’s powerful laptops, tablets and pads

are an implementation of this pioneering vision,

but the full extent of the vision, especially the use

of these devices in (simulation-based) learning, has

scarcely been realized.

Lego Mindstorms23

Lego Mindstorms extends the original Logo peda-

gogical goals and practices, which instilled model-

ing and symbol/abstraction mapping skills by com-

bining the manipulation of physical robots with

computational math. Lego Mindstorms combines

Lego blocks with other modular parts such as sen-

sors and motors to build robots. These robots can

then be plugged into a computer and their behav-

ior controlled through programming. The activities

vary depending on the age, and can include data

gathering and analysis as well as the original geo-

metric movements characteristics of the Logo tur-

tles. Chad Jenkins’ “Building Intelligent Robots”

course is in this tradition.

Bootstrap curriculum24

The Bootstrap curriculum, designed by the PLT

group of which Shriram Krishnamurthi is a found-

er, also instills modeling and symbol/abstraction

mapping skills. Its strategy is to introduce middle

school students to algebraic concepts and manipu-

lation through the process of creating games, from

initial design through final demonstration to par-

ents and friends. The NY Times Magazine Educa-

tion Technology issue25 featured an article on the

motivational and educational power of game cre-

ation for students of this age26.

Fig 5: Intermedia screen showing components of the Dickens web.

12 Condu¡t Fall 2010

Immune Attack game27

While Logo, Lego Mindstorms, and the Bootstrap

project use creating robots and games as a tools for

teaching modeling and symbolic/abstraction map-

ping skills, the Immune Attack game illustrates the

use of “serious games” to extend the role of con-

cept simulation and animation in teaching complex

domain processes. Inspired by the “The Fantas-

tic Voyage” film28, Immune Attack uses a nano-

bot (cell-sized submarine) to move within the body

in response to immunological challenges. Like

Palenque29, Immune Attack has ‘on-board advi-

sors’ who contribute scientifically valid information

to players. Immune Attack development was spon-

sored by NSF and FAS (Federation of American Sci-

entists), with Andy as PI and then FAS President

Henry Kelly as co-PI.

Authoring Environments

Educational technology authoring environments are

more context-sensitive than that of educational tech-

nology tools: sometimes authors are experts, possi-

bly instructors, creating materials for students to use;

sometimes authors are students, either graduate as-

sistants or undergraduates, creating materials; some-

times authors and users comprise a shifting mixture,

as in a class where the instructor and the students

are creating artifacts together within a framework

the instructor has created. Furthermore, general

purpose knowledge tools, such as those described

earlier, can also be considered as authoring tools.

AgentSheets30

AgentSheets, founded at UC Boulder in 1996 by

Professor Alexander Repenning, is a visual pro-

gramming environment targeted at middle and

high school students that enables them to create

Web-based simulation games. It has a drag-and-drop

interface that permits the creation of simple games

that can be uploaded to the Web, as well as suffi-

cient power to develop Sims-like AI-based games.

The system is part of the Scalable Game Design cur-

riculum initiative whose intention is provide gen-

der and culture-neutral motivation for secondary

school level computer science.

Alice31

Alice, the legacy of the late Randy Pausch (’82), is

an integrated IDE and educational programming

language that uses a drag-and-drop environment to

create computer animations using 3D models and

scenes. Alice encourages storytelling, unlike most

other programming languages, which are designed

for computation, and is designed to appeal to spe-

cific subpopulations not normally exposed to com-

puter programming, such as female students of

middle school age.

DrRacket32

DrRacket (formerly called DrScheme) is the open-

source graphical IDE for Racket, the current name

for PLT Scheme. Its original, and continuing, prima-

ry intent is pedagogical: to provide an environment,

usually Scheme-based, for teaching programming

that is easy to use and that grows in power as skill

and understanding develops. DrRacket has evolved

into a full language research environment with

multi-institutional support, along with continuing to

serve its pedagogical functions; the Bootstrap curric-

ulum described earlier is founded on DrRacket.

Greenfoot33

Greenfoot, developed at the University of Kent

at Canterbury (UK) and Deakin University, Mel-

bourne (Australia), with support by Sun Microsys-

tems, is an educationally-oriented Java IDE that

supports the development of 2D simulations and

interactive games by high school and college-level

students. It combines easy access to such facilities as

graphics animations, sound, and interaction, while

also helping to build an object-oriented mindset

through exposure to the abstractions and concep-

tual structures of object-oriented programming.

Guided visualizations and interactions provide con-

structivist-based learning support.

Kodu34

Microsoft Research’s Kodu is a game development

language that builds on the conceptual legacy of

Logo, the Squeak version of Kay’s DynaBook vi-

sion, AgentSheets, and Alice. It provides an icon-

based interface for designing, assembling, and play-

ing game scenarios. The goal is to control character

behavior by moving icons around rule-based pages,

using game-based notions and strategies. The envi-

13 Condu¡t Fall 201013 Condu¡t Fall 2010

ronment supports the process from design through

execution by specialized primitives and by express-

ing programs in physical terms.

Medulla35

The U. S. Department of Energy’s National Training

and Education Resource (NTER) is an open-source

framework in development that is designed to coor-

dinate and support the use of virtual worlds and im-

mersive environments for learning, teaching, and

research. The design is based on the premise of con-

tinual improvement, rather than the more typical

educational technology result of design, limited test,

triumphant paper reporting on the results, code rot,

decay, death, and “on to the next project”. The goal

is to facilitate interoperable virtual world develop-

ment using off-the-shelf, open source and custom-

ized tools by creating the sort of persistent frame-

work provided by Web browsers. The Federation

of American Scientists (FAS) provided the research

prototype and proof of concept, called Medulla.

Samba36

Samba is a scripting frontend to the Polka algo-

rithm animation system. Polka is John Stasko’s Geor-

gia Tech follow-on to his Brown Ph.D. project, Tango.

Samba provides upper-level college students with the

ability to create algorithm animations for programs

written in their choice of language. Students are giv-

en algorithm animation homework assignments that

typically run 2-3 weeks. They annotate their programs

with print statements containing Samba commands,

thereby driving a visualization of the program.

Scratch37

Scratch, a project of Mitch Resnick’s Lifelong Kin-

dergarten Group of the MIT Media Lab, is a pro-

gramming language and scripting environment for

children that focuses on being intuitive and easy-

to-use, and that supports object reuse and shar-

ing across the Internet. To create programs, users

drag blocks, which contain code, from a palette on

the screen onto the scripting area. Programs can be

shared with others by uploading to the Scratch web-

site where other users can download them for use as-

is, for editing, and for remixing components with oth-

er components.

The Tablet PC may seem like a trivial example

of technology use in education. However, as

Claire Mathieu and her class have found,

simple tools can make a profound differ-

ence. Her class likes the fact that the tab-

let annotations preserve the dynamics of

classroom interaction for later reflection and

study. Claire, a theoretician who prefers the

physical action of working with a pencil to the

more remote action of using a computer, has

become a convert and likes the way Tablet

use models her own preferred mode, as well

as liking the ability to preserve ‘whiteboard’

use for later study.

She comments: “I need the spontaneity of

text created on the board during an interac-

tive process, where part of what I teach and

how I teach it depend on the students’ reac-

tions on the spot. That is why I have always

resisted the trend towards lecturing from

slides. But now I can have the best of both

worlds! My only frustration occurs on the few

times when I accidentally disconnect the tab-

let from the projector; at those moments my

students learn a bit more of my French than I

would have wanted them to!”

Andy has also found the Tablet PC valuable

for its ability to preserve in-class comments

for later study so that the PPT slides plus au-

dio captured from the lecture uploaded after

class combine both presentation and interac-

tion value.

14 Condu¡t Fall 2010

Where are We Now and Where
Do We Need to Go?

Observations

In general, we define a successful tool as one that is

indispensable. Certainly Web browsers and produc-

tivity tools, such as word processing, and perhaps

simple databases, spreadsheets, and, for Andy at

least, PowerPoint, fall into this category. There isn’t,

however, any software specifically designed for edu-

cational use about which one can say that it is indis-

pensible. What has tended to happen is two things:

general purpose productivity and communica-

tion tools are used for educational purposes.

demonstrable successes exist at very different

points of the spectrum – e.g., at one end, light-

weight (single concept) applets, instructional

videos, and other point projects and at the other

end, all the genres of heavyweight Intelligent Tu-

tors. But here is and can be no universal tool for

authoring and delivering all genres of education-

al software. (We don’t concern ourselves with

course management software here).

Stepping back and looking at five decades of edu-

cational technology and technology use for educa-

tional purposes, we see the following patterns for

those areas that have been successful:

• Small and simple things that require modest in-
vestment and that can be used in an ad hoc, remix
way. There is no formal integration involved

and the end result depends on the need of

the moment. Examples range from the Kahn

Academy 15-minute minimal-production-val-

ue videos to simple applets (e.g., those used

in the graphics course) to remixed material

copy-pasted from the Web. It is useful to em-

bed such point-products into an integrated

hypermedia web, but that takes some up-front

instructional and information-architecture de-

sign.

• Integrated collections that may or may not have been
constructed according to an instructional design.
These include reusable components, such as

the Java libraries JDSL (Java Data Structures

Library) and net.datastructures,38 which Ro-

berto Tamassia used for having students pro-

gram to an API and derive animations of their

own algorithms.

• Higher level integrated systems that are designed
for instructional purposes. These include simula-

tion-based serious games such as Immune At-

tack, simulation-based physical science teach-

ing applets such as the PhET modules, the

virtual world construction framework Medula,

and AI-research-based cognitive tutors, such as

PAT as well as the affect-based cognitive tutor

research projects at MIT and UMass Amherst.

• Learning by doing, i.e., constructivist learning.
This has a tradition going back to Alan Kay’s

Dynabook vision and the successful NEH Po-

etry class taught using our FRESS system. Cur-

rent approaches are quite varied, as one might

expect, and include middle school children

creating their own games (Bootstrap curricu-

lum), Maker Faire tinkering, and undergrad-

uates creating animations as part of CS course

assignments. A lovely example was shown by

Shree Nayar during his recent talk at Brown

via his bigShot build-it-yourself digital cam-

era (http://www.bigshotcamera.org/sections/

home/team.html), whose electrical, electro-

mechanical, and optical workings are used by

young students to learn the fundamental con-

cepts in these domains as they assemble to il-

lustrate fundamental concepts in these do-

mains by young students as they assemble the

camera.

• Increasing emphasis on informal learning, unstruc-
tured collaboration using Internet tools and materi-
als, and crowd sourcing.

Open Problems/Grand Challenges

Looking ahead, we can briefly describe some exam-

ples of significant open research problems that ad-

dress both current and anticipated unmet needs.

None of these are ready to be well-defined research

proposals, but are rather in the nature of quests we

are striving to articulate.

Development environment for integrated systems

We need a better development environment for

creating multi-disciplinary simulations with multi-

ple levels of detail and multiple points of view. An-

dy’s Clip Model idea39 articulates one approach:

Clip models are simulation- or rule-based models

that are designed to be composed into increasingly

15 Condu¡t Fall 2010

higher-level subsystems. The intent is to support a

seamless environment in which multiple levels of

detail and different points-of-view can be present at

the same time, to address the needs of various class-

es/ages/experience levels of learners and learning

situations. A powerful driving example would be

a simulation-based ”digital human” to be used for

teaching/learning biology at a variety of levels. It

would contain a huge number of models for com-

ponent systems at varying levels of fidelity and un-

derstandability, and would allow models at different

levels to interoperate to simulate higher-level sub-

systems. For example, a particular subsystem could

include an overview-level model of the circulatory

system anatomy and physiology while at the same

time providing details of the white blood cells’ role

in immune system defense, e.g., through access to a

simulation game such as Immune Attack.

Framework for collaborative authoring

We need a framework for small team (read “indi-

vidual courses”) collaboration using the Internet.

As with the early hypermedia systems at Brown, in-

dividuals can assume roles as readers, authors, and

commentators for all media, and the focus is both

on process and on product. The product typical-

ly would be a composite of multiple media accessi-

ble through the Internet, and reflective of the work

and goals of the small team/class.

The framework needs to be able to work with the un-

derstanding and manipulation of information struc-

tures. It needs to support both a priori designed in-

formation structures and emergent structures, with

links that are first class citizens with persistent se-

mantics. To provide these capabilities, the frame-

work needs lightweight structure-authoring tools, in

effect, a sketchpad for information structures that

doesn’t require information architect expertise.

Google Wave, unfortunately decommissioned, pro-

vided an recent example of one possible direction.

Teacher for every learner support system40

How can you provide the help someone needs, on

a JIT basis, through some combination of computer

tools, guidance to Internet resources, synchronous

and asynchronous access to peer-to-peer/commu-

nity tutoring and to experts? We need more than

forums and wikis. When you are trying to articu-

late a difficulty, whether you are out in cyberspace

working alone, or in a class where others think dif-

ferently than you do, you need to dialog with a hu-

man being. There needs to be the ability to dis-

cuss the issues, in real time with a real person.

Ideally such discussions would take place in a vi-

sual environment with shared presence at a smart

whiteboard.

The support system could be a suite of tools, or a

guided tour to a group of tools. Intelligent tutors

can help, but are not sufficient.

