The Desert Environment

Revised Paper

Steven P. Reiss!

Department of Computer Science
Brown University
Providence, RI 02912
401-863-7641, FAX: 401-863-7657
spr@cs.brown.edu

Abstract

The Desert software engineering environment is a suite of tools developed to enhance pro-
grammer productivity through increased tool integration. It introduces an inexpensive form of
data integration to provide additional tool capabilities and information sharing among tools,
uses a common editor to give high-quality semantic feedback and to integrate different types
of software artifacts, and builds virtual files on demand to address specific tasks. All this is
done in an open and extensible environment capable of handling large software systems.

1. Introduction

The Desert environment was developed over four years as an extension of the
message-based integration techniques used in our previous work on the FIELD envi-
ronment. Our goal in implementing a new environment was to show that new and
powerful facilities can be combined inexpensively with current tools in an open
framework. This was motivated by the dearth of environments that effectively utilize
information about the program to help the programmer.

The contributions of Desert are in three main areas:

e Global Control Integration: Desert augments standard control integration pio-
neered in FIELD with a global message server that lets everyone in the project
team work together using common program information. The server allows the
various tools of the environment synchronize their views of a complex project with
low computational cost.

= Inexpensive Data Integration: Desert introduces the notion of fragments along
with specialized data stores to provide the benefits of data integration without the
costs. This allows the programmer to view the software using virtual files contain-
ing only the portions relevant to the task at hand. It provides the environment
developer with the capabilities of a project repository while maintaining source
files and an open environment.

1. Support for this research was provided by the NSF under grants CCR9111507 and CCR9113226, by DARPA
order 8225, DARPA order D885, ONR grant NO0014-91-J-4052, Sun Microsystems, and Digital Equipment Corpora-
tion. The author would also like to thank the various anonymous reviewers for their helpful and detailed suggestions.

The Desert Environment January 26, 1999 1

< Common Software Editor: Desert uses a word processor rather than a text editor
and integrates it into the environment. This gives the user a single editor with a
high-quality display for all phases of software development and lets the system
provide semantic feedback to show the user potential problems as the code is writ-
ten. It provides the environment developer a high-quality editor with advanced
features as a basis for tool integration.

In the remainder of this section we provide the historical basis for Desert, noting
both the FIELD environment and our goals for a new environment, and then provide
a brief overview of Desert. The bulk of the paper provides a detailed account of the
various pieces of the environment, how they fit together, and what they have
achieved. This is followed by a look at related work and a summary of our experi-
ences with the environment.

1.1 The FIELD Environment

The FIELD programming environment was developed in the late 1980s and early
1990s to demonstrate the feasibility of integrating a wide variety of software tools in
an inexpensive manner [42]. FIELD introduced the use of messages for combining
tools, a technique now called control integration. It uses messages to integrate tools
for program editing, debugging, browsing, visualization, and configuration manage-
ment into a single environment that appeared seamless to the user.

Message-based control integration combines software development tools using a
central message server. Each tool is augmented either internally or with a simple
wrapper so that it can communicate with the message server. Integration is then
achieved by having tools send messages to the message server and having the
message server redirect these messages to other tools as appropriate. To make this
scheme work efficiently and to ensure that the various tools need not be aware of one
another, the system uses patterns to direct the messages and views message sending
as broadcasting.

Messages in general have two forms. The first, a synchronous message representing
a command from one tool to another, is used, for example, by the editor to set a
breakpoint in the debugger. The second form is an asynchronous notification mes-
sage. Whenever the debugger takes control, for example, it sends out such a message
indicating the location of its current focus. Editors and browsers use this message to
update their display accordingly.

When a tool starts, it registers a set of patterns with the message server that
describe the messages the tool is interested in receiving. These include the command
messages that the tool will handle and the informational messages that the tool
wants to monitor. Tools send messages to the central message server in order to
request information or action from another tool or to send out information that other
tools might be interested in. The message server matches this incoming message
against all the registered patterns and forwards it to the appropriate tools. If the
message was synchronous, it gathers the first non-null reply from any of the accept-
ing tools and sends it back to the original sender.

The Desert Environment January 26, 1999 2

This approach to integration has proven very powerful. When combined with an
editor that uses annotations to interact with other tools (e.g. using a breakpoint
annotation both to create and to show debugger breakpoints), a cross-reference data-
base, a sophisticated wrapper for the system debugger, a graphical wrapper for con-
figuration tools including make and rcs, a variety of visualization tools, and a
common control panel, it yielded an environment that appeared to the programmer
as a single entity rather than a diverse set of tools. This improved programmer pro-
ductivity by simplifying the use of tools for the novice programmer and providing
better, more intuitive user interfaces for existing textual tools.

In addition to message passing, FIELD was one of the first environments to make
extensive use of an external database of program information. It included tools for
automatically gathering and maintaining cross-reference information (effectively an
extended symbol table) for the current executable. This information was used mainly
by the various visualizations that FIELD provided, notably a call graph viewer and a
class browser, by search tools, and in extended editor commands such as “go to the
definition of what I'm pointing at”.

1.2 Our Goals for a New Environment

While FIELD provided a high degree of integration, we felt that more could and
should be done. We wanted to focus on two particular aspects: providing quick and
easy access to data about the system being developed and providing a common editor
for all phases of software development.

Most attempts at providing access to program information have focused on providing
a global repository of program information. While these approaches do provide a
large amount of information, they have had serious problems with scalability, han-
dling multiple languages simultaneously, handling multiple users, openness, and
maintaining consistency with the actual program. In Desert, we focused on making
only the basic information available without the overhead and problems of such
repositories. In determining what information was required, we concentrated on
feedback while editing and on the ability to provide virtual, editable views of the
software, for example showing a function and all its call sites in a single display.

A second area where we saw room for improvement was in the diverse set of editors
currently used for programming. Different editors are used for writing documenta-
tion, writing code, drawing design diagrams, specifying a system model, etc. More-
over, standard text editors do not do a good job of giving the programmer highly
readable source code. We wanted to offer an environment that was centered around a
single editor capable of handling a wide variety of programming tasks. Moreover, we
felt it important that the editor provide the programmer with program text that was
as readable as possible.

We also saw it was important to provide these facilities in an open and extensible
framework. We wanted an environment that was compatible with existing tools and
techniques so that programmers could migrate to the environment in stages and so
that the environment could easily be used for existing systems. We wanted an envi-
ronment that could handle new tools and new applications of existing tools. We

The Desert Environment January 26, 1999 3

F Mak Editor Semantic
ramelviaker Interfaces Data Stores
Message Fragment
Facilities Support
Virtual File Context
Support Management

FIGURE 1. Overview of the Desert Environment.

wanted an environment that could scale to handle large-scale software projects (over
a million lines of code in its prototype version, much more if the ideas were applied to
a production environment) so as to demonstrate that any techniques that we devel-
oped were practical. We also wanted an environment that was as simple as possible
to develop using existing tools, and was easy to implement or replicate.

1.3 An Overview of the Desert Environment

The Desert environment was developed with these goals in mind. In order to accom-
plish the goals, we had to combine several ideas, some of them new, other ones tried
before in different, generally limited, contexts.

A top-level view of the Desert environment is shown in Figure 1. At the heart of the
Desert environment and the center of this diagram are its integration facilities.
Desert extends control integration from the FIELD environment with powerful
mapping facilities that make it easier to reconfigure the environment dynamically
and ensure that tools are totally independent. On top of this, Desert introduces an
inexpensive form of data integration which we call fragment integration whereby
logical units (fragments) of the original software artifacts are identified and refer-
ences to them kept in a data store. Here, the primary storage is still the original soft-
ware artifacts and not the data store, but tools can rapidly access and associate
information with the logical units through the store. These ideas are discussed in
Section 2.

Many of the benefits of data integration rely on a common repository of derived infor-
mation. Desert replaces this repository with a collection of specialized data stores.
The environment keeps the data stores consistent and up to date using non-intrusive
techniques. It offers tools fast and easy access to the data through standard and spe-
cialized interfaces. This is described in Section 3.

The Desert Environment January 26, 1999 4

One of our primary goals was to have the environment offer dynamic editable views
of the software to simplify editing and program understanding. Desert provides such
views through a concept we call virtual files. A virtual file combines fragments gath-
ered from multiple locations in a single editable file. Desert supports creating,
storing and locking such files. Section 4 looks at the mechanisms Desert provides
here.

Desktop publishing technology has improved significantly over the past decade,
yielding a variety of systems that offer WYSIWYG displays of both text and graphics
and provide the facilities needed to integrate specialized editors with a common dis-
play. Desert exploits this technology by showing how a modern word processor can be
extended to handle the tasks involved with software development. The principal
extension offers an interface for coding using the data stores to provide feedback and
high-quality text formatting. Additional extensions offer interfaces to specialized
graphical editors for design and user-interface development, tools to help in design
and documentation, and preliminary facilities for cooperative development. These
are detailed in Section 5.

The specialized data stores, editing facilities, and integration mechanisms are all
based on the notion that the programmer is working on a project and the underlying
environment must be aware of what that project is, what it contains, how it is
shared, and how it is developed. Desert maintains and offers to the rest of the envi-
ronment a suitable system model that identifies projects and their properties using
the notion of contexts. This is described in Section 6.

2. Basic Integration Mechanisms in Desert

Integration in software development environments can occur along multiple dimen-
sions. Schefstrom and van den Broek [46] identify three dimensions: control, data,
and user interface or presentation. Desert uses an extended version of FIELD’s
message-passing framework to provide robust control integration. It uses a new
concept called fragment integration that offers a low-cost alternative to traditional
data integration techniques. These serve as the basis for control and data integra-
tion and are described in this section. Desert offers broader data integration through
specialized data stores described in Section 3. Finally, Desert provides for presenta-
tion integration through its emphasis on the use of the common editor described in
Section 5.

2.1 Control Integration

Desert attempts to enhance the FIELD approach to message-based control integra-
tion to make it easier to use and extend it to large-scale software development.

Desert’s first enhancement is to integrate and use a message mapping engine to
make adding new tools and customizing the environment easier. Desert uses map-
pings to define how messages are used so that no tools needs to know the messages
produced or consumed by any other tool and so that the interaction of the tools could
be individualized.