Conclusion

It is hard not to be a cynic in the Oscar Wilde sense,

i.e., a frustrated idealist, about the state of educa-

tional software after so many decades of research,

experimentation, and deployment. The goal of pro-

viding the kind of huge acceleration and improve-

ment that we’ve seen in other areas e.g., e-com-

merce, CAD-CAM, of obtaining access via the Web

to information (all too much of it incorrect and of

uncertain value), eludes us still in the area of ed-

ucational software. But, the promise and poten-

tial are very much still there and the hope is that

research will continue under enlightened spon-

sorship that recognizes the need for patient in-

vestment in the building and sustaining of multi-

disciplinary teams required to build ambitious tools

and environments. If routinely 10–25 M$ is spent

to fund a multi-disciplinary team to build an inter-

esting game, why can’t the money be found to fund

a dozen such projects in innovative educational

technology? In 2001 Andy and two colleagues, Hen-

ry Kelly, formerly the Director of the Federation of

American Scientists, and Randy Hinrichs, formerly

at Microsoft Research, founded the Learning Fed-

eration and obtained funding from NSF and indus-

try to run workshops defining research roadmaps

in learning science and technologies. These road-

maps unfortunately have never been funded, but

are even more relevant today than they were in

2003. They are still accessible via the FAS at

http://www.fas.org/programs/ltp/policy_and_

publications/roadmaps/index.html

We continue to hope...

16 Condu¡t Fall 201016 Condu¡t Fall 2010

Recommendations Summary

Computationally-Oriented Foundations

1. Introductory Courses - addressing a broad range of
student interests

Address student interests while at the same time

ensuring that these courses address a significant

subset of the fundamental range of concepts and

skills that comprise computational thinking.

Use these courses to instill a set of cognitive skills

such as learning how to create, validate, and estab-

lish relationships among abstractions from data

and information on hand, a key skill in effective

modeling, simulation, and validation. This skill in

working with abstractions, in turn, undergirds both

the scientific method and computational thinking,

and should be a part of every computationally-ori-

ented course. The differences among such courses

help to reinforce the underlying skills as students

meet the same concepts in different contexts.

Other examples of cognitive skills include: work-

ing with the tradeoffs involved with different rep-

resentations; moving, where appropriate, from a

declarative understanding of a problem to an im-

perative understanding of that problem; reducing

computationally intractable problems to related

tractable problems; and building, simulating, and

validating computational models that shed light

on important questions.

Specific recommendations

• Introduce students to computational approaches

through foundation courses across the spectrum

of student interests, instilling a set of cognitive

skills such as those described in the Introduction

to the white paper, “… learning how to cre-

ate, validate, and establish relationships among

abstractions from data and information on hand,

a key skill in effective modeling, simulation, and

validation…. working with the tradeoffs involved

with different representations; moving, where ap-

propriate, from a declarative understanding of a

problem to an imperative understanding of that

problem; reducing computationally intractable

problems to related tractable problems; and

building, simulating, and validating compu-

tational models1 that shed light on important

questions.”

1 When we use the terms “model” and “modeling” we mean

symbolic computational models, not numeric models, which

are sets of differential equations.

• Emphasize the creation of appropriate and use-

able sets of representations and relationships

among different levels; a deep understanding

of how to represent information is one of the

most difficult cognitive skills students need to

learn. The practice of presenting accessible but

important research papers as part of introduc-

tory courses not only introduces students to

actual research work but also starts to build an

understanding of how to compare different

representations, analyze unstated assumptions,

and build a common representation structure

across a set of related projects.

• Establish collaborative efforts involving a com-

puter science department, which could assume

primary responsibility for the courses, and the

departments whose prospective students are

expected to take one of the courses. Addition-

ally, the computer science department should

help other departments in developing follow-on

courses that take advantage of computational

thinking taught in the first course.

• Begin to shape a collaborative student culture

that will mature into effective professional team-

work skills, as described in Recommendations

Two through Six.

• Encourage students to begin building a digital

portfolio, including journal entries, possibly on-

line [dealing appropriately with privacy issues],

that carries through the core ideas and can be

added to and be available for research ideas,

building mastery, understanding one’s own

perspective, use in applying to graduate school.

See Recommendation Six for a more complete

description of this idea.

Refactoring Computer Science Curricula

2. Core/Foundation for All Computer Science Graduates
- lean core with focus on enduring concepts, techniques,
and skills

A relatively lean core emphasizes foundational

concepts and skills while allowing students more

time to explore areas in depth, both by taking

courses and by engaging in undergraduate re-

search. Additionally, a lean core makes it easier for

students with multidisciplinary interests to pursue

a joint major [See Recommendation 4 - Specialization:
Integrated Joint Majors] while still sharing a com-

mon experience with computer science majors.

17 Condu¡t Fall 201017 Condu¡t Fall 2010

Recommendations Summary

Specific recommendations

Lean core with focus on the minimum essential

cognitive skills, concepts, and techniques.

• Having a relatively lean core emphasizes founda-

tional cognitive skills and concepts while allowing

students more time to explore areas in depth,

both by taking courses and by engaging in under-

graduate research.

• The deep issues of mastery and skills faced by

the core have strong connections to the issues

discussed in Recommendation 5 - Design under Con-
straints and the Gaining of Mastery.

• A lean core makes it easier for students with mul-

tidisciplinary interests to pursue a joint major [See
Recommendation 4 - Specialization: Integrated Joint
Majors], while still sharing a common experience

with computer science majors.

• The explicit identification of the lean core com-

ponents makes it easier for a wide range of insti-

tutions to identify resources, establish a strong

basic computer science foundation, and help

their graduates pursue computationally-oriented

research careers.

3. Specialization: Tracks, Threads, and Vectors - flexible
approaches to gaining understanding and skills

Define sets of meaningful specializations to permit

students to pursue their interests in a context that

guides their development while providing strong

motivation. Ensure that these ‘tracks’ are special-

ized enough that a course sequence can lead to a

student attaining some reasonable depth in the

area but broad enough that someone in a company

or graduate school will be able to fit it into their

institutional context.

Specific recommendations

Specialized computing, through domain-centered

tracks:

• We encourage schools to develop a broad series

of specializations. The specifications reflected

in the undergraduate course offerings of a given

department will, of necessity, be based on depart-

ment faculty interests and capabilities and the

availability of courses in other relevant disciplines.

• The concepts that should guide the specializa-

tions include considerations of the ways in which

the components of a particular sequence build

the skills and mastery needed post-graduation,

and how graduates will be viewed by graduate

schools and potential employers.

• There is also a question of scale – departments

with small faculties and student enrollments are

clearly not able to offer as many tracks as larger

departments. Concern with “break-even” course

sizes are a necessary pragmatic. So, the number of

tracks, and their depth, will vary quite a bit; small,

resource-limited departments may not be able to

do this at all, although as described in the White

Paper, above Harvey Mudd, with an enrollment

of 700, provides a counter-example of the creative

use of resources to create specialized approaches.

4. Specialization: Integrated Joint Majors - deep collabora-
tion among disciplines

Coherent, integrated multidisciplinary, inter-depart-

mental joint majors provide a balanced approach

that addresses the differences in intellectual culture,

concepts, and strategies between different fields by

establishing the common ground between them.

Use these integrated joint majors to provide a cre-

ative synthesis beyond that which can be provided

by a computer science department alone, one that

blends the cultures and mindsets of multiple depart-

ments and synergistically establishes new techniques

for problem solving.

Specific recommendations

Deep collaboration among disciplines, exemplified

by integrated joint majors:

• Coherent, integrated multidisciplinary, inter-

departmental joint majors provide a balanced

approach that addresses the differences in culture,

concepts, and strategies between different fields by

establishing the common ground between them.

• To undertake the considerable resource cost of

joint major development, we recommend encour-

aging—indeed, incentivizing—the additional fac-

ulty effort required to design and implement new

integrated courses and curricula. Incentives could

include summer salary, release time, the designa-

tion of a dedicated ‘curriculum czar’, and the

recruitment of students as research and teaching

assistants to help with design and implementation.

• Initial exploration of collaborative possibilities

can include multi-disciplinary curriculum com-

mittees, individual experimental courses, support

for multi-disciplinary GISPs (Group Independent

Study Projects), plus Internet-based collaboration

using existing tools such as wikis.

18 Condu¡t Fall 201018 Condu¡t Fall 2010

Recommendations Summary

Establishing Mastery across the Curricula

5. Design Under Constraints and the Gaining of Mastery -
deepening the skill set

Provide students the ability to attain mastery by

gaining experience in learning new technologies

and techniques, building and analyzing artifacts,

and learning to understand design as an iterative

process that involves evaluating tradeoffs, analyz-

ing system performance, and testing at each step.

Create design and development experiences that

tap into the actual interests of the students within

a structure that both rewards effort and requires

debugging/dealing with the uncertainties and ap-

proximations of real-world non-determinacy.

Specific recommendations

• Provide integrative design experiences earlier in

the curriculum, including the first course, and

throughout the curriculum, building on the stu-

dent’s increasing skills.

• Incorporate skill descriptions in addition to

course topics in all courses. Articulate how the

elements of mastery, wizardry and purpose form

part of the course outcomes.

• Integrate success stories of project integration

across the curriculum into individual courses, to

better leverage instructor time and resources.

Make course developments widely available

on the web, so that others may use, adapt, and

extend them for their own courses and for the

community at large.

6. Attracting, Selecting, and Preparing Students for
Research Careers - developing computationally-oriented
researchers

Skillfully introduce research problems and their

intellectual excitement in all courses, thus helping

to entice potential research students by disabus-

ing them of the notion that our field has become

routinized. Successful courses that attract and excite

students present new concepts within the context of

the ongoing research of the R&D community.

Combine explicit research skill training with an

apprenticeship approach to acculturate future re-

searchers to their communities of practice. Provide

systematic guidance in the practices of computation-

ally-oriented research from freshman year through

graduation combined with the support provided by

close relationships with graduate students, research

groups, and professors.

Specific recommendations

Attract students to research careers through the in-

troduction of research approaches and skills across

the full undergraduate spectrum:

• Combine explicit research skill training with an

apprenticeship approach to acculturate future

researchers to their community of practice. This

means systematic guidance in the practices of

computationally-oriented research from freshman

year through graduation combined with the sup-

port provided by close relationships with graduate

students, research groups, and professors.

• Attract and prepare the best qualified students by

exposing them to and engaging them in exciting

computing research – the earlier, the better.

• Engage undergraduates in research via vari-

ous means: focused study groups that include

graduate students, student-initiated GISPs

(Group-Independent Study Programs), seminars

that undergraduates are encouraged to attend,

undergraduate research assistantships, summer

programs and internships, university-sponsored

internships, special scholarship programs, such

the University of Utah Access Program and Engi-

neering Scholars Program.

• Facilitate the creation and use of a persistent

digital portfolio from the beginning of their first

introductory classes, continuing through all of

their ongoing courses, to provide both an idea

resource base and a record for future papers and

graduate school work

• Emulate the model for project-oriented courses

provided by the domain-specific introduction to

graduate research methods (Brown’s CS237 - In-

terdisciplinary Scientific Visualization), described

in the “How should we prepare them for this

goal?” section in the White Paper.

• Provide small classes including a large percentage

of qualified students to enable significant teacher

interaction for the students.

19 Condu¡t Fall 2010

Index

1. Ken Knowlton. L6: Bell Telephone Laboratories Low-Level Linked List

Language. 16-minute black-and-white film. 1966.

2. Ron Baecker (with assistance of Dave Sherman). Sorting out Sorting.

30 minute color film (distributed by Morgan Kaufmann Pub.), 1981.

3. Marc H. Brown and Robert Sedgewick. 1984. A system for algorithm

animation. SIGGRAPH Comput. Graph. 18, 3 (January 1984),

177–186.

4. John T. Stasko. “Tango: a framework and system for algorithm

animation,” IEEE Computer, 23:9, pp.27–39, September 1990.

5. James E. Baker, Isabel F. Cruz, Giuseppe Liotta, and Roberto Tamassia.

1999. Visualizing geometric algorithms over the Web. Computational

Geometry: Theory and Applications 12(1–2): 125–152 (1999).

6. James E. Baker, Isabel F. Cruz, Giuseppe Liotta, and Roberto Tamassia.

1996. The Mocha algorithm animation system. In Proceedings of the

Workshop on Advanced visual interfaces (AVI ’96), Tiziana Catarci,

Maria F. Costabile, Stefano Levialdi, and Giuseppe Santucci (Eds.).

ACM, New York, NY, USA, 248–250.

7. Ryan S. Baker, Michael Boilen, Michael T. Goodrich, Roberto Tamassia,

and B. Aaron Stibel. 1999. Testers and visualizers for teaching data

structures. SIGCSE Bull. 31, 1 (March 1999), 261–265.

8. http://www.cs.brown.edu/cgc/jdsl

9. Stina S. Bridgeman, Michael T. Goodrich, Stephen G. Kobourov,

Roberto Tamassia. “PILOT: an interactive tool for learning and grading”

in Proceedings of the SIGCSE Technical Symposium on Computer

Science Education, pp, 139–143, 2000.

10. Anne M. Spalter and Rosemary M. Simpson. “Integrating interactive

computer-based learning experiences into established curricula: a

case study” in Proceedings of AMC ITiCSE ’00, pp. 116–119, 2000.

11. PhET website - Physics simulations - http://phet.colorado.edu/;

http://phet.colorado.edu/en/about

12. Kirk L. Kroeker. Celebrating the Legacy of PLATO” in ACM CACM, 53:8,

pp 19–20, August 2010.