The Desert Environment January 26, 1999 5

DEFINE
FredGotoMsg = [FRED GOTO %1s %2d %3s %4s |;
FredAddGotoMsg = [FRED ADD_GOTO %1s %2d %3s %d4s];

MscanErrorMsg = [MSCAN ERROR %1s %2d %3s];
MscanWarningMsg = [MSCAN WARNING %1s %2d %3s |;
MscanBeginMsg = [MSCAN BEGIN %1s |;

MscanEndMsg = [MSCAN END %1d %?2s];

TOOL Fred
LEVEL User:
WHEN MscanErrorMsg(file,line,msg) DO
SEND FredAddGotoMsg(file,line,”Error”,"*”)
WHEN MscanWarningMsg(file,line,msg) DO
SEND FredAddGotoMsg(file,line,”"Warning”,”*")
WHEN MscanBeginMsg(wd) DO
SEND FredClearAllMsg(“Error”,wd)
SEND FredClearAllMsg(“Warning”,wd)
END

FIGURE 2. Extract from Policy Message Mapping File for FRED editor. This specifies, for
example, that when a MscanErrorMessage is sent (by the build tool), the system should
send out a FredAddGotoMsg causing the editor to go to that line, and that the
MscanBeginMsg clears all previous error and warning messages.

This message mapping engine, MSGMAP, was based on ideas in the Forest system
[17] and the related notion of mediators and events [50], and was partially imple-
mented (although not used) in the FIELD system as the policy tool. MSGMAP can
modify, resend, or hide any incoming message. It can take an arbitrary message sent
out by one tool and transform it into a set of messages that serve as input for other
tools. Its actions are determined by a textual resource file, so the tool can easily be
customized for a particular work group or even a particular user. An example of such
a resource file is shown in Figure 2.

A second Desert enhancement is designed to allow Desert to interact with existing
tools. Desert adds a new tool, TINT, that serves as an interface between the Desert
message server and a Tooltalk message server [51]. This tool demonstrates the feasi-
bility of managing multiple message servers where necessary.

The final Desert control integration enhancement is designed to handle multiple-
person development within the environment. Desert uses two message servers
whereas FIELD only used one. In Desert, one of the message servers, like the FIELD
server, connects the local tools to form an integrated framework. The other message
server operates globally, providing common access for all users to the environment
facilities. This is used in various ways. Projects in Desert can be defined either glo-
bally or locally. Global projects are supported with shared data stores that automati-
cally reflect the changes of each use. These stores are accessed and managed through
the global message server. This server also provides the system editor with mecha-
nisms for fine-grain locking and cooperative editing. Moreover, it provides the hooks
needed for a wide variety of cooperative support and notification tools.

The Desert Environment January 26, 1999 6

2.2 A Basis for Data Integration

Data integration is used in software engineering environments to offer such facilities
as:

= Semantic feedback while editing, compiling or debugging;

Extensive data sharing among tools;

Tracability of changes;

Linkages among the data items;

Query-based access to system information;

Multiple views of the stored data; and

Support for cooperative development.

These have typically been achieved either through a program repository or through
shared files. Both of these approaches have their advantages and disadvantages and
Desert attempts to take a practical middle ground.

In a repository-based environment all data about the system, typically to the level of
abstract syntax trees, is kept in a database that the various tools can access. While
such environments can in theory provide all the above facilities, in practice they
have proven difficult to build and use. The largest problems, as we have mentioned,
are with scalability, handling multiple languages in a single project, handling multi-
ple users, openness, and consistency maintenance. In essence, this approach has
generally proven too cumbersome and inefficient to be practical for large systems.

The alternative approach is to maintain individual files and to have tools share
information by sharing these files as is typically done in UNIX. The disadvantages
here are that the above facilities are often difficult or impossible to implement, that
much of the work involved, especially program analysis, has to be done repeatedly by
each tool, and that it is difficult to maintain consistency of the various files as the
system is being developed. Despite these, files have significant advantages. Using
individual files lets one develop a simple, open and scalable system. Files are rela-
tively inexpensive with today’s operating systems since the mechanisms for storing
and accessing them are well developed and highly optimized. They also have the
advantage of providing the reader of the software with the logical organization
created by the original programmer. For these reasons, most current programming
environments are still file-based.

Desert's approach to data integration is a compromise between using files and using
a repository. Desert maintains the original files and uses them as the primary source
of data; this provides the benefits of files. At the same time, Desert automatically
extracts information from the files and saves it in specialized data stores, thus
gaining many of the advantages of a repository-based environment. Further benefits
are achieved by dividing each file into logical chunks called fragments and creating a
data store of references to these fragments.

The Desert Environment January 26, 1999 7

2.2.1 Fragments

A fragment in Desert is a section of a file that should be considered a logical unit by
the programmer. The basis for fragments is the set of documents or artifacts that
comprise a software system, such as source code files, documentation, requirements
and specification descriptions, and design documents. These artifacts may be stored
as actual files or may (like design diagrams in many of today’'s CASE tools) actually
be sets of items stored in a database.

The primary motivation for fragments is that they can serve as the basis for better
data integration. They represent the level at which associations between different
program units and tool-specific information are maintained. They also represent the
context to be presented to the programmer when displaying such links or using such
information. A fragment-based representation is a compromise between a repository-
based representation that works at the low level of an abstract syntax tree and a file-
based representation that works at too high a level.

While Desert makes no specific assumptions about what is in a fragment, we have
developed guidelines for defining fragments for different types of artifacts. Frag-
ments should first and foremost represent a context that can be shown to the user as
a meaningful unit. This generally implies so that a fragment should represent a
logical portion of the artifact at a high enough level that additional context for that
portion is not essential to its understanding. For example, a statement in a program
Is probably too low-level for a fragment, but the function containing that statement
would be okay. If fragments are at too fine a level, the size of the database required
to hold them, the time it takes to update and track them, and the complexity of anal-
yses based on them will all be too large to be practical for large systems. Ensuring
that a fragment represents a logical context reduces the number of potential frag-
ments to a manageable number, even for a large software project.

Second, fragments should represent concrete concepts such as files, classes or dialog
boxes. This provides a logical context for using fragments to share information
among tools and offers a firmer basis for presenting the fragment to the user. Frag-
ments that are concrete concepts provide a natural basis for a tool to associate infor-
mation for other tools. They also provide a meaningful basis for establishing
relationships such as the compilation dependencies inherent in a system model.

In the same way, a third guideline is that each file should itself be a fragment. Files
are concrete entities that need to be represented within the environment. Having a
single top-level fragment for each file lets fragments be used as files or vice versa,
allowing, for example, file-based locking in conjunction with fragment-based locking.

Finally, fragments should represent hierarchical portions of files. While fragments
can be properly nested in other fragments, two fragments at the same level of hierar-
chy should never overlap one another. This ensures that fragment-based locking
works, allows the use of hierarchy, and ensures that a single location in a file corre-
sponds to a single lowest-level fragment. This makes the implementation of frag-
ments easy and logically consistent throughout the system.

With these guidelines, fragments can be created for a wide variety of documents.
Fragments for a C++ program include files, function declarations, class definitions,

The Desert Environment January 26, 1999 8

class Sample {

protected:
int value_;

public:
Sample() {value_=0;}
int augment(int x);

U

static ~ Sample sample;

int
Sample::augment(int x)
{

value +=x;

return value_;

}

FIGURE 3. Sample C++ code fragment with brackets showing the different fragments.

and top-level variable, member, and type declarations. For example, Figure 3 shows
a simple C++ file and the associated fragments. Fragments for documentation
include title, sections, and subsections. Fragments for an OMT diagram represent
the different sheets and, within each sheet, the various objects. Fragments for a user
interface diagram represent the different top-level windows.

Desert creates and automatically maintains a data store of information about the
fragments in a project. For each fragment, the store includes a source location speci-
fying the start and end position in its source file. In addition, it includes the frag-
ment’s parent, a fragment type characterizing both the type of file it came from and
the type of information it represents, a name that is relatively unique (as discussed
below), a hash value of the contents of the fragment (computed using cryptographic
techniques [45]) so that changes to the content can be detected, and a set of name-
value associations that let arbitrary data be stored with the fragment.

In order to simplify updating and maintaining the data store, relationships among
fragments are kept indirectly using the fragment name. Our motivation here was
not only to let the data store be updated without having to maintain links, but also to
let fragments be tracked as functions and other information is moved between files.
This requires a consistent strategy for naming fragments that ensures that names
are unique and based on the content of the fragment. We use a scheme similar to
C++ name mangling [30] augmented to distinguish what would otherwise be dupli-
cates within a file. We allow duplicate names in separate files and ensure unique ref-
erences by always requesting fragments using a name-file pair.

2.2.2 Fragment Data Store

Desert's implementation of fragment integration has two parts: a simple data store
of the fragment information and a set of scanners to identify fragments in different
types of software artifacts. The data store is meant to contain the necessary informa-
tion about the fragments and to let tools associate information with a fragment for

The Desert Environment January 26, 1999 9

File Include

pathname from file
date last modified to file
source language
base directory Attribute

attribute name

Fragment redefinition scanners

file name pattern describing legal values
fragment name
CRC checksum of contents Property
date last modified fragment name
parent fragment name attribute name
fragment type value
start position
end position

FIGURE 4. Relations and fields of the fragment database.

their own or other tool’'s use. It is implemented as one of a set of specialized rela-
tional databases; the other databases and their common implementation are
described in Section 3. The scanners are designed to allow the data store to be
updated quickly, accurately and unobtrusively.

The fragment data store is a relational database consists of two relations that main-
tain the data store and three relations that actually store the information associated
with each fragment, as shown in Figure 4. The File and Include relations determine
what files need to be rescanned when the data store is updated by looking at which
files have changed and which files are dependent on them. Dependencies here, while
typically oriented toward the use of header files in programming, are actually gener-
alized for just this updating function. The Fragment relation stores the information
that is associated with each fragment. The start and end position here can be inter-
preted differently depending on the fragment and file types, thus allowing for frag-
ments that are actually stored in containers other than simple files. Finally, the
Attribute and Property relations let arbitrary strings be associated with a fragment
for information sharing.

2.2.3 Fragment Scanning

In order to make fragment integration work, the system must be able to find and
track fragments as the system evolves. This is done using a set of scanners that are
designed to be as simple and fast as possible and are not full parsers for the corre-
sponding languages. For example, our C and C++ scanners pay attention to block
comments and blank lines as well as the syntax for functions and declarations. They
totally ignore the syntax of statements and expressions. The scanners are also
designed to handle incorrect and incomplete files in a logical way. When program-
mers are actively working on the system, files are often left in an intermediate,
uncompilable state. In this way our scanners are similar to the various partial scan-
ners that have been developed for quickly obtaining semantic information such as
SGI's cvstatic or SNiFF [48].

The Desert Environment January 26, 1999 10

Our scanners differ in that they must take comments into account. The scanners
need to report to the data store the start and end positions of each fragment. Com-
ments appearing in the source files should be associated with the correct fragment
even though they may precede or follow its text. While the general problem of deter-
mining the token to which a comment applies is quite difficult, here we need only
determine whether a comment that immediately precedes or follows a syntactical
fragment should be considered part of it or not. Our approach has two parts. First,
the end position of a token is defined to include any blank spaces and comments up
to the end of the line in which the token occurs. This associates end-of-line comments
with the proper fragments. Second, we associate any comment lines (lines that
contain only a comment) that precede the start of a fragment with the fragment if
there are fewer than K blank lines separating that comment from the fragment,
where K is a user-definable parameter. This finds block comments that precede func-
tion or type definitions and associates them with the correct fragment.