13. PAT (PUMP - Pittsburgh Urban Mathematics Project - Algebra Tutor) -

http://act.psy.cmu.edu/awpt/awpt-home.html; ctat.pact.cs.cmu.edu/

index.php?id=timeline

14. Wayang Outpost - http://wayangoutpost.com/; Beverly P. Woolf, Ivon

Arroyo, Kasia Muldner, Winslow Burleson, David Cooper, Robert Dolan,

and Robert M. Christopherson. “The Effect of Motivational Learning

Companions on Low-Achieving Students and Students with Learning

Disabilities” in Proceedings of the International Conference on

Intelligent Tutoring Systems, 2010, Pittsburgh.

15. Memex article “As We May Think”: http://www.theatlantic.com/

magazine/archive/1969/12/as-we-may-think/3881/

16. Steven Carmody, Walter Gross, Theodor H. Nelson, David Rice, and

Andries van Dam. “A Hypertext Editing System for the /360” in Faiman

and Nievergelt (eds.) Pertinent Concepts in Computer Graphics:

Proceedings of the Second University of Illinois Conference on

Computer Graphics, pp. 291–330, University of Illinois Press, 1969.

17. David G. Durand and Steven J. DeRose. 1993. FRESS hypertext

system (abstract). In Proceedings of the fifth ACM conference on

Hypertext (HYPERTEXT ’93). ACM, New York, NY, USA, 240-; Erwin K.

Welsch. “Hypertext, Hypermedia, And The Humanities.” Library Trends

40 (Spring 1992): 614-46.

18. http://sloan.stanford.edu/MouseSite/1968Demo.html

19. Wiliam O. Beeman, Kenneth T. Anderson, Gail Bader, James Larkin,

Anne P. McClard, Patrick McQuillan, and Mark Shields. 1987. Hypertext

and pluralism: from lineal to non-lineal thinking. In Proceedings of

the ACM conference on Hypertext (HYPERTEXT ’87). ACM, New York, NY,

USA, 67–88.

20. http://el.media.mit.edu/logo-foundation/logo/turtle.html;

http://en.wikipedia.org/wiki/Logo_(programming_language)

21. http://www.mathsnet.net/logo/turtlelogo/index.html

22. Alan Kay. “A Personal Computer for Children of All Ages” -

http://www.mprove.de/diplom/gui/Kay72a.pdf

23. Lego Mindstorms: http://www.lego.com/education/school/default.

asp?locale=2057&pagename=ict_home&l2id=3_2

24. http://www.bootstrapworld.org/

25. http://www.nytimes.com/indexes/2010/09/19/magazine/index.html

26. http://www.nytimes.com/2010/09/19/magazine/19video-t.

html?ref=magazine

27. Immune Attack: http://www.fas.org/immuneattack/

28. http://en.wikipedia.org/wiki/Fantastic_Voyage

29. Kathleen S. Wilson. “Palenque: an interactive multimedia digital

video interactive prototype for children” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (Washington,

D.C., United States, May 15–19, 1988). J. J. O’Hare, Ed. CHI ’88. ACM,

New York, NY, 275–279, 1988.

30. AgentSheets home page: http://www.agentsheets.com/

31. Alice home page: http://www.alice.org/

32. DrRacket programming environment:

http://docs.racket-lang.org/drracket/index.html;

Racket language: http://racket-lang.org/learning.html;

PLT (Programming Language Team) - http://www.cs.rice.edu/CS/PLT/

33. http://www.greenfoot.org/about/whatis.html;

http://en.wikipedia.org/wiki/Greenfoot

34. http://research.microsoft.com/en-us/projects/kodu/;

http://fuse.microsoft.com/project/kodu.aspx

35. Michelle Roper Fox, Henry Kelly, and Sachin Patil. “Medulla: A

Cyberinfrastructure-Enabled Framework for Research, Teaching, and

Learning with Virtual Worlds” in Online Worlds: Convergence of the Real

and the Virtual. Human-Computer Interaction Series, 2010, pp. 87–100.

36. Samba algorithm animation system:

http://www.cc.gatech.edu/gvu/softviz/algoanim/samba.html;

John T. Stasko. “Using student-built algorithm animations as learning

aids” in ACM SIGCSE Bull. 29:11, pp. 25-29, March 1997.

37. Scratch home page:

http://scratch.mit.edu/; http://en.wikipedia.org/wiki/Scratch_

(programming_language)

38. http://net.datastructures.net/

39. Andy van Dam and Rosemary Simpson. “Next Generation Education

Software: Issues and Possibilities” in Conduit, 14:2, Fall/Winter 2005,

pp.1, 10–19.

40. Andries van Dam. “Grand Challenge 3. Provide a Teacher for Every

Learner” in Grand Research Challenges in Information Systems. Anita

Jones and William Wulf, editors, pp. 18–22, Computing Research

Association, 2003.

41. CRA-E White Paper: http://www.cra.org/uploads/documents/

resources/rissues/CRA-E-Researcher-Education.pdf

20 Condu¡t Fall 2010

The Artemis program included lessons on a va-

riety of computer science topics, with lab exer-

cises to provide the girls with hands-on comput-

er experience. Early on in the planning process,

the coordinators decided that showing the girls a

breadth of topics was more important than delv-

ing in depth in only a few to illustrate the wide

applicability of computer science and increase

the chance each of the girls would find an area

she loved. The girls learned about binary num-

bers and logic operators, sorting algorithms,

breadth-first and depth-first search, and comput-

er hardware basics. The coordinators used inter-

active teaching methods to capture the students’

attention and create a fun learning experience.

For example, the coordinators created a board

game called “Motherboard” which led the players

to navigate through the hardware components of

a computer that are used for a task the girls were

familiar with – composing and saving a docu-

ment. The classroom activities were important to

show the math and science foundations behind

computer programming.

In the computer labs, the girls learned how to use

Photoshop to turn a photo into an advertisement

and created their own websites using HTML/CSS,

and both projects were as popular this year as in

the past. The coordinators selected the Java lan-

guage for the programming exercises. The girls

were first introduced to Alice, a software tool de-

veloped at CMU to teach novice users object-ori-

ented programming concepts by creating virtu-

al stories. This simplified the teaching of the Java

language constructs as the coordinators were able

to refer back to the Alice counterparts to help

the girls understand. The last lab exercise in-

volved programming Finch robots, on loan to Ar-

temis by CMU, using Java. The girls programmed

their Finches to dance, culminating in a “dance-

off” and implemented the game “Finch, Finch,

Revolution” where the girls interacted with the

robots according to arrows on the computer.

The Artemis Project

The Artemis Project, a free five-week program offered to rising ninth grade

girls in the Providence area to introduce them to the field of computer science,

completed its 15th year this summer. Usually run by four Brown undergraduate

women, this summer’s Artemis welcomed a fifth coordinator from Boston

University, Katherine Zhao ’12, who plans to expand the program to the Boston

area. Along with Katherine, coordinators Michelle Micallef ’12, Natalie Serrino ’12,

Miranda Steele ’13 and Tashyana Thomson ’12, led this year’s group of 21 girls.

21 Condu¡t Fall 2010

The Artemis coordinators invited speakers from

Adobe, Google, and Microsoft to speak to the

girls about computer-related jobs, the future of

technology, and women in computer science.

The girls also enjoyed the presentations from sev-

eral Brown Computer Science faculty about their

research, including Internet security, robotics,

and computer graphics. Field trips are a tradi-

tion of the Artemis Project, and this year the girls

went to the MIT museum in Cambridge, where

they programmed LEGO Mindstorm robots and

explored the museum’s robotics exhibit, and dis-

covered the history of computing in their tour of

the Boston Museum of Science.

Artemis is looking for new coordinators for next

summer’s program. If you are interested or have

any questions or suggestions you can email the

current coordinators at artemis@cs.brown.edu.

22 Condu¡t Fall 2010

Research

IPP Symposium on Cloud Computing
by Rodrigo Fonseca

On May 13th we hosted the 42nd Industrial Partners Program

Symposium, following a long and successful tradition of very interesting

and engaging events that bring together our partners, students and

faculty to discuss relevant, current topics in Computer Science.

Like many emerging trends, Cloud Comput-

ing is not without a lot of hype, a multitude of

definitions, and controversy. For example, Lar-

ry Ellison, from Oracle Corporation, was quot-

ed as saying that “The interesting thing about Cloud
Computing is that we’ve redefined Cloud Computing
to include everything that we already do. I don’t un-
derstand what we would do differently in the light of
Cloud Computing other than change the wordings of
some of our ads.”1

On the other hand, Bill Gates said that “We’re
taking everything we do at the server level and saying
we will have a service that mirrors that exactly. (…)
it’s getting us to think about data centers at a scale
that never existed before... [to create] a mega-data cen-
ter that Microsoft and only a few others will have.”2

Indeed, the vision of computing as a utility,

much like water or electricity, has been around

for a long time, and was one of the driving forc-

es for the Multics operating system, which start-

ed in the 6 s. It was not until recently, however,

that several trends converged to make this a via-

ble alternative: a large number of well-connect-

ed clients, very large, well-connected datacen-

ters leveraging economies of scale, and robust

distributed software systems that allow elastic

scalability of applications. Application provid-

ers can reach large populations of clients with

low initial investment, cloud providers can prof-

it from the efficiency of multiplexing their vast

computational resources among many ten-

ants, and users benefit from a software delivery

model that always provides the latest version of

the software and stores most of the data in the

cloud. As more users provide data to increasing-

ly popular services, these services can then use

the data to their advantage, finding trends and

tuning their offerings even more.

There are many flavors and definitions of Cloud

Computing, depending on the provider and on

the goal. The National Institute of Standards

and Technology defines it as “a model for en-

abling convenient, on-demand network access

to a shared pool of configurable computing re-

sources (e.g., networks, servers, storage, appli-

cations, and services) that can be rapidly provi-

sioned and released with minimal management

effort or service provider interaction.”3 Cloud

providers vary in the level of abstraction they

present to their tenants. Common variations

are Infrastructure as a Service, Platform as a

Service, and Software as a Service. An example

of the first is Amazon’s offering of EC2, which

presents to their client bare virtual machines.

Google’s AppEngine and Microsoft’s Azure of-

ferings are examples of the second type, pre-

senting a programming environment with tools

and services to allow application development,

deployment, and management. The last varia-

tion is the provision of full applications hosted

in the provider’s cloud, as is the case with Sales-

Force.com. Clouds can also be public or private.

The four examples above are of public cloud

services, but companies like Yahoo!, Facebook

and eBay have internal cloud services used by

the different services they provide.4

We had an impressive set of speakers for this

Spring’s symposium, coming from VMWare,

Facebook, Yahoo!, Google, Cloudera, and Mi-

crosoft. Taken together, these companies own a

very significant fraction of the world’s comput-

ers dedicated to Cloud Computing! In addition

to these, we had two Ph.D. students represent-

ing relevant research being done at Brown. Oth-

er IPP member companies were represented in

the 55-people audience, including GTECH and

Edelman & Associates.

23 Condu¡t Fall 2010

Research

Rather than trying to get the participants to

agree on a definition of Cloud Computing, they

were asked to convey their own vision on the

subject, and talk about some specific aspect that

they thought was relevant and interesting, and

that would lead to further discussion. The result

was a series of talks that mixed vision and also

specific aspects, mechanisms or infrastructure

services, such as storage, analytics, management,

and security.

After brief introductions by Professors Ugur Ce-

tintemel and Rodrigo Fonseca, Orran Krieg-

er, from VMWare, talked about how VMWare

sees cloud computing. Virtualization, VM-

Ware’s chief expertise, is central to many cloud

provision solutions. It is not the whole story,

though, as the management of large collections

of virtual computing, storage, and network-

ing components on top of physical resources

are very challenging. VMWare is leading the ef-

fort to produce an open cloud management

API, vCloud, which will both make the task eas-

ier and more standardized, according to Or-

ran. Cloud computing today is a segmented eco-

system, where it is very hard for clients of one

cloud provider to migrate to another provider.

Ideally, one would be able to move from private

clouds to public clouds depending on scale and

business needs, and a uniform cloud interface

can help bring us in that direction.

Harry Li ’02, from Facebook, presented two of

Facebook’s solutions to serve dynamic content

to its half a billion users, highlighting how one

has to balance efficiency, scalability, elegance,

and pragmatism when deploying applications

at this scale. The first system, Haystack, is a nov-

el datastore optimized to serve Facebook’s pho-

tos. Facebook recently became the largest pho-

to-sharing site, with over 2.5 billion pictures

uploaded every month. Haystack is a clean-slate

design that is highly optimized, foregoing tra-

ditional POSIX file system semantics to incur at

most one disk access per photo served, which

allows the site to handle its load that reach-

es 500,000 image requests per second at times!

In the second half of the talk he described how

Facebook aggressively uses memcached to re-

duce the load on MySQL databases for its per-

sistent storage, and how they cope with the con-

sistency problems that arise with concurrent

accesses from multiple datacenters. He men-

tioned how the second solution is not as elegant,

but works well enough, and how both approach-

es contribute to allow Facebook to continue to

scale.

Adam Silberstein, from Yahoo! Research, also

talked about storage systems at the cloud scale,

but from the point of view of benchmarking.