While we developed a common framework for scanning source files, scanners for
other document types have been written separately. This has not been a problem
since most of these scanners are relatively simple (less than five-hundred lines of
code) and the problems that arise are much less complex than with source files. For
example, we have developed scanners for OMT files from xomt, database files from
Cadre’s Case tools, UIL files for user interfaces, and XD files from Sun’s visu, We
would expect that as the Desert approach is extended to include other areas, such as
specifications or documentation, that more sophisticated scanners might be desired.

2.3 Evaluation

The control integration facilities provided by Desert are a natural extension of the
successful mechanisms offered in FIELD. They have made it easy for the twenty or
so tools currently composing the environment to interact with each other without
Imposing significant overhead or coding restrictions on the tools. Moreover, they
have made it easy to add new tools.

The use of fragments for data integration, however, is more contentious. Fragments
seem to be an appropriate mechanism around which to organize the data in a pro-
gramming environment. They are a compromise between the low-level details that
most repository-oriented environments store and the high-level notion of files. They
form a good basis for presenting information to the programmer and should be useful
for information storage and sharing between tools. At the same time, it is not always
clear that the extra costs of this mechanism are needed nor that our approach to
fragments is the right one.

Evaluating the worth of fragments in an environment requires that they be used to
their fullest extent. This has not yet been done in Desert. The current set of tools
make only limited use of the ability to save information with fragments. This is prob-
ably because the current selection of tools in the environment is limited, but we need
more experience with the additional tools to see if fragments are a reasonable mech-
anism for data sharing and storage. Our presentation methods based on virtual files
described in Section 4 are incomplete and we have not yet used fragments as a basis

The Desert Environment January 26, 1999 11

for system modeling or building. This means that much of the promise and opportu-
nity we saw for fragments has been unfulfilled. Still, based on the advantages that
can be gleamed even from the limited use we make of them, we feel that this
approach is a strong step in the right direction. Note that some more recent environ-
ments such as Visual Age C++ [33] and CMU'’s Sheets [49] are using what can easily
be seen as a fragment-based approach.

Our approach to fragments involves defining them, storing them, and scanning for
them. Our guidelines for defining fragments represent a starting point. Our experi-
ences show that a programming environment needs to work with units that are
smaller than files and larger than syntactic constructs for presentation, editing, com-
pilation, and information sharing. We have defined fragments based primarily on
their use in source code. This approach has worked well for source-related details,
but has not been tested extensively for other software artifacts. A better evaluation
of this work will require understanding a broader range of the applications of frag-
ments, especially for large system development.

Our fragment data store is quite fast both for query and update. However, we have
found that the current environment does not need to access it very often. Most of its
use comes from the creation of virtual files by extracting a logically related set of
fragments, as discussed in Section 4. Here the data store is used mainly to find the
proper fragment to display based on a location in a source file; it is not being asked to
use fragment properties or other information in the date store. The other major use
we envisioned early on was to provide an intelligent system-building tool that would
determine when recompilation was needed on a fragment rather than a file basis.
While the fragment data store has much of the information needed for this task, it
proved much harder than anticipated to define precisely and then determine what
constituted a compilation dependency between two files, and we have not yet imple-
mented such a tool.

Finally, our work on fragment scanning has shown that scanners can be developed
that are fast, unobtrusive, and can handle incorrect files as needed in an active
development environment. Our approach to comment management in the scanners
has worked very well for a limited set of examples. We have found few if any prob-
lems in the scanners’ analysis of our own code or of a large portion of library code.
However, it is quite likely that other coding styles and formats would confuse the
current scanners. A more detailed analysis that considers a wide range of different
coding styles is needed.

3. Data Stores

Many of the benefits of data integration come from making information derived from
the original files available to the various tools. This makes a suitable database an
essential part of a software engineering environment. To be practical, such a data
store must update itself with a minimum of overhead and user intervention and
must provide query mechanisms that are fast enough to meet response expectations
(i.e. keystrokes in the editor) and general enough to address the needs of a wide
variety of tools.

The Desert Environment January 26, 1999 12

3.1 Specialized Data Stores

Desert achieves these goals using multiple data stores. It divides the program infor-
mation into multiple categories and builds for each a specialized data store that is
tuned to the particular needs of the data it stores. These specialized data stores are
relatively small and cheap while, at the same time, offering superior performance.
The current ones include one for fragment data and another for semantic data. Both
of these are language-independent and currently handle C, C++, and Java source
files, OMT diagrams, user interface resource files, and some documentation. Addi-
tional stores are envisioned to handle performance data, run time trace data, and to
handle configuration data for both system building and version management.

These data stores are supported by a common framework in order to make it simple
to add new stores and minimize the effort involved in implementing and updating
each. The framework, a set of C++ classes that are easily inherited and customized,
provides a relational database for each data store. It includes the code needed for
interacting with the message servers and scanners, a query interface that supports
SQL, storage and retrieval mechanisms for relations, and a general-purpose optimiz-
Ing query engine. Creating a new data store then involves specializing two of the
framework classes, one for defining the server and one for defining the relational
database. The specializations needed for a basic implementation are quite simple
and can be done easily in a day or less.

The framework also provides a generic interface for defining the relations in the data
store. A new relation is added to a store by specializing an instance of this interface,
defining the fields of the relation, and providing methods to read and write a tuple of
the relation. This makes adding or modifying relations quite simple and has let us
augment the relations as we added other data sources or needed additional informa-
tion. All relations are kept in memory for processing and saved and loaded on disk
only when needed and the framework supports indices for higher performance. All
this ensures that the data stores can be readily adapted to new languages and
changing data demands.

A relational approach was used here because most of the relevant data was already
present in a tuple-based framework, because it is simple to implement and general
enough to handle the variety of data we need to store, and because there are efficient
and standard query languages available. Where we need to go beyond the relational
model (for example in doing scoped name lookup), we defined specialized operations.

The overall architecture of the Desert data store implementation is shown in
Figure 5. The two ovals on the left, PALM and DUNE, represent the library interface
to the stores provided to all tools. These communicate to the actual data stores using
the message server MSG. These are shown as rectangles to indicate that they are
separate processes.

The actual data store code is broken into three parts. SAND provides the generic
framework. The two data stores currently implemented, the fragment data store
described in the previous section, FRAG, and the semantic or cross-reference data

The Desert Environment January 26, 1999 13

Data Storage

| MSG

Scanning

I
Message :

Processing | | SAGE |—>| JAVASB ‘

FIGURE 5. The basic architecture of the Desert data stores.

Library
Interface

store, SXRF, are built on top of this framework. The SXRF store keeps track of
symbol table information such as scopes, definitions, the class hierarchy, and access
information about class members. It also contains cross-reference information such
as a static call graph and all references to names. The complete set of relations and
fields in the current data store is shown in Figure 6.

The next piece of the framework is SEGO, a common interface to the various data
stores that takes generic queries and redirects them to the appropriate store, com-
bining the results as needed. Currently SEGO only handles the limited set of queries
needed by the Desert search engine CAMEL described in Section 4. It is essentially a
placeholder for a true federated interface.

The final component, SAGE, contains the code for scanning software artifacts in
order to obtain the data store information. It consists of both generic code and spe-
cific implementations for scanning the current set of support files. Some scanning,
such as for Java programs, is done by independent scanners such as JAVASB.

3.2 Collecting Program Information

For these data stores to be a successful part of the environment, they must be main-
tained unobtrusively so that the data is available without the programmer having to
specifically request it or to wait for it to be accumulated or brought up to date. This
led to a variety of design decisions concerning the appropriate implementation strat-
egy. The first of these involved generating the necessary data.

Information for the various data stores can be gathered from a variety of sources. As
noted in the previous section, fragment information is obtained by scanning source

The Desert Environment January 26, 1999 14

pathname
date last modified

from routine

source language to routine
compilation directory file name
line number
Include virtual flag
from fragment
to fragment Hierarchy
from class
Scope to class
scope hame file name
parent scope name line number
type of scope virtual flag
file name friend flag
start line of scope
end line of scope Member
member name
Definition scope name
identifier name file name
scope hame line number
type of object being defined type of member
type of scope protection of member
file name virtual flag
line number of definition inline flag
static flag
Reference friend flag
identifier name
scope name
type of object if known
file name
line number

read/write/definition flag
local/global flag

FIGURE 6. Relations in the semantic cross-reference database SXRF.

files using a specialized parser that identifies fragments and can deal with com-
ments, preprocessors, and errors. Semantic information for the SXRF data store is
obtained in part in a similar way, using specialized scanners. However, such informa-
tion is now typically available from the compiler. Desert, to save time and effort,
takes advantage of this compiler-generated information whenever possible by
reading the compiler-generated data files rather than the original sources. This
turned out to be considerably faster

The various scanners are all embedded in the SAGE server. This is a separate
process that handles scan requests through the message bus. The server handles
requests by scanning the appropriate artifact and generating files that can be loaded
directly into the data stores. It turned out to be more efficient and faster to imple-
ment this as a service rather than to spawn separate scanners for each file. The
actual implementation allows multiple SAGE servers for handling different types of
requests. This lets us process multiple requests in parallel and provides increased
performance when updating multiple data stores.

The Desert Environment January 26, 1999 15

Our current implementation of SAGE is quite efficient: most files are scanned in a
second or less, and most of the time is spent on reading the files on input and writing
the standard data files as output. When updating a large number of files, SAGE typ-
ically runs faster than the requesting system, so that the bottleneck is in integrating
the information into the data stores, not in generating the information.

The only drawback to implementing SAGE as a service is that the code for scanning
a new artifact type generally must be written as part of the server. To facilitate this,
the server provides an interface class that can be redefined for each artifact type.
The scanner for the artifact can either be written from scratch or make use of the
current scanning facilities. We have found that, except for source code files, most
artifacts are generally quite easy to parse for either fragments or the limited seman-
tic information they contain. Adding a scanner for a new artifact type generally
takes less than a day of effort.

3.3 Updating the Data Stores

The other part of the implementation strategy aimed at making the implementation
of the data stores unobtrusive involved making update as fast and efficient as possi-
ble. This was achieved by doing all updates in a “batch” mode at the file level. The
SAND framework provides the logic for updating the data stores as needed. When
the framework detects that a given file has changed, it first determines which scan-
ners for that file need to be rerun. Then, for each scanner, it removes all tuples that
were derived for the file by the scanner, runs the scanner to generate a new data file,
then reads this data file and adds the resultant information to the data store. All
tuples to be removed for a set of files are actually just flagged for removal and the
whole data store is cleaned up only once.

To make this update strategy work, the data stores must not contain any links
between data elements that arise from separate files. This is necessary to let the
framework remove and add tuples locally without having to worry about global con-
sequences. Where links are needed (i.e., for an include file or the containing scope of
a definition), they are computed dynamically from names or other information in the
data store and cached for efficiency. The drawback of this approach is that it allows
dangling links, for example a reference to an include file that is no longer in the data
store. While the user of the data store should take the possibility of dangling links
into account, these actually occur quite rarely in practice. In almost any case where
references in a file change, the files referring to those references are either explicitly
changed or at least recompiled or reprocessed (since the base file changed) so that
their information is also updated. Other than very contrived situations, we have not
seen any dangling links nor had them adversely affect any of the tools.

A final step in making the updates unobtrusive is to make them occur automatically.
The framework provides the common logic for determining when a file should be
scanned and updated. It keeps track of all the files in a project and can search for
additional files created since the last update. It keeps track of the last update time
and periodically (every 15 minutes) checks for changes and updates the data store
accordingly. It also handles requests from other tools to update the whole data store

The Desert Environment January 26, 1999 16

or the data store relative to particular file. The Desert editor automatically sends a
message to the data store requesting a specific-file update whenever the correspond-
ing file is saved. The current front end to UNIX make sends a similar message after
a successful compilation.

3.4 Query Mechanisms

In addition to efficient updating, the data stores must present an fast and general
purpose query interface to the various tools, letting tools request information as
needed without significant delays. The SAND interface provides for this in two ways:
a general SQL-based query front end and a separate interface for special-purpose
queries.

SAND provides a query evaluator based on an underlying set of relational operators
along with a general-purpose query optimizer. The optimizer uses techniques devel-
oped for relational databases and provides an extensible set of operators [31,36] In
addition, a common front end takes SQL as input and translates it into operators for
the evaluation engine, so that tools can send SQL queries to any of the data stores.

SAND also supports a message-based interface for requests that are specific to a par-
ticular data store. This is used for queries with high performance requirements that
would be too slow through the standard mechanism. The fragment data store uses
these commands to find the fragment corresponding to a given line in a given file.
The semantic data store uses them to find the external definitions corresponding to a
reference of a name in a given file and to find all references to these definitions.

3.5 Evaluation

The maintenance of the various data stores has proven quite effective. As long as the
environment is used on a project on a regular basis, the automatic updating is unob-
trusive and fast. This leads us to conclude that it is possible for a programming envi-
ronment based on files (or fragments) to actively maintain a program data store that
can be readily used by the various tools.

The largest project we have used the data stores for is Desert itself. Desert consists
of about 250,000 lines of C++, or about five megabytes of source. The fragment data
store for Desert occupies about six megabytes and the semantic data store about 25
megabytes. Our experience has shown that for almost all systems, the combined
sizes of these two data stores is less than ten times that of the source (and the ratio
is typically smaller for larger systems and about half of this for non-object-oriented
systems). This means that the extra space needed for the combined data store is
guite reasonable and that it is practical to keep both in memory for fast access, as
Desert does.

We note that these numbers also imply that our approach of keeping the data store
in memory is practical even for large systems. Extrapolating from our experience, we
estimate that a system with ten million lines of C source should have a data store
size of about one gigabyte, well within the memory capabilities of modern worksta-
tions. Simple compressing techniques would easily cut the size of this database in

The Desert Environment January 26, 1999 17

half without any loss of performance. Larger systems could be accommodated by
dividing the project into logical units, say representing the different executables or
libraries.

The update time for the data store is minimal. When a single file is changed, the
updates propagate into the store with no noticeable delay. When large numbers of
files change, the data store typically processes files at the rate of one to three per
second. This means that even complex changes (which typically occur only if every-
thing must be recompiled or if the data store hasn’t been updated for a long time)
run fairly fast. (The update time is a small fraction of the compilation time, for exam-
ple.) Even rebuilding the data store for the Desert system from scratch takes approx-
imately ten minutes on a Sun workstation.

Keeping the data store in memory has also allowed our query response to be ade-
guate for most purposes. The specialized queries used to find fragments or to do
symbol table lookup run very fast (on the order of 10 milliseconds, including message
overhead). Most sophisticated queries such as SQL requests from the visualization
engine generally take time proportional to the size of the output, with the bulk of the
time being spent on doing character output to generate the resultant file. The only
gueries we have had problems with are those that do not use the built-in indices for
doing relational joins over very large (over 100,000 tuples) relations. As practical
instances of these arise, we have either added indices or introduced new optimiza-
tions into the query engine.

There are difficulties with the data stores, however. The first is the need to compile
all files so that the compiler generates cross-reference information. This does slow
down compilation slightly and can use a significant amount of disk space in and of
itself. A second issue is that the current data stores are not multithreaded and mul-
tiple query requests or update requests block other users. The consequent delays
have not been a problem so far, but could be so in a multiuser environment with
shared data stores and lots of activity.

4. Virtual Files

One of the principal features of data integration we wanted Desert to provide is the
ability to offer the developer multiple views of the underlying system. Here we
wanted to deliver a number of capabilities, including:

= Arbitrary views: Multiple views of a software system are useful for program
understanding and during program maintenance. However, these tasks require a
diverse set of views that cannot be determined in advance. Here the facility should
make it easy for the user to define the specific views needed for these tasks using a
general-purpose mechanism.

= Diverse criteria: In defining diverse views of a system, the user should be free to
use any information available. This includes the various Desert data stores and
the source files, as well as temporal information such as the set of lines with errors
in the most recent compilation.

The Desert Environment January 26, 1999 18

= Arbitrary artifacts: The views that can be constructed should be able to span the
whole software engineering process. The user should be able to include specifica-
tions, design documentation and diagrams, code, user documentation, and error
reports all in one view.

= Editable views: The views should be editable. While some applications of multiple
views, for example, software understanding, generally require only read-only
views, other applications, such as maintenance, are best handled with views that
can be edited. However, supporting editable views is complex. It requires the edi-
tor to be aware of the context of each part of the view so it can be edited appropri-
ately. It requires the ability to map changes in the view back to changes in the
source objects. It also requires that views be managed correctly so they can be
shared among multiple users.

4.1 Managing Virtual Files

The solution used in Desert is based on virtual files. These are temporary files that
Desert constructs from a user-selected set of fragments. Virtual files can be edited
and used as any other file. When a virtual file is saved, any modified fragments in
that file are replaced in their original locations. This approach offers the above capa-
bilities while maintaining an open environment based on files.

Fragments are a natural unit for defining system views. They provide a logical
context for presentation in a view; they can be easily extracted and replaced; they
can be defined for a wide variety of software artifacts; and they can be identified
readily using information in the various data stores. Each virtual file consists of a
file header identifying the context in which the file was created, individual headers
for each fragment identifying the fragment, its location, and its lock status, and the
fragments themselves.

In order for virtual files to be practical, the environment must support their creation
and update. A Desert tool defines a virtual file by specifying the basic set of frag-
ments for the file, either directly or indirectly as file-location pairs. Desert processes
this list to ensure consistency and build the file. It first ensures that only fragments
of appropriate types are added to a virtual file. The types allowed in a particular
virtual file are specified when the file is first defined. If a fragment is requested of a
type inappropriate for the given file, Desert substitutes the appropriate parent of
that fragment. This lets the tool creating the virtual file specify the level of granular-
ity to present to the user. Second, Desert ensures that only one copy of a particular
fragment is included. This involves checking parents to ensure that a parent and its
child are not both included. This is necessary to ensure the consistency of both the
presented file and the result of editing it. If more than one copy of a fragment were
present, the file could present multiple, different representations of the same source
and it would be unclear, when the virtual file was stored, which representation
should be used. Next Desert determines the initial lock status of each fragment,
using both UNIX permissions and an underlying lock manager; it uses an optimistic
approach to locking so that fragment locks are created only when needed, not when
the virtual file is created. Finally, Desert builds the virtual file.

The Desert Environment January 26, 1999 19

[:]Eamel for Project DesertSample

File G(Ouery Element Monitor

Mew

Build I
Browse | hamel 102 @ employee,H

e [222 2 el i G el L
name] 127 @ employee,H

Sart +++| hame] 129 @ employe=.H 7

Dizmizs I Goto Delete select ALL| | Unselect

FIGURE 7. A view of a CAMEL search window.

When the virtual file is saved, Desert processes it, using the headers it generated to
identify the fragments in the file. It then orders the fragments so that multiple frag-
ments derived from the same file are considered from the back to the front to ensure
that the fragment positions in the data store are valid for all the fragments in the
file. Desert checks whether each fragment was actually changed by comparing the
hash value of its new contents to the value stored in the data store. If the fragment
was changed, Desert then replaces it in the original artifact.

4.2 CAMEL.: Defining Virtual Files

For virtual files to be useful, the environment must provide the user with appropri-
ate tools for manipulating them. Desert first attempts to make it easy for the user to
define virtual file through a search and query tool, CAMEL, which enables the user
to find locations across all artifacts that might be relevant to the task at hand. The
front end, shown in Figure 7, displays a list of relevant locations, each of which con-
sists of a reason, a line, and a filename. CAMEL lets the user construct this list by
guerying the various data stores or monitoring other tools. It also lets the user edit
the list directly. The list can then be used to direct the editor to view a particular
location or to construct a virtual file.

CAMEL lets arbitrary queries be defined through resource files. Each query displays
a set of appropriate fields that the user can define. Any items defined by the user are
used as selectors when the query is evaluated. Four such queries are currently
defined, one for finding references to a name, one for finding definitions, one for
finding call sites, and one for general text search. Queries can be used to add or
remove items from the current list of tuples. We plan to extend the interface of this
tool to let the user define new queries and query types interactively. The actual
gueries are sent and processed by the SEGO interface described in Section 3.1.

An additional mechanism provided by CAMEL involves monitoring events and
translating them into tuples. The system looks for messages directed at the CAMEL

The Desert Environment January 26, 1999 20

tool. Such messages can either be generated directly by other tools or can be gener-
ated automatically by the message mapper when any arbitrary message is seen. We
currently monitor for compiler errors and warnings as well as user selections in the
various tools.

4.3 Evaluation

CAMEL and virtual files represent a simple approach to defining editable views of
programs. Program views have long been considered appropriate for a programming
environment. Some of these, such as Interlisp’s Masterscope package [55] and Lin-
ton’s OMEGA system [27], simply provide views of information stored in a program
database. Garlan’s work on views for tools [16] allowed the definition of arbitrary
editable views, but did so from a tools viewpoint rather than from the users: the idea
was to let each tool define its own interface to the program data rather than to give
the user an editable program view. Several older environments such as Magpie [11],
provided editable views of a single routine. More recent environments such as Poem
[26] or IBM’s Visual Age C++ provide similar facilities. Reps’ recent systems [44] use
slicing to construct an editable slice from a simple program, so that the user can edit
the slice and then merge the result back into the code.