Given a multitude of offerings for scalable stor-

age backends, occupying different points in the

design space, but targeting horizontal scalabil-

ity to large datacenters and collections of data-

centers, how can we evaluate their benefits and

pitfalls? Each system provides their own evalua-

tions, but on different hardware setups and un-

der unique workloads, making comparisons im-

possible. Adam presented the Yahoo! Cloud

Serving Benchmark, an open-source tool re-

leased by Yahoo!, that facilitates the compar-

isons among cloud serving systems, and dis-

cussed experimental results comparing four

systems: Facebook’s Cassandra, Apache’s HBase,

Yahoo!’s PNUTS, and a static, sharded deploy-

ment of MySQL.

Joe Hellerstein, from Google, dived into the in-

frastructure to provide computation at large

scale, specifically about how to use quantita-

tive models to help guide the many decisions

Some of the Symposium participants. From left to right, Srikanth Kandula (MSR), Rodrigo

Fonseca (Brown), Joseph Hellerstein (Google), Adam Silberstein (Yahoo! Labs), Andy Pavlo

(Brown), Charalampos Papamanthou (Brown), and Harry Li (Facebook). Missing from the

picture are Orran Krieger (VMWare), and Jeff Hammerbacher (Cloudera).

24 Condu¡t Fall 2010

involved in building these systems. These design

choices include scheduling policies for compute

clusters, caching and replication policies for

storage, and approaches to integrating band-

width management with application require-

ments for quality of service (QoS). They must

be evaluated along several dimensions, such as

throughput, latency, jitter, as well as the con-

sumption of power, compute, storage, and net-

work bandwidth. Joe shared some details of how

they instrument production systems to obtain

metrics that are then used to tune the systems,

and to produce workload models useful for fur-

ther exploration. His team at Google is making

some of this data available for the research com-

munity, which is an exciting first step.

Right after lunch, Jeff Hammerbacher, from

Cloudera, talked about the new needs for busi-

ness analytics in the face of the unprecedented

amounts of data generated by companies today,

and how relational database management sys-

tems are just one of the pieces of the whole re-

search cycle. As an example, he mentioned how

Microsoft’s SQL Server has evolved, in the 2008

R2 version, to include tools other than the RD-

BMS for event handling, integration, reporting,

analysis, search, and OLAP. What does this have

to do with the Cloud, you may ask… Jeff argued

that Hadoop, the open source implementation

of Google’s MapReduce paradigm, with its set

of related projects, is the base for a new power-

ful, open source, enterprise-grade analytics plat-

form. Hadoop is designed to run on the same

infrastructures that power cloud computing of-

ferings, warehouse-scale datacenters with thou-

sands of commodity machines working together.

Andy Pavlo, a Ph.D. student from our depart-

ment, continued on the topic of where

MapReduce fits relative to traditional database

management systems. Some proponents of

MapReduce claimed that the extreme scalabili-

ty of MapReduce would relegate database tech-

nology to niche applications. Andy showed re-

sults from benchmarks comparing the two

technologies, highlighting that they each have

their merits, and that MR produces less than

satisfactory results for some workloads for

which databases are suitable. Rather than hav-

ing to select a winner, what we see is cross-pol-

lination between the two worlds, with more

complex query languages added to MapReduce,

and some of the processing and fault-tolerance

characteristics of MapReduce being integrated

with several database products.

Srikanth Kandula, from Microsoft Research,

presented some recent research results on how

to optimize the runtime of map-reduce jobs

in a large cluster by identifying and selective-

ly duplicating computation stages that are tak-

ing too long to complete. These straggler jobs

can severely decrease the performance of whole

clusters, even though they may have isolated

causes. Their results showed an improvement of

over three times in performance on a cluster of

12,000 nodes.

The last talk of the day touched on security, a

very important and crosscutting issue in this

space. Perhaps one of the greatest barriers

to more widespread adoption of Cloud Com-

puting is how to guarantee security – integri-

ty and confidentiality – of the data and applica-

tions that companies and individuals delegate

to third party cloud providers. How can you

trust the provider? Charalampos Papamanthou,

also a Ph.D. student from our department, de-

scribed Dynamic Provable Data Possession, a

method that can be used to check the integrity

of dynamic data stored in the cloud. The main

advantage of this scheme is that one can veri-

fy that the cloud provider is correctly storing a

potentially very large collection of files without

having to transfer all bits of the file.

In all, the IPP symposium achieved both breadth

and depth, and generated many interesting ques-

tions and discussions during and after the talks.

To see the program, abstracts of the talks, and

some of the videos of the talks, you can check

out the permanent home for this edition of the

symposium, listed below, together with addition-

al pointers for each of the talks. We look forward

to future editions of the event, so stay tuned!

Research

25 Condu¡t Fall 2010

To learn more:
• 42nd IPP Symposium permanent home:

http://www.cs.brown.edu/ipp/symposia/

ipp42/

• VMWare’s vCloud APIs: http://www.vmware.

com/go/vcloudapi

• Facebook’s Haystack is described in detail

in the paper “Finding a Needle in Haystack:

Facebook’s Photo Storage”, by Doug Beaver,

Sanjeev Kumar, Harry C. Li, Jason Sobel,

and Peter Vajgel, Facebook Inc, presented at

OSDI, 2010.

• Yahoo!’s Cloud Serving Benchmark

is described in detail in the paper

“Benchmarking Cloud Serving Systems

with YCSB”, presented in the First ACM

Symposium on Cloud Computing,

Indianapolis, 2010. http://research.yahoo.

com/Web_Information_Management/YCSB

• Joe Hellerstein’s talk is complemented by

the paper “Towards Characterizing Cloud

Backend Workloads: Insights from Google

Compute Clusters”, Asit Mishra, Joseph

L Hellerstein, Walfredo Cirne, Sigmetrics

Performance Evaluation Review (2009).

http://www.google.com/research/pubs/

archive/35611.pdf

• A presentation by Jeff Hammerbacher

on the industry track of SIGMOD

2010, slightly expands his talk at the

symposium: http://www.slideshare.net/

jhammerb/20100608sigmod

• Andy Pavlo gave a similar talk at MIT in

January, “MapReduce and Parallel DBMSs:

Together At Last”. http://www.cs.brown.

edu/~pavlo/presentations/mapreduce-

nedb2010.pdf

• Srikant’s talk draws from material in this

OSDI 2010 paper: “Reining in the Outliers

in Map-Reduce Clusters”, by Ganesh

Ananthanarayanan, Srikanth Kandula, Albert

Greenberg, Ion Stoica, Yi Lu, and Bikas Saha

1. Finally, to learn more about Dynamic

Provable Data Possession you can read

the paper “Dynamic Provable Data

Possession”, by Chris Erway, Alptekin

Küpçü, Charalampos Papamanthou and

Roberto Tamassia, in Proceedings of the

ACM Int. Conference on Computer and

Communications Security (CCS), pages 213-

222, Chicago IL, USA, 2009. http://dx.doi.

org/10.1145/1653662.1653688

Endnotes
1. ‘Oracle’s Ellison nails cloud computing’,

CNET News, Sep 26th, 2008, http://news.

cnet.com/8301-13953_3-10052188-80.html

2. Bill Gates Keynote: Microsoft Tech-Ed

2008 – Developers, June 3rd, 2008.

http://www.microsoft.com/presspass/exec/

billg/speeches/2008/06-03teched.mspx

3.‘NIST Definition of Cloud Computing v15’,

http://csrc.nist.gov/groups/SNS/cloud-

computing/cloud-def-v15.doc

4. See for example ‘Who Has the Most Web

Servers’, at http://www.datacenterknowledge.

com/archives/2009/05/14/whos-got-the-

most-web-servers/

Research

26 Condu¡t Fall 2010

John von Neumann Days and The Genome and
the Computational Sciences: The Next Paradigms
May 3–7, 2010, Brown University

Symposium organized by the Center for Computational Molecular Biology,

Department of Computer Science, and the Office of Brown University

President Ruth J. Simmons

A Distinguished Lectures only symposium. All lectures followed by Sweatbox

Session. All Distinguished lectures and their Sweatbox Session video are

available at http://www.brown.edu/Research/CCMB/

The Brown University Center for Computational Molecular Biology Symposium

was held May 3–7, 2010. The symposium was composed of two parts. The first

part (May 3–4) was entitled John von Neumann Days and hosted a series of

John von Neumann Distinguished Lecturers.

Brown University President Ruth J. Simmons introducing Marina von Neumann Whitman

Marina von Neumann and family Brain Signaling Panel left to right: Sean Eddy, Stuart Geman,

Elie Bienenstock, Kenneth Arrow, Sorin Istrail, and Leon Cooper

Research

27 Condu¡t Fall 2010

Marina von Neumann Whitman
Professor of Business Administration

And Public Policy,

University of Michigan

“John von Neumann: A Daughter’s View”

May 3, 2010

Leon Cooper
Nobel Laureate, Thomas J. Watson Professor

of Science,

Director, Institute for Brain & Neural

Systems,

Brown University

“von Neumann and the Problem of

Measurement in the Quantum Theory”

May 4, 2010

John Conway
John von Neumann Professor of

Mathematics,

Princeton University

“von Neumann, Set Theory and Life”

May 3, 2010

Eric H. Davidson
Chandler Professor of Cell Biology

California Institute of Technology

“Genomic Control System for

Development: The Sea Urchin Embryo

Gene Regulatory Network

May 5, 2010

Kenneth Arrow
Nobel Laureate

Joan Kenney Professor of Economics

Professor of Operations Research Emeritus

Stanford University

“My Beliefs and Ours: Formation, Costs,

Interactions, and Effects”

May 7, 2010

George Dyson
Historian of Science

Presented for Freeman Dyson

Professor Emeritus of Physics,

Institute of Advanced Study,

Princeton University

“A Walk Through Johnny von Neumann’s

Garden”

May 4, 2010

Richard Karp
University Professor

University of California, Berkeley

“Understanding Science Through the

Lens of Computations”

May 3, 2010

Daughter of John von Neumann

von Neumann Distinguished Lecture

on Physics

von Neumann Distinguished Lecture

on Mathematics

von Neumann Distinguished Lecture

on Biology

von Neumann Distinguished Lecture

on Economics

Distinguished Lecture on

John von Neumann’s Legacy

von Neumann Distinguished Lecture

on Economics

On the computer screen, Professor Freeman Dyson joined the panel session
“Brain Signaling: Digital, Analog or Both?” on the last day of the
symposium via videoconference. Professor Dyson was not able to deliver
his distinguished lecture due to hospitalization the weekend before the
sympsosium. His son, George Dyson, delivered the lecture for him. Professor
Dyson’s appearance via videoconference only a few days after his hospital
release to contribute to the celebration of John von Neumann, a scientist hero
to so many of us, was a triumph in conquering adversity.

Research

28 Condu¡t Fall 2010

The Genome and the Computational Sciences
May 5–7, 2010

Andrew G. Clark, Jacob Gould Schurman

Professor of Population Genetics, Cornell

University

“Consequences of Explosive Human Population

Growth on Complex Genetic Disorders”

Ellen V. Rothenberg, Albert Billings Ruddock

Professor of Biology, California Institute of

Technology

“A Gene Regulatory System Guiding Cell

Identity Choice: Stem Cells to T Cells”

Jonathan W. Yewdell, Chief, Biology Section,

Laboratory of Viral Disease, NIAID, NIH

“It’s Not Written in Stone: Stress Induced

Alteration in the Genetic Code”

Richard Lewontin, Alexander Agassiz Research

Professor, Museum of Comparative Zoology,

Harvard University

“The Problem of Natural Selection for Genomic

Variation”

Martha Bulyk, Associate Professor of Medicine

& Pathology, Harvard Medical School

“Transcription Factor-DNA Interactions: Cis

Regulatory Codes in Genomes”

David Shaw, Chief Scientist, D.E. Shaw

Research, Senior Research Fellow, Center for

Computational Biology and Bioinformatics,

Columbia University

“Millisecond-Long Molecular Dynamics

Simulations of Proteins on a Special Purpose

Machine”

Martin Meier-Schellersheim, Team Leader,

Computational Biology Group, NIAID, NIH

“The Challenges of Spatially Resolved

Computational Modeling of Cellular Signaling

Processes”

Sam Broder, Medical Officer, Celera and

former Director of the National Cancer

Institute, NIH

“The Development of Antiretrovial Therapy and

Its Impact on the Global HIV-1/AIDS Pandemic:

Personal Reflections on a Journey to Treat an

‘Untreatable’ Virus After 25 Years”

Sean Eddy, Group Leader, Janelia Farm,

Howard Hughes Medical Institute

“Reading Genomes”

Symposium Organizers:

Leon Cooper, Thomas J. Watson Sr. Professor of

Science, Director, Institute for Brain and Neural

Systems

Stuart Geman, James Manning Professor of

Applied Mathematics, Division of Applied

Mathematics

Sorin Istrail, Julie Nguyen Brown Professor of

Computational and Mathematical Sciences,

Professor of Computer Science, Director,

CCMB, Symposium Chair

Roberto Serrano, Harrison S. Kravis University

Professor of Economics

A toast in celebration of the new CCMB based Ph.D. program in

computational biology at Brown

Left to right: Stuart Geman, Roberto Serrano, Sorin Istrail, Kenneth

Arrow, Chip Lawrence, Leon Cooper

The symposium administrative coordinator was Lisa Manekofsky.

Software engineering support was provided by Derek Aguiar.

Research

29 Condu¡t Fall 2010

Department News and Happenings

Commencement

Daniel Grollman

Al Urim, James Stout, Spencer Brody

Christina Salvatore, Matt Jacobs, Elizabeth Cheever, Andy van Dam,

Andres Douglas Castroviejo, Jonathan Natkins

Diana Huang and Lyla Fujiwara

Micha Elsner, Suman Karumuri & wife, David McClosky, Deepak Santhanam

Hojoon Park, Marek Vondrak

30 Condu¡t Fall 2010

Department News and Happenings

Michael Black Awarded Prize for Fundamental
Contributions in Computer Vision

Michael Black was recently awarded the 2010

Koenderink Prize for Fundamental Contribu-

tions in Computer Vision. The Prize was given

at the European Conference on Computer Vi-

sion (ECCV) in Hersonissos, Crete for work that

has withstood the test of time. Papers from the

ECCV 2000 meeting were eligible and Michael

and his collaborators Hedvig Kjellstrom (nee

Sidenbladh) and David Fleet received the prize

for their paper “Stochastic Tracking of 3D Hu-

man Figures Using 2D Image Motion.”

Amy Greenwald Awarded $15,000
for the Artemis Project from Microsoft
Research and the National Center for
Women & Information Technology

The Artemis Project, the departmental outreach

program led by Amy Greenwald, recently re-

ceived $15,000 from Microsoft Research and

The National Center for Women & Information

Technology (NCWIT) via the NCWIT Academic

Alliance Seed Fund.

Artemis is a five-week summer day camp for

high school girls in the Providence area that

provides an introduction to computer science

and technology. The learning process includes

a range of both educational and confidence-

building activities. Participants attend lectures

from women scientists and other potential role

models from both academia and industry. Ar-

temis is provided at no cost to the participants,

who come from predominately low-income, mi-

nority households.

The award will be used to expand Artemis into

new directions. This year, in addition to the four

coordinators from Brown, (Michelle Micallef,

Natalie Serrino, Miranda Steele and Tashyana

Thompson) a Boston University student (Kath-

erine Zhao) was hired with the goal of expand-

ing the program to the greater Boston area in

future years.

The NCWIT Academic Alliance Seed Fund pro-

vides U.S. academic institutions with start-up

funds to develop and implement initiatives for

recruiting and retaining women in comput-

er science and information technology fields of

study. The Seed Fund was initiated in 2007 with

start-up funding from Microsoft Research and

to-date has awarded $265,450 in funding. Uni-

versity at Albany SUNY and Virginia Polytech-

nic Institute and State University also received

awards from the NCWIT Academic Alliance in

this round of funding.

NCWIT is a national coalition of over 170 prom-

inent corporations, academic institutions, gov-

ernment agencies, and non-profits working to

strengthen the computing workforce and culti-

vate technology innovation by increasing the par-

ticipation of women. NCWIT’s work connects

efforts to increase women’s participation in tech-

nology along the entire pipeline, from K-12 and

higher education through industry, academic,

and entrepreneurial careers.

The NCWIT Academic Alliance brings togeth-

er more than 90 representatives from computer

science and IT departments at colleges and uni-

versities across the country – spanning research

universities, community colleges, women’s col-

leges, and minority-serving institutions – to work

towards gender equity, diversity, and institution-

al change in computing higher education.

Maurice Herlihy Named Fulbright
Distinguished Chair in the Natural
Sciences and Engineering

Maurice Herlihy has been awarded the Ful-

bright Distinguished Chair in the Natural Sci-

ences and Engineering Lecturing Fellowship for

the 2010-2011 academic year. He is visiting the

Technion in Haifa, Israel, working on multipro-

cessor synchronization.

Maurice said, “The advent of multicore architec-

tures has made this a particularly exciting time

to be working on concurrency, and I look for-

ward to establishing new collaborations.”

Department News and Awards

31 Condu¡t Fall 2010

Department News and Happenings

Recipients of Fulbright awards are selected on

the basis of academic or professional achieve-

ment, as well as demonstrated leadership po-

tential in their fields. The Fulbright Program,

America’s flagship international educational ex-

change program, is sponsored by the United

States Department of State, Bureau of Educa-

tional and Cultural Affairs and operates in over

155 countries worldwide. It was established in

1946 under legislation introduced by the late

Senator J. William Fulbright of Arkansas.

Sorin Istrail Awarded Title of
Professor Honoris Causa from
Alexandru Ioan Cuza University

As part of the celebration of its 150th anniversa-

ry, Alexandru Ioan Cuza University in Iasi, Ro-

mania, presented an honorary professorship

(Professor Honoris Causa) to alumnus Sorin Is-

trail. “I am very humbled and honored to re-

ceive this recognition,” he said.

Sorin’s alma mater, where he earned a B.S. in

computer science in 1975, was also celebrating

the centennial of its Alexandru Myller Mathe-

matical Seminar. Sorin helped commemorate

the anniversary by participating in the seminar

as an invited lecturer, delivering a technical talk

titled “Concepts of Mathematical Rigor for Al-

gorithms in De-randomization, Statistical Phys-

ics, and Molecular Biology.”

The lecture’s first topic explored how to con-

struct a random walk deterministically. What

seems paradoxical can be well defined, Sorin

said, if one asks for a construction that cannot

be distinguished from a random walk by loga-

rithmic space computation. Sorin presented his

construction of universal traversal sequences

(introduced by Steve Cook) for the de-random-

ization of algorithms employing one-dimen-

sional random walks, published in the Proceed-

ings of the 1988 ACM Symposium on Theory of

Computing (STOC).

The second topic was the existence of analytical

closed-form formulas for the partition function

in the statistical mechanics of the Ising model,

the most studied model in statistical physics. So-

rin outlined his negative solution of the notori-

ous 3D-Ising Model Problem showing that “the

statistical mechanics world of the Ising model is

flat!” His proof showed axiomatically the Ising

model “equation”: “Non-Planarity + Translation-

al Invariance = NP-completeness (of the parti-

tion function).” This result, published in STOC

2000, ruled out, in the computational intrac-

tability sense, the existence of exactly solvable

models for every 3D model (even strongly, every

non-planar model).

He concluded his lecture with results from his

2004 paper in collaboration with Eric Davidson

(Caltech) on the logic functions of the genom-

ic cis-regulatory code (published in the Pro-

ceedings of the National Academy of Sciences),

and 10 years of research together (five while at

Brown) on the search for the fundamental al-

gorithm to predict the functional meaning of

regulatory DNA.

Sorin is the Julie Nguyen Brown Professor of

Computational and Mathematical Sciences and

Professor of Computer Science, as well as direc-

tor of the Center for Computational Molecular

Biology. His research focuses on computation-

al molecular biology, human genetics, medical

bioinformatics, statistical physics and complex

systems, combinatorial algorithms, and compu-

tational complexity.

He is co-editor-in-chief of the Journal of Com-

putational Biology, co-founder of the RECOMB

conference series, co-editor of the MIT Press

Computational Molecular Biology book series,

and co-editor of the Springer Lecture Notes in

Bioinformatics book series.

Chad Jenkins Promoted to
Associate Professor

The Department is excited to announce the

promotion of Odest C. (Chad) Jenkins to As-

sociate Professor with tenure, effective July 1,

2010. “Chad’s promotion recognizes his out-

standing research work, innovative teaching,

and exemplary service,” said Department Chair

Roberto Tamassia.

Chad joined our department in 2004 after

completing his Ph.D. at University of South-

ern California, his M.S. in computer science

32 Condu¡t Fall 2010

Department News and Happenings

from Georgia Institute of Technology and his

B.S. in computer science and mathematics

from Alma College.

Selected as a Sloan Research Fellow in 2009,

Chad is also a recipient of a Presidential Ear-

ly Career Award for Scientists and Engineers

(PECASE) for his work in physics-based human

tracking and of a CAREER Award from the Na-

tional Science Foundation (NSF) for his work

on robot learning from multivalued human

demonstrations. He received Young Investiga-

tor awards from the Office of Naval Research

(ONR) for his research in learning dynamical

primitives from human motion and from the

Air Force Office of Scientific Research (AFOSR)

for his work in manifold learning and multi-ro-

bot coordination.

Chad’s research addresses problems in robot

learning and human-robot interaction, pri-

marily focused on robot learning from dem-

onstration, as well as topics in computer vision,

machine learning, and computer animation.

Videos of Chad’s current research work can be

found on the YouTube channel of the Brown

Robotics Group.

In 2009, Chad co-authored Creating Games:

Mechanics, Content, and Technology with

Brown CS alum Morgan McGuire. He has also

authored chapters for several other books, in-

cluding Data-Driven 3D Facial Animation, Human-
Robot Interaction and From Motor to Interaction
Learning in Robots.

“I consider myself very fortunate to be a part of

the Computer Science Department at Brown,”

said Chad. “My promotion is both a reflection

of the supportive culture and community spir-

it of the department as well as the hard work of

the students and post-docs who have been in

my group. I look forward to continued success

at Brown, especially with our new robotics lab

space in the CIT building.”

Ben Raphael and Eli Upfal Receive
NSF Grant to Develop Techniques for
Analysis of DNA Sequence Variants

The National Science Foundation (NSF) award-

ed a research grant, in the expected amount

of $500,000, to Ben Raphael and Eli Upfal

to develop robust algorithmic and statistical

techniques for the analysis of DNA sequence

variants in the context of known and novel

gene-gene interactions. These techniques will

allow biomedical researchers to identify DNA

variants associated with risk for various diseases,

including cancer.

Algorithms developed in this project will be im-

plemented and released as open-source software

for use by the biological and medical community.

The project will also support the training of grad-

uate students and undergraduate researchers.

Eli Upfal Selected as Chalmers Jubilee
Distinguished Visiting Professor

Eli Upfal was recently invited to serve as the

Chalmers Jubilee Distinguished Visiting Profes-

sor for 2010. Chalmers is a Swedish university of

technology in which research and teaching are

conducted on a broad front within technology,

natural science and architecture.

The Jubilee Distinguished Visiting Professor

Chair was created by the Swedish government

when Chalmers University celebrated its 150th

anniversary in 1979. To goal of the visiting chair

is to bring new skills to the University while

strengthening international relations.

According to Eli, “I look forward to working

on interesting research problems with Devdatt

Dubhashi and his students. There are also ex-

citing opportunities to create new collabora-

tions. Chalmers has been one of the world’s

leaders in statistical research and I look forward

to collaborating on new ways to integrate statis-

tical concepts and methods in algorithmic re-

search. This is especially useful in applications

with large datasets, such as computational biolo-

gy, web browsing and social networking.”

Pascal Van Hentenryck Receives
Philip J. Bray Award for Teaching
Excellence in the Physical Sciences

Pascal Van Hentenryck received the Philip

J. Bray Award for Teaching Excellence in the

Physical Sciences. In addition to the recogni-

tion of his achievements, Pascal will receive a

professional development fund of $2,000 for

each of two years.

33 Condu¡t Fall 2010

The award was presented at the 2010 Univer-

sity Awards Ceremony, co-sponsored by the

Dean of the Faculty, the Dean of the Gradu-

ate School, the Harriet W. Sheridan Center

for Teaching and Learning, and Computing

& Information Services, Brown University. In

announcing the award, Rajiv Vohra, Dean of

the Faculty, noted Pascal’s “profound and sus-

tained impact on undergraduate education in

computer science at Brown.”

Pascal said “This award is a credit to the depart-

ment and how it nurtures young faculty mem-

bers in undergraduate education. I was very for-

tunate to benefit from role models like Andy,

Philip, Leslie Kaelbling, and Dave Sklar. And,

of course, we all greatly benefit from teaching

highly motivated and gifted undergraduates

who are constantly challenging us. It is amazing

how much influence they have on the classes.”

The Faculty Teaching Excellence Awards recog-

nize Brown faculty members for sustained and

continued excellence in undergraduate teach-

ing. Awards are made in each of the four major

areas of the curriculum: humanities, life, phys-

ical and social sciences. The awards are named

for past faculty members recognized for their

teaching achievements: John Rowe Workman

(Humanities), Elizabeth LeDuc (Life Sciences),

Philip J. Bray (Physical Sciences), and William

G. McLoughlin (Social Sciences).

The following members of the department were

also recognized for their teaching contributions

at the Awards Ceremony: Associate Professor

(Research) and Vice Chair Tom Doeppner (Sher-

idan Faculty Liaison) and Ph.D. students Nathan

Backman (Sheridan Teaching Certificate I), Yuri

Malitsky (Sheridan Teaching Certificate I) Deq-

ing Sun (Sheridan Teaching Certificate I) and

Justin Yip (Sheridan Graduate Student Liaison).

BU, Brown and UC Irvine receive
$3 million NSF grant

Computer scientists from Boston University,

Brown University and the University of Califor-

nia, Irvine, will collaborate on a grant from the

National Science Foundation (NSF) in the an-

ticipated amount of $3 million to investigate

“trustworthy interaction in the cloud.” The

cloud refers to Internet-based outsourced com-

putation (popularly know as cloud computing),

whereby shared resources, software, and infor-

mation are provided to computers and other

devices on demand.

As one of the most promising emerging con-

cepts in information technology, outsourced

computation is transforming how IT is con-

sumed and managed, yielding improved cost ef-

ficiencies and delivering flexible, on-demand

scalability. However, despite the relatively fast

growth and increased adoption of clouds, as-

pects related to their security, privacy, and eco-

nomic value proposition remain largely unan-

swered and are regarded by some technology

experts as impediments to broader acceptance

of this approach to computing.