Our work attempts to provide a practical front end so that programmers actually
work in terms of virtual files, an approach that has had limited success. The overall
concept of virtual files is different from what programmers are used to. Desert does
not enforce (or even encourage) their use. We have found that most programmers
tend to work in terms more familiar to them and not to learn the new tools and con-
cepts needed to use virtual files effectively. A concurrent issue is how much the pro-
grammer is willing to trust the system to construct the “proper” virtual file. A virtual
file is most useful if it contains all the information desired and little else. This means
that the data store used to create the file must be accurate and the context of the
presentation must be appropriate. This becomes a problem because the data stores
typically only have incomplete information on files currently being worked on.

Another issue is whether the context provided by a fragment is the right one. The
overall routine or the class or structure definition is probably an appropriate context
as long as these contexts do not get too long. This is typically a matter of program-
ming style. It would probably have helped if the editor had been able to show pro-
grams at different levels of detail and show automatically those parts containing the
lines targeted by CAMEL at the lowest level of detail and others at a higher level.
Even simply highlighting those lines in some way would have made a better presen-
tation.

A more general question is whether virtual files are a viable presentation model.
Virtual files gather the relevant information into a single file. However, FrameMaker
and other editors present this file so that the user can view only one part of the file at
a time. The very nature of a virtual file means that the programmer is likely to want
to view multiple portions, for example a definition and its use, simultaneously. A
more flexible editor presentation, one that offered a table of contents and multiple
views, would probably be preferable here.

The Desert Environment January 26, 1999 21

Another general issue is the appropriateness of CAMEL as a front end for defining
virtual files. It seems that a general-purpose front end is useful here. However, it
also seems, from our limited experience, that programmers typically construct
virtual files of a small number of types using limited information, and an interface
that lets such files be created more directly might be more appropriate. We will eval-
uate this more thoroughly as we get more experience with the system.

Desert was designed to use virtual files primarily as temporary artifacts that are
edited once and then disappear. An interesting alternative would be to create perma-
nent virtual files offering the user different views of the software system. This raises
a number of concerns, however, regarding consistency and how and when such files
should be updated.

Perhaps a better approach to this problem would have been to view virtual files as
dynamic, editable views of the underlying data store. Database views are typically
defined as queries into the database. As such, although defined once, they can vary
as the database changes and can be updated dynamically. Desert’s virtual files are
defined as a specific set of elements and hence cannot be updated dynamically if
additional fragments become candidates for the virtual file. Database views also
allow arbitrary manipulation of the data, while Desert restricts virtual files to
contain exact copies of pieces of the files. The advantage of the Desert approach is it
avoids the database view-update problem in which updates to the view are ambigu-
ous with respect to the database. It also avoids most of the problems cited in Meyers’
work on supporting different semantic views [29].

5. Common Editor

While fragments and the semantic data stores provide an internal basis for a more
powerful environment, we felt that providing an external basis in the form of a
common editor was equally important. We wanted Desert to offer the programmer a
single context that could handle a wide variety of different software engineering
tasks. At the same time we wanted the editor to take advantage of the semantic data
stores and high-quality graphics displays.

From these objectives, we developed a set of requirements for program editing
within the Desert framework. These included:

= System-based editing: The user should think of the editor as a front end to all the
artifacts making up the system rather than to a single file. The editor should be
aware of definitions that span files and searches should cover all relevant files.

= Semantic-based editing. The editor should make use of semantic as well as syntac-
tic information and should help the programmer as much as possible. This means
detecting both syntax and potential semantic errors as early as possible and pro-
viding feedback on such errors in a non-obtrusive way during editing.

= High-quality formatting. While most programmers today use machines capable of
providing high-quality graphics, most program editors make little use of these
capabilities.

The Desert Environment January 26, 1999 22

= A single common editor. Programmers currently are forced to use multiple editors,
one for editing programs, one for editing documentation, one for editing specifica-
tions, etc. An integrated programming environment would use a single editor for
all documents and all phases of development. Such an editor has to handle dia-
grams as well as text, documentation as well as code. Where specialized editors
are needed, for example a graphical editor for creating a user interface, these
should be integrated with the common editor.

= Integration with the environment. The editor needs to be integrated into the over-
all environment so that it can talk to other tools and so that other tools can com-
municate through it.

= Simplicity and familiarity. Finally, we wanted an editor that programmers would
actually use. This meant that the base editor must be familiar to them, preferably
one they were using already. More importantly, we needed to be able to implement
all the above facilities with minimal effort.

Our solution to these requirements was to use Adobe FrameMaker as the basis for
the common editor. FrameMaker provides many of the baseline features we needed:
it displays both pictures and text; it can display high-quality program views; and
many programmers are familiar with it, using it for documentation or specifications.
In addition, FrameMaker offers an application programming interface (API) that is
relatively easy to use [9]. Through the API, one can integrate the editor with the rest
of the system, provide additional functionality such as semantic-based editing, and
provide live-links to other graphical editors.

While Desert uses FrameMaker, our intention was to demonstrate that the desired
features could be provided to the programmer and not that FrameMaker was the
ideal platform for doing so. Most of the extensions that we provide for FrameMaker
could have been done for any other word processor with a suitable APl and capabili-
ties. (Microsoft Word, for example, could be used on a Windows platform.) As much
as possible, the various extensions have been coded so that the FrameMaker-specific
aspects are kept independent from the remainder of the code.

The common editor in Desert serves both as an integration tool and as a front end for
new facilities. We have implemented a variety of APIs that extend the basic editor as
shown in Figure 8. The rounded rectangles in the figure are the various APIs that
talk to FrameMaker, the rectangles represent separate tools. Other than the
message server (MSG) that acts as a communications engine, the separate tools are
aligned with the API they are designed to support. The APIs currently available
include:

= FADE: an annotation facility that extends the use of annotations demonstrated in
the FIELD environment [39]. Annotations are a convenient and consistent way for
tools to display information such as breakpoints in the editor and, at the same
time, provide a standard interface whereby the user can make requests of other
tools such as creating a breakpoint.

= FAIL: a general-purpose link package that lets the programmer install HTML and
other forms of hyperlinks into a FrameMaker document. This provides additional
functionality for maintaining documentation and other similar artifacts.

The Desert Environment January 26, 1999 23

MSG

ISCHOOLI

| SLIP |
| LOFA |
| POS |

FIGURE 8. The architecture of the Desert program editing tools.

FIDO: the basic interface between the message server and FrameMaker. It sup-
ports starting FrameMaker when needed by other tools in the environment and
sending message-based requests to the various FrameMaker interfaces.

FINS: supports live-links to embed other graphical editors in FrameMaker. It cur-
rently supports several varieties of object design and user interface editors.

FISH: a first attempt at providing a shared editor using FrameMaker. It supports
group whiteboard capabilities as well as common editing using a server.

FLIP: supports Knuth-style web-based literate programming [23] using a server.
FLUFF: provides fragment locking and virtual file support using a lock manager.

FOOD: a first attempt at an object-oriented analysis facility using FrameMaker. A
server is used to find nouns and verbs in a document.

FRED: the primary interface for program editing. It provides all the necessary for-
matting capabilities, does incremental parsing and analysis, and provides seman-
tic feedback as the user edits.

Some of these, notably FADE, FAIL, FIDO, and FISH, are written only as demon-
stration vehicles and are not complete implementations. The others are complete
prototypes and are described in more detail in the following sections.

The Desert Environment January 26, 1999 24

5.1 FRED: The Program Editing Interface

The first three requirements, system-based editing, semantic-based editing, and
high-quality formatting, mandated that we provide extended facilities for program
editing within the common editor. Here, in addition to providing well-formatted text,
we offer the programmer non-obtrusive syntactic and semantic feedback. Syntactic
feedback is provided through the use of indentation, with unexpected indentations
being used to indicate syntactic problems, and through appropriate highlighting of
keywords and contexts. Semantic feedback is provided through the use of formatted
text, with different types of identifiers being displayed in different colors and with
undefined symbols and other errors being displayed in red. In addition, the front end
provides the programmer with implicit links between declarations and their uses
throughout the system.

To handle dynamic text formatting as well as the appropriate syntactic and semantic
feedback, we needed to parse the code as it was entered. While parsing on a key-
stroke basis is not new — it was done in the early 1980s in the COPE system at
Cornell [1] — doing it outside of a syntax-directed editor, without direct control over
the user’s input, in the context of a powerful word-processing system, and in a lan-
guage-independent manner is new.

A basic issue in designing such a parser is determining how the parse is to be repre-
sented internally. The parser needs to do incremental parsing to minimize the
amount of work to be done on each keystroke. It needs to handle incorrect programs
and also a variety of programming languages, including some (such as C++) that are
notoriously difficult to parse. The obvious choice of representations, parse trees, has
several drawbacks. They are much more complex than necessary, since we need only
enough information for formatting. They are suitable when the program is correct,
but are inadequate for incorrect programs. They are typically used to represent the
language portion of the program and ignore comments and white space. Finally,
parse trees imply that full parsing must be done, and even full incremental parsing
can be complex and time-consuming. For example, adding a left brace in a C program
would normally invalidate the remainder of the file and cause it to be reparsed.

FRED uses a simpler representation that meets our needs without the difficulties of
parse trees. It represents the parse as two structures, a stream of tokens and a
symbol table. The tokens serve as input for the simple parsing needed to maintain
the symbol table, as the basis for finding the proper indentation for a line, and as the
basis for formatting using.

In the next three sections we look in more detail at symbol table management, pars-
ing, and formatting.

5.1.1 Symbol Table Management

Symbol table management in the editor interface enables the programmer to define
and look up names inside scopes. It differs from traditional compiler-symbol table
management in three respects. First, it provides incremental facilities whereby
symbols can be dynamically defined and undefined to support incremental parsing.

The Desert Environment January 26, 1999 25

This is done by including an undefine operation in the scope table and keeping track
of all current implicit and explicit definitions.

The second difference is that FRED supports incomplete programs by maintaining
the implicit type of undefined symbols. This is done by adding an assume operation
that takes a name and the symbol type. If the name is already defined, the assume
operation is ignored. If the name is undefined, this operation creates a definition in
the outermost scope regardless of the scope it is called for, and sets a flag in that def-
inition indicating that the name is assumed. If the name was previously assumed,
then the symbol type of the previous definition and of this definition are checked to
determine a new symbol type for a name. This is needed to handle names that can be
used ambiguously, for instance type names that can be used as functions (for casting
or constructors) and functions that can be used as pointer-to-function variables.

The third unique feature of FRED’s symbol table mechanism is its connection with
the system data store to facilitate lookup and cross referencing of names defined and
used in other parts of the system. This is managed through the outermost scope.
This scope automatically establishes a connection with the proper semantic data
store, it determines the set of include files referenced by the file being edited and
creates a lookup context in that data store consisting of these files and the files they
include. When a name is looked up in the global scope, this data store is requested to
find this name in this lookup context and the information returned is used to define
the symbol.

The global scope is also used to manage dynamic cross-reference links based on uses
and declarations. When the editor interface needs either the set of declarations or
the set of references for a name that is defined or could be accessed externally, it
sends a corresponding request to the data store.

The editor interface also provides a direct user interface to the symbol table through
the symbol lookup dialog, which updates automatically as the user types, showing
possible continuations to the current identifier and handling symbol completion. It
also supports qualified lookup on demand. This is another example of aiding the pro-
grammer by providing access to appropriate semantic information.

5.1.2 Parsing

FRED parses the user’s program for two reasons. The first is to maintain the symbol
table and to locally link references to their declarations to support implicit links
within the file. The second is to let the editor format the text to make it more read-
able.

Parsing is done in three phases. The first phase is scanning the source to produce a
sequence of tokens. Figure 9a shows a simple source example that is tokenized as
shown in Figure 9b. Scanning is done incrementally one line at a time, being
extended to additional lines only when necessary.

Once tokens have been computed for a line, the line is parsed. The parser first goes
through the tokens on the line to identify declarations and difficult-to-parse con-
structs. It saves its result by changing the token types returned by the scanner to

The Desert Environment January 26, 1999 26

int fct(Bool x) { KEY_INT ID=fct LPR ID=Bool ID=x RPR

inta=>5; LBR
return x+a; KEY_INT ID=a EQ INT SEMI
} KEY_RETURN ID=x OP ID=a SEMI
RBR
a) Sample Program b) Original Token Stream
KEY_INT FCT_DEF=fct LPR_ARG1 KEY_INT FCT_DEF=fct LPR_ARG1
ID=Bool VAR_DEF=x RPR_ARG1 LBR TYPE_REF=Bool VAR_DEF=x
KEY_INT VAR_DEF=a EQ INT SEMI RPR_ARG1 LBR
KEY_RETURN ID=x OP ID=a KEY_INT VAR_DEF=a EQ INT SEMI
RBR KEY_RETURN VAR_REF=x OP VAR_REF=a
RBR
c) After Declaration Parsing d) Final Token Stream

Outer Scope
Bool : Type (Assumed)

File Scope ' Jnt fl:t{ﬂnnl X9

fet : Function © int &= 5

Function Scope D retum x+a:
Argument List Scope g '

x : Variable :
Local Scope
a : Variable
e) Resulting Symbol Table f) Resulting Display

FIGURE 9. An example of parsing inside the editor.

indicate definitions or special symbols. The result of this scan on the previous
example is shown in Figure 9c.

The final parsing phase maintains the symbol table by doing a left-to-right scan
through the tokens. Any token that starts or ends a scope causes the current scope to
be updated. The name corresponding to a token identified as a definition in the pre-
vious pass is entered into the symbol table in the current scope. Finally, any identi-
fier token not modified by the first pass is looked up in the current scope and context
and its token type is changed to identify the actual symbol type. Symbols are first
looked up in the current file. If they are not found, the system data store and other
active editors for the project are queried to see if the symbol is defined at the outer-
most level or in an appropriate class. This gives the user the most up-to-date infor-
mation and can be used to provide multiple-user support if the project is set up for

The Desert Environment January 26, 1999 27

multiple users (see Section 6.). Figure 9d shows the result of this second scan on the
previous examples.

This approach to simplified parsing was implemented with C and C++ in mind but
was designed to be language-independent. The implementation already isolates
those parts that are language-dependent from the large body of common support
code. We extended the original parser to handle Java in half a day’s work. Other lan-
guages might be more difficult, but our intuition and preliminary analysis indicate
that most languages will be easier to parse than C++. For the purposes of the editor,
the parser need only maintain the symbol table and identify the symbol type of each
identifier token. For most procedural and object-oriented languages, this involves
finding declarations, building the symbol table, and then doing symbol table lookup,
just as we have done for C++. Most languages other than C and C++ make it easy to
identify declarations. The symbol table processing already provided by FRED was
designed to handle most current and proposed symbol mechanisms. Extending it to
other languages should not be a problem. We estimate that support for even a
complex language such as Ada could be added in well under a week.

5.1.3 Formatting

Once parsing is complete, the text can be formatted. This is done in two stages. The
first involves assigning a paragraph format to the line based on the tokens of that
line and the second involves assigning a character format to each token based solely
on the type of token. This simple approach is made possible by the parsing strategy,
which encodes the result of the parse in the token types.

This approach is quite flexible. Our objective was to approximate the work of
Baecker and Marcus [2] in designing a color display of the program text. Some
changes had to be made in their recommendations to fit into the structure provided
by word processors and the notion of the user directly editing the text. Accommoda-
tions also had to be made so that existing source code could be read in and so that a
readable ASCII file could be regenerated.

Line-based formatting is used primarily to identify block comments so as to high-
light them, as suggested by Baecker and Marcus. Blank lines served to identify valid
breaking points so that functions can be kept on the same page as much as possible.

The key part of formatting is handled by assigning each token an appropriate char-
acter format. Different character formats are provided for different types of lexical
units, as shown in Figure 10. In addition, different formats are used to describe dif-
ferent types of identifiers. Each of the identifier types shown in Figure 11 has three
possible formats, one to indicate a reference to an identifier of that type, one to indi-
cate a reference to an external identifier of that type, and one to indicate a definition
of an identifier of the given type. Function declarations without a body (and similar
method declarations) are formatted as external references rather than as definitions.
The result of this can be seen in Figure 12. Type names, both built-in and user-
defined, are shown in dark green. The names of functions being defined are high-
lighted in dark magenta in a large font to stand out from the rest of the text. Func-
tions being called are shown in bold italics. Names being declared, both in the

The Desert Environment January 26, 1999 28

Character Format Description Sample
Comment Inline comment /I comment
Token Single- or multiple-character token ++
SymToken Single- or multiple-character token in Symbol font =
Keyword_Decl Keyword as part of a declaration static
Keyword_Stmt Keyword starting a statement while
Keyword_Type Keyword representing a type name float
Keyword Any other language keyword this
String String or character constant “I'm a string”
Constant Numeric constant 1.2345
Id Identifier of unknown type identifier
Id_undefined Undefined identifier undef_id

FIGURE 10. The basic character formats used by the editor interface.

Identifier i Local Global Sample
Description o
Type Reference Reference Definition
Constant SEtgl:]Terat'O” or named con- | ¢ yip| SAMPLE SAMPLE
Function Non-member function strcpy strcpy StGCy
Field Class, structure, or union field manages manages manages
Label Label as a goto target label label label
Macro Preprocessor macro MACRO MACRO MACRO
Method Class member function method method method
Type Class, structure, union orenu oo, ovee | EMPLOYEE EMPLOYEE
tag; typedef name
Variable Variable name variable variable variable

FIGURE 11. Formatting styles for different types of identifiers. Most identifiers have
different formats depending on whether they are local references, global references, or
definitions.

argument list and in declarations, are shown in boldface. Keywords are displayed in
blue. All other identifiers are shown in a standard font.

5.2 FLUFF: Support for Virtual Files

One of the goals for our common editor was that it should be integrated into the envi-
ronment. Since one of the goals of Desert itself is to support virtual files, we needed
to ensure that the editor provide full support for such files.

Most of the virtual file support is embedded in the program editor interface
described in the previous section. The header lines for a virtual file are parsed and
formatted separately by this front end and are protected from editing. The program
editor also sets up appropriate editing contexts for each individual fragments, so
that name lookup and the like can be done appropriately within that fragment.

The Desert Environment January 26, 1999 29

class EMPLOYEE

int EMPLOYEE:id_num = 0;

EMPLOYEE:EMPLOYEE char * nint sal,EMPLOYEE * manager)
. EMPLOYEE_R&MEK[managet,this)

int i = sfrern);

name = new char[i+1];

strepyiname,n);
galary = sal;
id = ++id_num,

FIGURE 12. Example of formatting in the editor interface.

Full virtual file support, however, also requires support for fragment-based locking.
With whole files it is fairly easy for the editor or user to ascertain if the file is already
being edited or in use. However, with fragments it is easy for even a single user
unwittingly to create multiple views of a single fragment and change each one sepa-
rately. Fragments also hold the promise of a finer granularity for sharing source code
during cooperative development by letting multiple programmers edit different
pieces of the same file safely.

Desert supports a simple form of locking based on fragments using the FLUFF editor
interface and the LOFA lock manager. FLUFF uses optimistic locking to keep track
of the lock state of each fragment in the current file. If the user attempts to edit a
fragment that has not yet been locked, FLUFF attempts to lock that fragment by
sending appropriate messages to the lock manager. If the fragment is locked by
another file or another user, then FLUFF disables edits on the corresponding portion
of the file. Otherwise, FLUFF updates the lock state and allows editing.

The lock manager, LOFA, implements a simple nested locking strategy with both
read and write locks. It is modularized so that if in the future a more sophisticated
locking strategy becomes necessary it could be replaced with a system such as PERN
[4,21]. LOFA communicates with FLUFF and any other tools that require fragment
locking through the global message server. This ensures that locks are maintained
system-wide. The infrequency of lock requests ensures that this is not a performance
bottleneck.

5.3 FINS: Insets for Software Artifacts

Another goal for our common editor was to provide common access to a variety of
software artifacts. Several of these artifacts, particularly the graphical ones, are
built and maintained using special purpose editors: OMT diagrams describing an

The Desert Environment January 26, 1999 30

object-oriented design are maintained with an object design tool; user interface
designs are edited using an interface builder. Ideally such specialized editing should
be included as part of the common editor. This is typically done today using a facility
such as ActiveX that allows embedding a document of one type within another and
uses a common front end for the different editors. FrameMaker, in its current state,
does not support such a facility. Such facilities assume, however, that both the base
editor and the specialized editor be designed with a common interface and facilities
in mind. This is generally not the case in practice.

The FINS editor interface does the best it can in integrating a suite of diverse tools,
using their interfaces and the inset mechanism that FrameMaker does provide.
FINS manages two files for each inset interface. The first file is the input file to the
tool, i.e. a file representing the software artifact. For tools that actually use a data-
base such as Paradigm+ and Cadre’s OMT tool, we generate a state file when the
user saves the design and use this file to recreate the windows open at the time of
the save. For tools that have a single data file, such as Builder Xcessory, Sun’s VISU
interface builder, and GE’s omtool, we use the data file saved by the tool.

The second file managed by the front end is a file containing the image to display in
the inset. This can either be a PostScript file or a X11 image file, and is generated in
various ways depending on the tool's capabilities. The common inset interface
detects when the tool input file is older than the image file and automatically gener-
ates a new image file. Integrating additional tools through the inset interface is
simple and fast, taking less than half a day provided that the tool has a state or data
file or one can be easily generated and that there is a logical way of generating an
image file that can be incorporated into FrameMaker.