“Developing the right mechanisms for the speci-

fication and verification of trust-enhancing ser-

vice-level agreements in the cloud will avert con-

flicts among cloud market stakeholders,” says

Azer Bestavros, lead principal investigator and

professor of computer science at Boston Univer-

sity. “Doing so will also improve the utility and

hardness of our cyber-infrastructure, with signif-

icant benefit to our economy and society.”

“As more and more data is being stored in the

cloud, keeping that data private is becoming

critical, especially for applications in finance

and medicine,” says Michael Goodrich, princi-

pal investigator and Chancellor’s Professor at

the University of California, Irvine.

The project supported by the NSF grant will ad-

dress these concerns by examining the feasibil-

ity of extending cloud service-level agreements

to cover aspects such as integrity of outsourced

services, information leakage control, and fair

market pricing. The project will also explore

mechanisms that verify trust-enhancing service-

level agreements are being followed and devel-

op “trustworthiness” guarantees and tradeoffs to

cloud customers and system integrators that are

both practical and useable.

“We envision a new generation of trusted cloud

computing services where users will be able to

verify the integrity of their data stored in the

Department News and Happenings

cloud and the correctness of computations per-

formed in the cloud,” says principal investigator

Roberto Tamassia. Tamassia is chair and Plas-

tech Professor of Computer Science at Brown

University.

The project’s co-principal investigators include

Leo Reyzin, associate professor, Jonathan Appa-

voo, assistant professor, and Nikos Triandopou-

los, research assistant professor, at BU and Anna

Lysyanskaya, associate professor, and Rodrigo

Fonseca, assistant professor, at Brown.

In exploring these cloud computing-related is-

sues, the team will collaborate with research-

ers at leading IT industrial labs at IBM, Micro-

soft, NetApp, RSA (the security division of EMC)

and VMware. The project also will involve BU’s

Center for Reliable Information Systems and Cy-

ber Security (RISCS) and the new Massachusetts

Green High-Performance Computing Center

(MGHPCC) to examine broader implications

and impacts of cloud technology on society.

The project’s ultimate goal is to define a viable

marketplace for cloud computing resources in

which users are assured that the services they ac-

quire meet their performance, security, and pri-

vacy expectations.

Ph.D. Student Ryan Tarpine Wins Grand
Prize in Dyalog Programming Contest

Ryan Tarpine received the grand prize in the Dy-

alog 2010 Worldwide Computer Programming

Contest. The purpose of this contest was to en-

courage students and others to investigate APL

(A Programming Language). According to the

contest’s judges, Ryan’s entry won because, “Al-

though Ryan was new to APL, he writes that he

does most of his programming in functional lan-

guages, and there is clear evidence in his code

that this helped him put his best foot forward

when taking advantage of APL. Ryan’s code was

modularized in a way which allowed him to take

advantage of operators including the power op-

erator, to derive concise and elegant expressions.

His code was a joy to read and looked as if it

would be easy to maintain. For his efforts, Ryan

received a trip to the APL 2010 conference in

Berlin, in addition to the $2,500 cash prize”.

Department News and Happenings

Recent PhDs

Warren Schudy

Crystal Kahn

Aparna Das

35 Condu¡t Fall 2010

Department News and happenings

Kiran Pamnany

Kiran completed his un-

dergraduate degree at Ban-

galore University, India, in

1994. After ten years in the

software industry, he re-

turned to school to pursue a

growing interest in research,

and began his PhD at Brown

in 2005. Kiran’s research is focused on the prob-

lem of writing correct concurrent programs, with

an emphasis on correctness before performance.

With his adviser, Professor John Jannotti, Kiran is

developing a system that uses program analysis di-

rected runtime scheduling to enable the safe con-

current execution of programs developed to a seri-

al programming model.

This system supports his thesis, which he expects

to defend in the coming semester. Kiran’s other re-

search interests include embedded and realtime

systems and information security.

Micha Elsner

An online chat room can be

a confusing place, with many

different conversations going

on at once. This can make it

hard to match questions with

their answers, or figure out

who is talking to whom. Mi-

cha Elsner’s research aims

to separate out individu-

al threads of conversation from the chat. By mod-

eling the way writers provide context to make

their statements intelligible, his system can decide

whether a proposed conversational thread hangs

together or not. The same information can also

come in useful for summarization, since the com-

puter can use it to check if a candidate summary

has enough contextual information to make sense.

Elsner hopes to continue to study conversations

and other long texts, helping natural language pro-

cessing to scale up from sentence-by-sentence anal-

yses and gain a better idea of how sentences relate

to one another. He hopes his research will enable

not only better summarization, but also informa-

tion extraction and automated editing. He plans to

graduate in early 2011.

Yuri Malitsky

Yuri received his BS in com-

puter science from Cornell

in 2007, and is now a fourth

year PhD student working

with Meinolf Sellmann on

automatic instance-specif-

ic algorithm configuration.

This research challenges

the paradigm of manually tweaking parameters

to improve a solver’s performance. Instead the

project builds off the observation that different

strategies tend to do better on different prob-

lem instances. Yuri proposes a new methodolo-

gy that applies machine learning techniques to

the development of combinatorial optimization

solvers. This approach first automatically clus-

ters training problem instances and then opti-

mizes a different solver for each group.

Therefore, when a new problem instance needs

to be evaluated, it is first classified and then

evaluated with the appropriate algorithm.

This research has been empirically shown to

provide significant performance improvements

in a variety of problem domains and even for

state-of-the-art solvers like Cplex.

Planning to defend his research in the Spring

of 2011, Yuri is now searching for post-doc posi-

tions where he hopes to continue applying ma-

chine learning techniques to improve the per-

formance of commonly used algorithms.

PhD Profiles

36 Condu¡t

Recent Ph.D.s
Shriram Krishnamurthi

There are things programming languages people don’t

talk about in polite company. Not very many things, but

things nonetheless. Very few things, in fact. Come to

think of it, just one: syntax.

So it is with some trepidation that I confess I’ve been

thinking about syntax a lot lately. In particular, I’ve been

experimenting with an alternate syntax for Racket, which

I call P4P. P4P reduces the parenthetical burden, makes

the language appear more traditional, and respects

indentation, though not in the way you think. It does

all this while retaining the essence of Racket syntax, and

even offering a high degree of tool reuse.

1 A Thought Experiment
Consider the following Racket function definition:

(define (square x)
(* x x))

Imagine you were asked to consider reducing the

number of parentheses in Scheme. Well, we certainly

can’t remove the parentheses around the multiplication,

because it has variable arity; nor those around the

function header, since we wouldn’t be able to tell

whether * is an argument or not. But it would appear

define contains all the information we need; that is, we

could write

define (square x)
(* x x)

Except, of course, that this has now made our language

ambiguous. If instead we were to write

define (square x)
(* x x)

(+ x x)

what do we mean? Is the addition expression a second

body in the definition of square, or is it a separate top-

level expression (with x unbound)?

Aha, you might think: “Didn’t he say indentation earlier?”

And indeed, that would help us distinguish

define (square x)
(* x x)
(+ x x)

from

define (square x)
(* x x)

(+ x x)

and decide the earlier option (where (+ x x) had

uncertain indentation) was ambiguous and hence

erroneous.

Except that’s not what we’re going to do.

Read on.

2 Examples
Before we dive into details, let’s see some running P4P

programs. I intentionally show only code, not output. If there is

any doubt as to what these programs mean (and you aren’t just

trying to be ornery), P4P has failed.

First, a few variable and function definitions:

defvar: m = 10
defvar: this-better-be-6 = add(1, 2, 3)
defvar: this-better-be-0 = add()
deffun: five() = 5
deffun: trpl(x) = add(x, x, x)
deffun: g(a, b, c) = add(a, b, c)

Commas – yes, commas! We’ll have more to say about

them below.

Anonymous functions:

deffun: d/dx(f) =
defvar: delta = 0.001
fun: (x) in:

div(sub(f(add(x, delta)),
f(x)),

delta)

Conditionals:

deffun: fib(n) =
if: numeq(n, 0)
1

elseif: numeq(n, 1)
1

else:
add(fib(sub1(n)), fib(sub(n, 2)))

Structures:

defstruct: memo has: (key, ans)

Sequencing (look for do:):

deffun: memoize (f) =
defvar: memo-table = box(empty)
fun: args in:
defvar: lookup =
filter(fun: (v) in:

equal?(args, memo-key(v)),
unbox(memo-table))

if: empty?(lookup)
do: (
set-box!(memo-table,

cons (make-memo(args,apply(f, args)),
unbox(memo-table))),

apply(f, args))
else:

memo-ans(first(lookup))

P4P: An Experiment in Syntax

P4P P4P

37 Condu¡t Fall 2010

Expressions in function position:

defvar: this-better-be-9 = {fun: (n) in: mult(n, n)}(3)

Local bindings:

let:
x = 3,
y = 2
in:
+(x, y)

let*: x = 3, y = x in: add(x, y)

letrec: even = fun: (n) in: if: zero?(n) true else: odd?(sub1(n)),
odd = fun: (n) in:

if: zero?(n)
false

else:
odd?(sub1(n))

in: list(odd?(10), even?(10))

3 The Central Idea
P4P hinges on one central idea and its consequences.

First, the idea: let’s get rid of implicit-begin-ness. Where

we need a variable number of terms, write a do:. This

small change suddenly eliminates the ambiguity that

pervades Racket parsing and forces parentheses to clarify

intent. The odds are that the extra typing engendered by

do: will be offset by the reduction in typing parentheses.

Once we have made the syntax unambiguous without
the help of parentheses, we can get rid of the parentheses

themselves. That is, keywords like deffun: are sufficient

to tell us what shape of terms to expect in legal programs.

(Of course, every language construct must follow this

property – even do:.)

This results in a pleasant invariant about parenthetical

structure. In Racket, Scheme, and Lisp, functions are

notorious for trailing off into a saga of parentheses

(which in Racket are broken up by the odd square-

bracket, which sometimes makes maintenance even

more painful). In P4P, the only closing parentheses are

from expressions, because the language’s constructs (other

than do: and its kin, which anyway use braces) do not

contribute any. Thus, the parenthetical depth is precisely

the same as the function nesting depth. For beginners, in

particular, since this rarely exceeds 2–3, neither does the

number of adjacent parentheses. For instance, in Racket,

a typical memoized Fibonacci function ends in

whereas the equivalent in P4P (using if:s and elseif:s

in place of Racket’s cond) ends (using the same

operators, though P4P also defines add and sub) in

+(memofib(sub1(n)), memofib(-(n, 2))))

(The one parenthesis not accounted for on this line itself

is the invocation of memoize.)

Those old enough to remember Pascal will know this isn’t

the whole story. Pascal enabled programming language

course instructors to ask students such world-class exam

questions as the value of

IF false IF false THEN 2

(taking some liberties with Pascal syntax): the question

being, of course, which IF the THEN associates with. If

you’re thinking now, finally, P4P will rely on indentation,

you’re wrong again (in the land of the one-armed IF,

the people go blind from squinting). Rather, the P4P

equivalent of this expression is simply illegal. If you

want a one-armed conditional, use when: or unless:.

Students, rejoice!

4 Design
Now I present some design decisions and design choices.

Decisions are those I believe in and would change only

under duress; choices are points of flexibility where I can

be talked into alternatives.

(+ (memofib (sub1 n)) (memofib (- n 2)))]))))

38 Condu¡t Fall 2010

4.1 Decisions

4.1.1 Embracing Prefix

We remain unabashedly prefix. By doing so, we

circumvent all decisions about precedence, binding,

associativity, and so on. Some initial grumbling may

ensue when confronted with code like +(1, 2), but

this seems much less strange after you have seen

append(list1, list2). Bootstrap anyway wants

students to understand that exalted + is just another

operation – just like lowly append.

4.1.2 Adopting Racket’s Token Syntax

By not permitting infix, we are free to be generous about

token names: append-string, overlay/xy, and d/
dx are available. However, there is no reason to preclude

e^<i*pi>-1, either. In short, we use Racket’s token

syntax, which will simplify interoperation with traditional,

parenthesized Racket.

4.1.3 Keeping Parsing Predictable

Despite the lack of parentheses, the parser is top-down

and syntax-directed. It has only one token of lookahead,

in this one case: when given an identifier in expression

position, it has to look ahead for a left-parenthesis to

determine whether or not this is an application. This

is common in other languages too. If the input stream

(file, REPL interaction, etc.) ends after the identifier, P4P

treats it as a variable reference. (This ambiguity will affect

tools like the kill-s-expression key-binding: if it faces an

identifier, it will have to check whether the identifier is

followed by an argument list.)

One potential source of ambiguity is the function

position of an application being a non-identifier

expression. In such cases, the expression must be

wrapped in braces. Because the use of expressions in

function positions is not common, this is a small price

pay. Note that functions passed as arguments are bound

to identifiers, so they will not suffer from this burden; the

problem similarly disappears if the expression were first

bound to a name (which might clarify intent).

4.1.4 Leaving the Semantics Untouched

This is purely about syntax. The semantics of P4P is

precisely that of Racket. For instance, the P4P equivalent

of begin currently allows only a sequence of expressions;

if Racket began to permit definitions before expressions,

so would P4P. Even naming stays untouched: if tomorrow

structure constructors were to no longer be preceded by

make-, that would be just as true of P4P.

4.1.5 Attaining Arity Clarity

Function invocations are delimited. Therefore we neither

need to a-priori fix arity nor need types to tell us what

the arity will be. Despite this, we can have functions that

unambiguously consume multiple arity, just as in Racket:

+(1, 2), +(1, 2, 3), +(1), and +() are all legal

P4P expressions with the expected meanings.

4.1.6 Adopting Indentation Without Semantics

I increasingly view emphasizing good indentation

as critical. In some languages, however, indentation

controls semantics. I view this as a mistake.

In P4P, instead, the semantics controls indentation: that

is, each construct has indentation rules, and the parser

enforces them. However, changing the indentation of a

term either leaves the program’s meaning unchanged or

results in a syntax error; it cannot change the meaning

of the program. I believe this delivers the advantages of

enforced indentation while curbing its worst excesses.

There is a pleasant side-effect to this decision: the parser

can be run in a mode where indentation-checking is

simply turned off. (Obviously, this is meaningless to do in

a language where indentation controls semantics.) This

can be beneficial when dealing with program-generated

code. Thus, it preserves the Lisp tradition’s friendliness

to generated code while imposing higher standards on

human programmers.

4.1.7 Reusing the Tool Chain

P4P is implemented entirely using existing high-level

Racket tools: it is defined entirely in terms of (a particular

pattern of) syntax-case and some lower-level syntax-

processing primitives. It does not define a lexer or LR-

parser. I initially viewed this as a choice, but I have come

to view this as a decision: this is the best way to ensure

fidelity to Racket syntax.

4.1.8 Avoiding Optional Syntax

P4P does not have any optional syntax. I believe this

makes it easier to teach people to program: they want

clear instructions, not “You can do this, or you can do

that...you can do whatever you want!” (If they were ready

to do whatever they wanted, they wouldn’t be asking

you.) These trade-offs are best left to semantic and design

levels, not syntax. The only options in P4P are thus

semantic choices: e.g., you can use or leave out elseif:
terms in a conditional, but that is a function of your

program’s logic, not your syntactic whimsy.

4.1.9 Avoiding New Spacing Conventions

While P4P’s spacing conventions can (and should) be

understood in their own right, experienced Racket

programmers can safely fall back on their knowledge

of Racket syntax. This, for instance, tells us that both

deffun: f(x) = x and deffun: f (x) = x
are valid (and so, even, is deffun: f(x)= x), but

deffun:f(x) = x and deffun: f(x)=x will not

have the presumed intended effect. I do not view this as

problematic: beginners (both educators and students)

39 Condu¡t Fall 2010

always ask about spacing conventions. Since using spaces

around tokens is safe, there is an easy rule to follow,

which also enhances readability. It would help for P4P’s

parser to be sensitive to the presence of special tokens

and build in context-sensitive checks for them (e.g., if the

first token after the function header is an identifier that

begins with =, this should be caught by a special error

case that admonishes the user to insert a space).

4.2 Choices

4.2.1 Distinguishing Keywords

P4P uses colons at the end of keywords. I believe the

principle of distinguishing keywords is beneficial: it tells

the user, “You are about to use a construct whose basic

syntax, rules of indentation, and rules of evaluation may

all be different from what you expect.” The particular

choice of colon is whimsical and free to change, though

it was inspired by Python’s use of colons (which is

somewhat different). P4P does not prevent ordinary

program variables from ending in :, though it would

be silently frowning as it processed programs that took

advantage of this liberty.

4.2.2 Using Syntactic Embellishments

There are many syntactic embellishments in P4P.

• = in defvar: and deffun: aren’t necessary,

but adding them seemed to immensely improve

readability. In particular, they emphasize the

substitution nature of these definitions.

• There is no = in fun:; I chose in: instead.

This is because the argument list does not equal

the body, but rather is bound in it. The choice

of in: is thus not entirely whimsical, but is very

open to improvement. Likewise, there is no = in

defstruct:, but instead has:, to emphasize that a

structure has the following fields.

• do: uses braces (rather than parens) to delimit its

sub-terms. (Semi-colons between terms in the do: will

never be enforceable, so do: uses commas instead.)

• Using the def- prefix for the definition constructs

leaves open fun: for anonymous functions.

• The syntax of fun: feels a bit naked: one needs to

really understand expression-ness to understand

(beyond indentation) where a function ends. A pair

of delimiters wrapping the entire body would reduce

this anxiety.

• if: does not need any intermediate keywords at all.

In their absence, however, the programmer would

be reduced to counting the number of preceding

expressions and checking parity to know what they

were looking at. Intermediate keywords improve

both readability and error-reporting (which are

probably linked).

4.2.3 Handling Variterm Constructs

Some constructs, such as Racket’s cond, begin, and

when, contain a variable number of body terms. This

makes it challenging to keep their parsing simple and

predictable. I see two broad ways to handle these: what I

call if:-style and do:-style. do:-style is the lazy option: it

uses a delimiter pair (specifically, brackets) and brutally

dumps the terms between the delimiters. if:-style

instead uses carefully-designed intermediate keywords as

guideposts to the parser. The brutality of the do:-style

could be reduced by the use of intermediate keywords,

but at that point the delimiters wouldn’t be necessary any

longer. (They wouldn’t be necessary, but they may still be

helpful, as the number or size of sub-terms grows large.)

Constructs like when:, which frequently have multiple,

imperative body terms, would be better served by the

brutalist style, because otherwise programmers would have

to write an additional do: inside the single body term

most of the time.

4.2.4 Avoiding Closing Delimiters

Nothing in the language design precludes closing

delimiters. However, because parsing is always

predictable, there is no need for them, either (except for

variterm constructs). Offering them could improve error

reporting.

4.2.5 Not Specifying the Indentation of Parenthetical Pairs

P4P currently does not enforce any indentation

convention on parenthetical constructs. Indeed, I wonder

to what extent the Scheme antipathy towards putting

closing delimiters on separate lines is because of just how

many darn ones there are. If the only closing delimiters

are for constructs that need them (such as do:), it may

even – gasp – be good style to put them on distinct lines,

lining up with the opening keyword.

5 Indentation…Rules!

There are only three indentation rules in P4P: SLSC,

and SLGC, and SLGEC. These stand for same-line-same-
column, same-line-greater-column, and same-line-greater-equal-
column, respectively. As you read more about these, you

may find them insufficiently restrictive. Keep in mind

that indentation rules are contravariant to language size:

sub-languages (such as teaching languages) can enforce

many more restrictions on lines and columns.

SLGC is the fundamental rule of indentation. As the

name suggests, each sub-term must be either on the same

line or (if not on the same line) indented to the right

from the head term. The same-line part enables one-

liners, though a teaching language might want to prevent

excessively long lines – for instance, by disallowing the

same-line part entirely for some constructs. In fact, the

syntactic effect of SLGC is a little subtle: it means the first

few arguments can be on the same line as the operator,

while all subsequent ones must be indented, like so:

40 Condu¡t Fall 2010

+(1, 2,
dbl(4),
dbl(dbl(8)))

SLSC is used more rarely, when we want rigid alignment.

Currently, only if: uses SLSC for its internal keywords

(elseif: and else:).

Finally, SLGEC was added for internal keywords that are

not the same width as the main keyword. One might want

to write

let: x = 3
in: +(x, x)

to line up the colons, or instead

let: x = 3
in: +(x, x)

to keep the code from drifting rightward. (Of course,

the programmer can put the in: on the previous line,

too.) P4P sees no need to choose between these two

indentation styles. Hence SLGEC permits an indentation

of zero or more.

The decision to use SLGC and not SLSC for, say,

argument lists may be surprising. It suggests the

following is considered acceptable:

deffun: f (x) =
+(dbl(dbl(x)),
dbl(x))

This looks odd, but consider instead this case:

defvar: mfib =
memoize(
fun: (n) in:
...

In other words, when a function has “fat” parameters,

we don’t want to force rightward drift (or effectively

impose shorter function names). Thus, we only expect

arguments be farther to the right than the beginning

of the function name, not necessarily “within” the

argument’s parentheses.

In practice, it has proven more pleasant to impose a

slightly stricter rule for SLGC: to demand an indentation

of at least two spaces, not just one. Two spaces increases

readability (Python programmers often use four); it also

means egregious

deffun: f (x) =
+ (dbl(dbl(x)),

dbl(x))

is illegal, and must instead be at least

deffun: f (x) =
+(dbl(dbl(x)),
dbl(x))

One consequence of the relative laxness of SLGC –

which a teaching language might want to tighten – is

that P4P doesn’t enforce that the immediate sub-

expressions in an if: are at the same level. Thus, both

if: test1
e1

elseif: test2
e2

else:
e3

and

if: test1
e1

elseif: test2
e2

else:
e3

are legal, as different collections of people may prefer

different coding styles.

6 On Groves and Brooks (or, Trees and Streams)

The Lisp bicameral syntax tradition is based on

processing trees. The parentheses chunk tokens into well-

formed trees, and the parser chunks these into valid

trees. It’s parentheses – and thus trees – all the way down.

Except, it isn’t. A file is not a tree. Thus, sitting outside

every Lisp parser of popular imagination is another

parser that operates, instead, on streams.

Happily, Racket provides a middle-ground: files without

explicit wrappers can be written in #lang, but

#%module-begin turns this back into a tree.

This mapping enables the P4P parser to leverage the

Racket macro system to bootstrap. P4P removes tokens

sequentially, using a slack term in every pattern to match

the rest of the stream; each construct’s parser returns

a tree and what remains of the stream after it is done

processing.

Oh, and commas. Of course, the Racket tokenizer

converts commas to unquote. In Racket, the unquote
is followed by a single tree; in P4P, it is followed by an

arbitrary undelimited expression. So P4P lets Racket turn

commas into unquotes, and then simply returns the

subsequent tree (in Racket’s terms) to the front of the

token stream, for continued P4P parsing.

7 Error Reporting

I have invested (almost) no time into error messages, yet.

By being a macro over existing Racket, P4P inherits much

of Racket’s context-sensitive error-reporting. Naturally,

having additional clauses in P4P can improve error

checking. For instance, in the current implementation,

41 Condu¡t Fall 2010

deffun: f “var” = 3 and deffun: f(3) = 3
happen to be caught by P4P itself (which highlights the

appropriate term), while other errors pass through to

Racket, using its error messages and highlighting. (The

expression 3(4) ought to demonstrate this, but currently

fails on an internal error instead.)

Because P4P’s parsing is done through streams rather

than trees, it is unclear how much of Ryan Culpepper’s

infrastructure for strengthening tree-based patterns to

insert error checks will apply here. It is more likely that

something analogous needs to be created for stream

processing. In the best case, of course, Ryan’s work will

carry over unchanged. Either way, this will be a fruitful

area for further examination.

Finally, one known problematic case is this: when a

comma-separated list fails to have a term between

the (intended) penultimate comma and the closing

parentheses (e.g., f(x, y,)). This is an unfortunate

consequence of P4P’s attempt to reuse the Racket

toolchain, and will need special support. This is a place

where EOPL’s sllgen parser has no problems, because it

natively implements both scanner and parser.

8 Syntax Extensions

It would be easy to add new constructs such as

provide:, test:, defconst: (to distinguish from

defvar:), and so on.

The current design of P4P also does not preclude

the addition of syntactic enhancements such as type

declarations, default argument values, and so on. It

is presumably also possible to add support for Racket

keywords and reader extensions.

One particularly curious form of syntactic extension

would be to use fully-parenthesized terms in some

contexts. For instance, we might add a racket:
construct that is followed by a fully-parenthesized

s-expression. Because of the nature of P4P’s syntax,

this can be done without any ambiguity. One might

even, say, decide to use P4P syntax to define macros for

parenthetical Racket; the P4P versions of syntax-rules
or syntax-case can exploit P4P’s parenthetical sparsity

except for the patterns themselves, which would be fully-

parenthesized as they would in traditional Racket (and in

the source they process).

Beyond this, it is in principle possible for developers to

create macros for new P4P syntactic constructs. After all,

P4P is already defined using just macros. However:

• The macro definer has to understand the stream-

processing pattern, which is different from

traditional tree-shaped macro processing.

• Even more importantly, the macro writer undertakes

to create a construct that does not introduce

syntactic ambiguity – a property that is guaranteed in

Racket, but earned in P4P. (To be clear, a new Racket

macro can be ambiguous: imagine an infix macro,

which requires precedence rules for disambiguation.

However, this ambiguity is limited to the inside of

the new construct, and cannot affect terms past the

closing parenthesis. In P4P, the effect may leak past

the end of the construct.)

For these reasons, we will probably need to create a

macro-definition facility: a syntax-rules for streams.

However, that is not enough:

• The macro writer needs to check indentation. This

may require a pattern language that is indentation-

sensitive.

• The output of the macros will, by default, interact

with the indentation checking of the underlying P4P

language. One option is to have the macros respect

this, though it will likely make them too difficult

to write (because any loss of source location would

leave the underlying P4P parser unable to perform

checks, and hence forced to reject the program). A

second option is to generate code in a P4P variant

that doesn’t check indentation. A third, perhaps best,

solution would be to generate Racket code directly,

just as the current P4P does: that is, the macro system

would be an attached-at-the-hip, cooperating twin of

P4P, rather than a layer atop it.