5.4 FLIP: Literate Programming Support

Literate programming [23] is an attempt to make programs readable by humans by
integrating documentation and code in a single file. Since this coincides with one of
the goals of the Desert environment, it is only natural that Desert provide support
for literate programming.

Desert’s support for literate programming is twofold. First, since FrameMaker can
define both text and graphics and is commonly used for program documentation,
Desert supports a straightforward form of literate programming by letting the pro-
grammer intersperse documentation and code in the same file using standard
FrameMaker facilities.

Literate programming, however, is more than simply placing code and its documen-
tation in a single file. Childs [8] provides a list of features that literate programming
should support. These include generating problem descriptions and examining alter-
native solutions, breaking the program down into logical subdivisions such as chap-
ters and sections, presenting the program in a logical order, and providing reading
aids such as cross-references automatically.

To support literate programming along these lines, we implemented an additional
interface, FLIP, that supports a traditional approach similar to that of other literate
programming systems. In doing so, we make effective use of FrameMaker by letting

The Desert Environment January 26, 1999 31

the programmer use the formatting capabilities of the programming interface for
code while still providing access to the full range of text and graphics for documenta-
tion.

Most literate programming systems utilize stylized commands in the code to indicate
different sections of documentation and code. Our literate programming interface
uses special FrameMaker paragraph types for this purpose. These paragraph types
are all displayed with special visual attributes to indicate that they are not part of
the document but rather define how the document should be interpreted.

In addition to this interface, our literate programming support depends on a sepa-
rate server, SLIP, that does the underlying processing. When a file containing liter-
ate programming commands is saved, or when the user specifically requests an
update of the literate programming portions from a file, FLIP sends information
about each file to be generated, each container, each container extension, and the
contents of the containers to SLIP, which in turn stores them in a directory that is
specific to the current Desert project and is a database for literate programming
information for the project. SLIP then makes it possible to regenerate or update all
source-code files for a given project from this specialized database. An interface for
triggering this update is provided in FrameMaker.

5.5 FOOD: Object-oriented Analysis and Design Support

To demonstrate the use of Desert in other phases of software engineering, we have
included a small set of tools for object-oriented analysis and design. Some of this
support involved integrating design tools such as OMT editors into the editor. To go
beyond this, we added a tool for finding a candidate set of objects from a specification
document and using this set to build an initial OMT diagram. Extending this tool
with additional capabilities is one of our current research projects.

The first stage of object-oriented design involves determining the set of object classes
that will be needed. Several techniques have been proposed to accomplish this,
ranging from looking for nouns and verbs in the specification documents to con-
structing and analyzing scenarios. Our tool, the FrameMaker interface FOOD, uses
the former approach since it can be easily automated.

FOOD uses an external package developed for natural-language processing to deter-
mine the parts of speech of each word in an arbitrary FrameMaker document [7]. A
further analysis selects nouns that occur frequently as potential objects, taking into
account synonyms, reference words such as “anything”, and word size. The verbs
that act on these nouns then become the potential methods. FOOD builds a table of
potential objects and their methods. The user can edit the table to refine the set of
objects and methods or to add more information. The tool can then take the edited
table and produce an initial OMT diagram using one of the OMT tools that the envi-
ronment supports. This diagram can then be edited with the appropriate editor and
included in the appropriate source or virtual files using the inset mechanism.

Two views of the use of FOOD in FrameMaker are shown in Figure 13. The upper
view shows nouns and verbs in the document, nouns highlighted in red (the lighter
underlined items in the figure) and verbs in blue (the darker underlined items). The

The Desert Environment January 26, 1999 32

2

B Faumllu el fepr ol el ar , dan A
Filn Eibt Fermat View Bpecial Grapinics Table Progrs Progoci Help -
Progranmaing Acdgnmend 24

Dot : (TR

Thesim Do 031545
Clarle Do ; (2004

] NN

LA Prerper]

T masignand = dnsigaed = Eimdece o o s el posln -« e, v s o ;
ity o drsign o eplernend - o, tn Lpe pen philiy i dpwign e smenied progees =
vl S, or) il it sl o peslioll e ghes v Copadio Wk apRpeaE e
[ETe] sl debuppagtands. ard e bt po gl 8 g e DT o Mk gy
ployag wih L

L# The Problemf

W e e 1 g oy o e el b i by ety el epm A e B e, i
ieividnabogy w1l qomEE of o @ e Pacs aid avy b of plalets, it Coiee
s, s ot modini] gfedis. Tor EopEm chea pllow e aaE o el =
diesppiEm of prepamd pdmpwiery and thes ke ok geplple ke prepeeed pywiege s ghpee]
oo thie wowl i iieons iene it The shmbanian chaad be Sarene (e doore feee @) did &
fhirpﬂ-wuuhuﬂ!lm-.'. Arha dars e, o ohod ba g afioacr s
pramidn mren s vk oy w0 pslmiy vy prmods ol e wiar g

A0 Simulation
= Hallse EE
File E8il Forweal Veiew Spocial Groghics Toske Program Pregect h:l:ll
1)
Eil
|
Class Descriptions for solarfy £l
Class Namnad | Muthod) | Dhisserd phlaid A
ohijacty Pawrripticn of class abject (005
ol |]
e [l
dwfirm} §
Frecapgarlated §
irrmnd]
reluiedd §
updsiaf §
iz §
comfgurs eni | Dercripizn of clasr cozfin=wison G205

| 1ors- s | x| = g

FIGURE 13. FrameMaker windows showing the object-oriented design tool FOOD in
action. The top window shows highlighting of nouns and verbs in a document. The bottom
window shows a portion of the resultant object table.

bottom view shows part of the table of potential classes generated from this docu-
ment, objects on the left and potential methods for these objects in the middle; space
Is left for more description of both objects and methods. The table is designed so that
additional information such as relationships between objects can easily be added in
the future.

5.6 Evaluation

Our experience to date has shown the power of using a single editing interface in a
programming environment. The common editor makes editing easier for the pro-
grammer and provides a convenient front end to a wide variety of programming
tools. The best feature we have found thus far is the use of formatting and unobtru-
sive semantic feedback (for instance, displaying undefined identifiers in red) during

The Desert Environment January 26, 1999 33

program editing. Once one gets used to these facilities, going back to a more “primi-
tive” editor lacking them is bothersome. (The purely syntactic highlighting of Visual
C++ or emacs noticeably lacks the accuracy and completeness that FRED offers.)

The use of FrameMaker as the common editor has been somewhat controversial.
FrameMaker has all the facilities needed in a common editor. It lets us mix text and
graphics for documentation, supports high-quality formatting of programs, and
offers inset and link mechanisms for integrating the editor with other tools. These,
combined with the fact that many programmers are already familiar with the editor
because they use it for documentation or writing papers, made it a convenient choice.
Moreover, its powerful APl enabled us to implement a large number of tools.

On the other hand, FrameMaker was not designed for applications such as program-
ming and the highly interactive extensions we have added. FrameMaker is large and
relatively slow as editors go. The time to open a file is generally measured in seconds
and the system is almost unusable on older hardware. We also had to take special
measures to eliminate some of the bottlenecks that arose in implementing the FRED
package. While we still have some performance problems in the current implementa-
tion, in terms of both speed and memory usage, we have gotten to the point where
the editor is usable.

While FrameMaker provides Desert with many capabilities, it has restricted the
interfaces we can offer. Insets in FrameMaker are somewhat primitive when com-
pared to Microsoft's ActiveX and similar technology. FrameMaker's cross-reference
links are also somewhat restricted, being difficult to activate and define. Comments
in the program display had to use simple tables to achieve the desired background.
This made the design and implementation of the program-editing front end more
complicated than necessary. Annotations were also difficult to integrate into the doc-
ument-oriented philosophy of FrameMaker. Finally, because FrameMaker essen-
tially controlled the display, some of our user interface options are not optimal. For
example, the dialog box for symbol completion would probably be better using a
popup menu or cue, as in Visual C++.

Overall, however, our experiences with the use of a word-processing editor in general
and FrameMaker in particular have been positive. We anticipate that other environ-
ments will move in this direction as these tools become more general and the
machines they run on become more powerful.

6. Context Management in Desert

The Desert framework is designed to handle large-scale software engineering
projects typically involving a number of programmers working on a large set of files
to produce a smaller number of different binaries. Doing this requires the notion of a
project.

The environment must recognize and utilize projects in several ways. First, the
project must define the set of relevant source files that will be used in the data
stores. Second, it must provide the information needed to understand how to scan
and use these files, for example indicating where include files can be found or what

The Desert Environment January 26, 1999 34

compilation flags are to be used for particular files. Third, it must allow easy custom-
ization so that each individual programmer can have a private view of a complex
project. Fourth, it must be readily adaptable, anticipating and tracking changes in
the set of files and binaries without explicit commands from the user. Finally, it must
let the programmers edit the project definitions as appropriate. Desert accomplishes
these ends through the use of contexts.

6.1 Contexts

Desert defines a context as a set of files along with associated information. The files
are identified with two sets of path names, one indicating paths to include in the
context and one indicating paths to exclude. Each path name to include can either
indicate an individual files or a directory. In the latter case all files in the directory
and in any of its subdirectories are included or excluded as appropriate. This pro-
vides the adaptability cited above, with new files added to directories or files
renamed within a directory being handled automatically. The set of path names to
exclude are interpreted as regular expressions to give the user the most flexibility.

Focusing on the set of base files as is done in Desert rather than on target systems
provides additional flexibility. In Desert, a collection of binaries can be included in a
single context. For example, all the Desert tools (about forty binaries not including
test programs) are included in the Desert context; similarly, the Forest context
includes the underlying C++ support library used by Desert as well as a large collec-
tion of test programs. A context can also be built with no executable, as, for example,
during the design stages of a system or when only the literate programming facilities
of Desert are being used.

Desert contexts provide a general mechanism, associations, for providing informa-
tion about individual files. Each association is a mapping from file name patterns to
data. If a file name matches a given pattern, the associated data either replaces or is
added to (depending on the type of association) the corresponding data for that file.
For example, the INCLUDE association lets the user specify paths to be used to find
include files while scanning and is additive, with multiple patterns adding separate
include paths for a file. Other associations are provided for compilation options, for
determining the appropriate source language, and to let contexts be integrated with
a version control and a configuration management system.

Desert provides individualized contexts in two stages. It first supports two basic
types of contexts: global contexts that are shared among a set of users and local con-
texts that are specific to a single user. Second, it lets a new context be defined relative
to a base context. In this case the new context inherits the definitions of the base
context and can provide additional definitions of its own as well as override the base
definitions. This lets the overall information about a project be defined in a shared
global context while letting individual programmers create a custom context with
their own minor variations of the global information. It can also be used to create
multiple global contexts representing different versions of a system.