9 Conclusion

Racket has a excellent language design, a great

implementation, a fine programming environment,

and terrific tools. Mainstream adoption will, however,

always be curtailed by the syntax. Racket could

benefit from some exercise to reduce the layers of

parenthetical adipose that engird its code. P4P is a

proposal for how to do this without losing the essential

nature of the Lisp syntactic heritage (and, indeed,

bringing to the surface the streaming nature that has

always been hidden within).

42 Condu¡t Fall 2010

Alumni | Update

Daniel Aliaga ’91

was recently promoted to Associate Professor of Computer Sci-

ence at Purdue. His research is primarily in the area of 3D com-

puter graphics but overlaps with visualization and with computer

vision. His research area is of central importance to many criti-

cally important industries, including computer-aided design and

manufacturing, telepresence, scientific simulations, and educa-

tion. He focuses on i) developing fundamentally new 3D model

acquisition methods, and ii) combining his 3D acquisition meth-

ods with additional novel algorithms to produce pioneering new

modeling and visualization frameworks.

Colin Blundell ’03

is the recipient of the 2010 IBM Josef Raviv Memorial Postdoc-

toral Fellowship in Computer Science., an annual award made to

a recent PhD recipient who shows exceptional promise for a re-

search career in computer science or computer engineering. IBM

received over 120 applications from around the world for the fel-

lowship. After multiple rounds of thorough review, the selection

committee identified Colin as the winner of the fellowship. He

now works at the IBM T.J. Watson Research Center, primarily with

Jose Moreira’s Future POWER Systems Concept Team, and is in-

terested in exploring high-performance computer architectures

for emerging workloads.

danah boyd ’00

On Wednesday, October 6, Brown Computer Science welcomed

back one of its most illustrious alumnae: social media researcher

danah boyd. Boyd graduated from Brown in 2000 after complet-

ing an honors thesis on how sex hormones affect the processing

of depth cues and engagement with virtual reality. She subse-

quently attained a Master’s Degree at the Massachusetts Insti-

tute of Technology Media Lab’s Sociable Media Group and a PhD

from the School of Information at University of California, Berke-

ley. She now works at Microsoft Research New England, where

she studies social media, teen culture, and a host of other top-

ics. Boyd returned to campus to give a seminar open to the pub-

lic entitled “Youth-Generated Culture: Education in an Era of So-

cial Media.”

Alumni Update

42 Condu¡t Fall 2010

Alumni

43 Condu¡t Fall 2010

The seminar, presented by the Division of Cam-

pus Life & Student Services and the Harriet W.

Sheridan Center for Teaching and Learning,

covered a variety of topics related to boyd’s work

at Microsoft Research. Boyd’s enthusiasm, in-

telligence, and ability to captivate an audience

were all evident as she discussed the dynamics

of online communities and the complications

that have arisen now that social networks pri-

marily cater to helping individuals connect with

people they already know in physical space rath-

er than strangers with shared interests. Boyd

also shed light on the challenges faced by to-

day’s teenagers as they struggle to present them-

selves to their peers while simultaneously be-

ing judged by their parents, educators, college

admissions officers, and future employers. The

audience remained spellbound throughout the lecture, and after

a tumultuous round of applause, many listeners approached the

stage to ask boyd questions about social media, her research, and

what her thoughts were on a spate of recent, nationally discussed

tragedies related to online bullying.

This informal question and answer period resembled a session

boyd had participated in earlier that day. Women in Computer

Science (WiCS), an undergraduate student group devoted to sup-

porting women pursuing degrees in computer science, happily

welcomed boyd to a meet and greet a few hours before her sem-

inar. The CIT library was packed with members of WiCS delight-

ed to hear about boyd’s experiences at Brown and beyond. Boyd

regaled members of WiCS with stories about her time as an un-

dergraduate student, which included eight independent study

projects, one radical benefit concert featuring Tracy Chapman,

and innumerable amusing stories featuring her advisor, Profes-

sor Andy van Dam. When asked about her current employer, Mi-

crosoft Research, boyd lauded the academic freedom and spirited

culture she had found there. She described some of the Internet

curiosities she and her colleagues were currently researching, in-

cluding fashion blogging, a women-driven phenomena which—

though wildly popular according to site traffic and advertising rev-

enue—has been all but ignored by digital sociologists.

The approximately twenty members of WiCS who were able to

drop in for at least part of the discussion were amazed by boyd’s

passion, sense of humor, and expertise. Both undergraduates and

graduate students attended the event, and all agreed that boyd

was by far one of the most interesting and approachable guest

speakers WiCS has ever hosted. As one student later explained to

WiCS coordinators Ashley Tuccero (‘11) and Claire Kwong (‘13),

both of whom are avid readers of boyd’s blog, boyd is “such an

awesome, sweet, and intelligent person [that it’s] no wonder that

she’s your hero”.

For more information about danah boyd, see http://www.danah.

org/.

For more information about Women in Computer Science, see

http://cs.brown.edu/orgs/wics/.

danah boyd

44 Condu¡t Fall 2010

Alumni | CS Reunion

Jeff Bergart and Marion Dancy Michael Coglianese & Family

Saurya Velagapudi, Owen Strain, Allan Shortlidge

Elli Mylonas, Shawn Zeller, Leslie Zeller, Seth Landy

Aysun Bascetincelik, Onur Keskin Jared Rosoff, Sharif Corinaldi

Alex Shvartsman, Franco PreparataAdam Buchsbaum, Roberto Tamassia, Isabel Cruz, Mary Fernandez

45 Condu¡t Fall 2010

Alumni | CS Reunion

danah boyd, Matt Hutson, Sharif Corinaldi John Peha, Rosie Perera

Daniel Stowell, Eric Rachlin Lawerence Chan, Suman Karumuri, Gil Benghiat Tim O’Donnel

Spike Hughes, Lou Mazzucchelli, Adam Buchsbaum Andrew Shearer, Matt Gilooly, Nate Webb

Amy Kendall & FamilyKeith Dreibelbis, Todd DeLuca, Haidee DeLuca

46 Condu¡t Fall 2010

Faculty Notes

Michael Black

Much of Michael’s group has moved into the

newly expanded and renovated Video and

Motion Capture Lab on the first floor of the

CIT. The new lab is significantly bigger and

has more flexible space for experiments on

human motion and body shape. The new lab

includes a full-body 3D laser range scanner,

an 8-camera HD video capture system, a Vi-

con motion capture system, a changing room,

work space and storage space. The lab ex-

panded into space previously occupied by

CIS. Ongoing expansion on the first floor has

put Chad Jenkins’ new robotics lab right next

door. This will enable closer collaboration be-

tween the vision and robotics efforts at

Brown.

Tom Doeppner

Tom spent a good part of the summer com-

pleting a textbook on operating systems. It’s

published by Wiley (ISBN-13 978-0-471-

68723-8) and is out now.

Maurice Herlihy

Maurice is on sabbatical this year. During

September, he visited the Institute for Theo-

retical Computer Science at Tshinghua Uni-

versity in Beijing, China, and for the rest of

the year he is visiting the Technion in Haifa,

Israel. His is supported by a Fulbright Distin-

guished Chair in the Natural Sciences and

Engineering Lecturing Fellowship.

John “Spike” Hughes

Spike went to SIGGRAPH in LA this summer,

where he saw the usual Brown folks, but en-

countered a few in new/unusual places: First,

former 17/18 TA Daphna Buchsbaum in the

Emerging Technologies area, who was helping

to show off a bicycle-wheel-mounted display

(“Monkeylectric”) along with Dan Goldwater

and Kipp Bradford (former CS student, now

Adjunct Lecturer in Engineering here at

Brown), and second, Henry Kaufman (indi-

rectly – his first child was due at the same

time, so he didn’t actually come to LA), who

had his first-ever work in the Art Show.

David Laidlaw

David is experiencing some reentry symp-

toms after having been on sabbatical, mostly

in Barrington, during the last year. He did

make eight or 10 trips of varying lengths to

take advantage of a less constrained sched-

ule. While not on the road, he has been work-

ing to define a multiyear research project to

study how cognition can be leveraged to im-

prove visualization tools. The coming year

promises to keep him busy. He’ll be teaching

CS16 – er, I mean CSCI 0160 – this Spring for

the first time and will be the general chair for

the IEEE VisWeek conference to be held in

October 2011 here in Providence.

Claire Mathieu

This summer, Claire was proud to attend the

PhD defense of her first graduating PhD stu-

dent at Brown, Warren Schudy, who is now a

post-doc at IBM Research. She was a panel-

ist at a CAPP meeting for mid-career women

in Computer Science. She spent a lot of time

traveling during the summer, visiting the The-

ory group at Microsoft Research in Redmond,

giving a talk and being given a tour at the

INRIA-Microsoft research center (headed by

Jean-Jacques Levy) in the suburbs of Paris,

France, and stopping by Microsoft Research

New England. In Redmond, she had the com-

pany of dozens of summer interns from

Brown!

While vacationing in France, she spent a few

days in Ardeche, where she learned that she

is not good at planning a feasible backpack-

ing itinerary, and that taxis called in the mid-

dle of nowhere out of necessity can be outra-

geously expensive. In addition, she still has

not learned to slow down *every time* she

passes automatic radars, and so, this sum-

mer like every summer, she got a speeding

ticket and one point off her French driver’s li-

cense. Those points supposedly regenerate

themselves once three years have gone by

without a ticket, but that seems hopeless. Fi-

nally, taken by a sudden cleaning frenzy, one

day she used spray for screens and cleaned

her laptop, screen, keyboard and all. It has

not yet fully recovered and now goes on strike

whenever she tries to tell it to go to sleep.

Barb Meier

The introductory animation course continues

to be very popular, but the make up of stu-

dents taking the class has changed over the

years. The most notable change is the number

of women. After six years of having exactly

four women in the class of twenty each year,

last year there were six women. This year, Barb

has 10 women and 10 men, probably the

only computer science course at Brown to

achieve gender parity. Of the ten women, four

are planning on double concentrating in vi-

sual art and either CS or another science.

Only one is concentrating solely in computer

science. Animation is a wonderful intersec-

tion between science and art. Research has

shown that girls are often attracted to “com-

puting with a purpose” (see Unlocking the

Clubhouse: Women in Computing by Jane

Margolis and Allan Fisher, MIT Press, 2002)

and it appears that Barb’s animation course

is providing an outlet for some of these stu-

dents to combine the creative with the tech-

nical. She is honored to be involved in this

trend.

Don Stanford

Don is pleased to be back in the classroom

again for his 9th semester teaching CSCI0020

(CS2)! CS2 is being taught for the first time

in the CIT and Don says it is nice to be teach-

ing in the home department. He is still con-

sulting as the acting CTO at GTECH and

teaching in the Engineering PRIME program

together with a host of other community re-

lated activities, so retirement has certainly

not been boring or filled with idle time. His

head TA this fall is Megan Hugdahl, a CS con-

centrator who converted to CS after taking

CS2 as a freshman 3 years ago. It’s always

gratifying when some of our students become

concentrators as a result of dipping their toes

in the CS waters.

Erik Sudderth

Assistant Professor Erik Sudderth and his wife Erika

welcomed their son, Kyler Logan Sudderth on March 7.

Nikos Triandopoulos

Ph.D. Alums Olga Papaemmanouil & Nikos Triando-

poulos welcomed Baby Christina, born on Septem-

ber 13th 2010. Olga in an assistant professor in

the CS Department at Brandeis and Nikos is a prin-

cipal research scientist at RSA Labs in Cambridge

and also holds adjunct appointments at BU and

Brown.

Faculty Notes

Industrial Partners Program
The IPP provides a formal mechanism for interactions between companies and

students in the CS Department. Member companies benefit from superior visibility

in the Department, exclusive access to event/interview space in the CIT Building

and assistance with recruiting events; students benefit from specific information

about opportunities for summer internships and permanent employment.

The department wishes to thank our Industrial Partners for their support:

For more information about the Industrial Partners Program, contact:

Amy Tarbox

Program Manager

Telephone: (401) 863-7610

abt@cs.brown.edu

Ugur Cetintemel

Professor and IPP Director

Telephone: (401) 863-7600

ugur@cs.brown.edu

To learn more about the IPP visit: http://www.cs.brown.edu/industry

Connect with the CS Department:

Join the ‘Brown University Computer Science’ group on Facebook.

Regional Groups:

Brown CS in Boston Brown CS in Seattle Brown CS in SF Bay Area

Brown CS in NYC Brown CS in LA/Southern California

Computer Science at Brown University

Premier Partner

Adobe

Affiliates

Apple

eHarmony*

Facebook

Google

GTECH

Microsoft

NABsys, Inc.*

Oracle

TripAdvisor*

VMware

Zynga*

Start Ups

Cloudera*

Delphix*

DropBox*

LIPIX, Inc.

Mozilla*

NING*

Vertica Systems Inc.*

Individuals

Paul Edelman, Edelman &

Associates

(new partners denoted with an *)

Department of Computer Science

Brown University

Box 1910

Providence, RI 02912

USA

Ping!

Where are you and what are you doing?

Let us know what’s happening in your life! New job? Received an award?

Recently engaged or married? Use this form to submit your news or e-mail .

My news:

Mail to: Conduit, Department of Computer Science, Brown University, Box 1910, Providence, RI 02912 or

First Name

Last Name

Class Year

Address

City

State

Zip

E-Mail