The Desert Environment January 26, 1999 35

| COMD | | PUMA | Context Management

| CACTI I——+| MIRAGE | Visualization

FIGURE 14. The tool architecture of the Desert environment. The message server connects
the various tools to their servers and to the data stores and editing tools. COMD provides
context-management services using the PUMA database server. CAMEL provides search
and virtual file-building facilities using the SEGO query server as an interface to multiple
data stores. MSCAN provides an interface to make, scanning the output to generate
messages for compiler error and warning messages. Finally, CACTI and MIRAGE are new
tools being developed for program visualization.

6.2 The Context Interfaces

Desert makes the information about contexts available both to the user and to other
tools. The interface to other tools is provided by the PUMA front end as shown in
Figure 14. PUMA runs as an independent process connected to the other tools using
the message server. It lets other tools query and set information about the various
contexts, and provides additional facilities for creating new contexts, finding the
context associated with a given file, returning all files in a context, and determining
if a given file is in a context.

The interface to the user is through the COMD tool. COMD was developed as a
simple front end for context management, letting the user define, edit, and control
updates to contexts. As shown in Figure 15, it provides a set of pulldown menus for
this purpose as well as a display area showing what is in the context. For the display,
we use the 3D facilities provided by the tools we developed for program visualization
[43]. White nodes represent directories explicitly used in the context; black nodes
represent directories explicitly excluded; otherwise a node’s color represents the last
time that node or any file in it was modified. The height of a node represents the
number of files. The display can also show the particular files included in the data-
base.

The Desert Environment January 26, 1999 36

[®] coMD: valley

File Edit Project Display

FIGURE 15. The COMD interface for a project showing its various directories. Colors code
the date last modified of any file in the directory. Height above a midline shows the
number of files while depth below the midline shows the total size of the files.

6.3 Evaluation

PUMA is actually a placeholder for what should be a complete configuration man-
agement system that can be used for both version management and system building.
PUMA was designed to be general enough to serve as a back end for configuration
management, but has never been used to its full capacity or with an appropriate set
of front ends for system building or versioning. For example, it provides functionality
for selecting which version of each file should be used using patterns similar to the
Shape system [28].

The COMD interface was also designed for extension to a full front end for configura-
tion management. Here we drew on previous experience with the formview tool pro-
vided by FIELD and the POEM system [26]. Many of the capabilities, for example
specifying what include paths are to be used for different directories or files, are
similar to what is needed in a configuration management package. Moreover, the
display component of the tool was designed to support a variety of different displays,
for example a file-dependency display or version tree display as well as the current
directory view.

While both of these systems were designed to be extended, the fact that they have
not been is one of the major drawbacks of the current Desert environment. Any con-
figuration information needs to be specified twice, once for PUMA and once in a

The Desert Environment January 26, 1999 37

makefile. Most of this information should be specified at most once, since multiple
specifications not only require additional work of the user but also can lead to incon-
sistencies.

The lack of a central system model with version and building information has also
hurt other tools in the environment. For example, searches done in the editor should
restrict themselves to files that are part of the same generated binary as the current
file. One should be able to restrict queries in the CAMEL tool to a particular binary
or subsystem or a particular version of the system. The editor should be aware of dif-
ferent versions of a source file and automatically find the proper one. Because of all
this, we now feel that any new programming environment should be built with an
integrated system model from the start.

The advantages of a central system model are also shown in the various process-cen-
tered environments such as those of the Arcadia consortium [53] and Marvel [4].
These environments provide a flexible framework for directing and augmenting the
development process, and assume that the user provides a suitable model describing
the system being developed. The existence of such a model lets these environments
provide a proactive set of system management tools to assist the programmer. Once
Desert has a full system model, adding such capabilities using either rules (like
Marvel) or a process language (like Arcadia) would be a natural extension.

7. Related Work

Desert uses a combination of control, data, and presentation integration to approach
a seamless environment. Control integration, a technique we pioneered for program-
ming environments in the FIELD system [40-42], is very effective for integrating a
concurrently running set of tools. It is the basis for most current commercial pro-
gramming environments, including HP’s Softbench, Digital's FUSE, and Sun’s Work-
shop. It is relatively inexpensive and allows the use of existing tools with only minor
modifications. Moreover, as we demonstrated in FIELD, it can be completely compat-
ible with the use of existing tools. However, it does not provide complete integration.

Data integration was first introduced in the early 1980s. It has been used to some
extent in Ada programming support environments [32], in software engineering
environments based on PCTE [6], in commercial tools such as ProCase [10], and in
research environments such as Centaur [5].

Unfortunately complete data integration has proven difficult to achieve. An alterna-
tive has been providing a program database as another tool in the environment,
either accessed directly or through control integration. Interlisp’s Masterscope
package used an internal database [55], and Linton proposed using relational data-
bases [27]. More recently, the FIELD environment provides a cross-reference data-
base of program information that is used by a variety of tools in the environment
[25], and CIA and CIA++ represent environment-independent program databases for
C and C++ respectively [20]. Sun’s programming environment includes a similar
tool, the source browser, that maintains its own database. Similarly, SGI's cvstatic
uses either a compiler-based scanner or cscope from Bell Laboratories for fast gener-

The Desert Environment January 26, 1999 38

ation of approximate semantic information. SNiFF also provides approximate infor-
mation for a program database [48]. The use of an independent program database
addresses some of the issues of data integration, but not all. Such databases are
limited to the source code and do not extend to other aspects of software develop-
ment. They provide detailed information about variables, types, etc., but rarely
handle multiple languages cleanly. Finally, most of these systems either require that
the code is compiled in order to be included in the database (since the scanners are
either built into the compiler or are effectively full language parsers), or only return
approximate results, ignoring the scoping information needed to resolve duplicate
names.

A more recent data-integration approach similar to that used in Desert is seen in the
new version of IBM’s Visual Age environment [33]. Here the compiler generates
abstract syntax trees that are stored in a common repository and are available to the
other tools. Unlike other attempts at data integration, the Visual Age repository is
viewed as a cache, with the original program files viewed as the actual source of the
data. This provides many of the benefits of data integration while preserving the
openness of files. Desert uses a similar techniques, but with different goals in mind.
Visual Age uses the database primarily to provide fast incremental compilation and
Is geared toward helping the individual programmer. Desert, on the other hand,
emphasizes editing and tries to address a full range of software development issues.
The two approaches are complementary.

The Desert emphasis on editing and presentation and its use of a common editor also
builds on existing work. Many proposed and existing environments have been cen-
tered around the editor. This is natural since the editor is typically the tool used
most widely by the programmer. FIELD, for example, integrates the editor into the
environment using annotations to interact with other tools [39]. Emacs [19] repre-
sents the current UNIX approach; here the editor is extended to run other tools such
as make to build systems and dbx to debug them, all within its own framework.

Desert extends such editor integration by letting a common editor support all phases
of software development and by incorporating semantic information from other tools
into the editing process. As such, it shares common elements with syntax-directed
and language knowledgeable editors, literate programming, and hypertext editing.
The closest previous environment is probably Cedar Mesa where a single specialized
editor was used for both structured documentation and for programming [52,56].

Many editors have been written exclusively or primarily for programming. Many of
these are syntax-directed editors, editors that parse the program and let (or force)
the programmer work in terms of syntactic units of the underlying programming
language. Syntax-directed editors were widely proposed and implemented in the
early 1980s [11,13,14,38,54]. While some syntax-directed editors continue to be writ-
ten, our general experience and that of others who have written and used them is
that users do not generally edit in terms of syntactic constructs and the syntax-
directed features often get in the user’'s way. Language-based editors [60,61] are a
compromise that attempts to provide syntax-directed facilities along with standard
text editing. Most current editors with syntax-directed features are of this type.

The Desert Environment January 26, 1999 39

Programmer-knowledgeable editors such as the Programmer’s Apprentice have also
been proposed [59]. These attempt to use artificial intelligence techniques to provide
direction to the programmer. More recently, the Pan system attempts to use sophisti-
cated semantic knowledge to provide programmer feedback [3]. Neither of these
approaches has been demonstrated as practical for realistically-sized programs.

More popular for programming are language-knowledgeable editors such as emacs
[19] and those in Microsoft's Visual Studio. These editors know enough about the
language being edited to do automatic indentation and simple error checking such as
parenthesis balancing. Extensions included in such editors include a tags file for
handling simple links between a definition and use (assuming the name is unique),
and color highlighting based on simple patterns. Language-knowledgeable editors
can offer many of the features that our editor interface does. However, they do not
guarantee accuracy since the pattern matching (for indentation, links, and format-
ting) is approximate and only based on local information. Desert, even with the prob-
lems inherent to files currently being edited, does partial parsing and uses global
information from the data stores to achieve significantly better accuracy. These
editors are also not fully functional word processing systems that can display and
combine graphics with text.

Other work related to ours includes work on literate programming [23,24,34,35],
which is a general attempt to use a single file for both documentation and code. A
preprocessor extracts the code from the file when compilation is needed. Other pre-
processors can extract documentation, function headers, or other relevant informa-
tion. Our editor interface is built on top of the commercial word processor
FrameMaker, which in turn supports much of this directly. This is closer to the
approach used in the Cedar Mesa environment where the Cedar editor used the doc-
ument structure and document tags to distinguish code and comments in the same
document [56]. As described in Section 5.4, we also provide extensions that support
web-style literate programming directly.

Another area of related work involves the use of hypertext editors and browsers for
programming. This has been advocated by several researchers as appropriate tech-
nology. It is becoming more common with the advent of HTTP and editors built for
the World-Wide Web [15] that let the user create explicit links between the various
parts of the program. Our approach can provide similar facilities, using the hyper-
text capabilities of FrameMaker for explicit links. Desert goes beyond this to create
implicit links dynamically, for example letting the user click on an identifier that is
not an explicit link and then computing where the definition or references to that
identifier are using the internal parse and the external data store. Multimedia insets
are supported both by HTTP and by FrameMaker. Hypertext-based tools such as
javadoc preprocess a set of source files to produce a read-only linked view of the soft-
ware. Many of the links that are created here are available automatically within
Desert. Others items, such as automatically generated documentation, could be built
within Desert as an additional tool.

Wasserman [58] and Thomas and Nejmeh [57] have both proposed extending the
three basic types of integration addressed in Desert with the notion of process inte-
gration, measuring how the tools interact with a particular software development

The Desert Environment January 26, 1999 40

process. This generally involves ensuring tool compatibility and showing that the
tools interact well with a given development process. Desert does not yet address
this aspect of integration. However, incorporating additional tools to control and
facilitate a software development process, a step integral to process integration,
should be relatively easy to do within the Desert framework using the current
control integration facilities and the data available in the various data stores.

Finally, the processing done in the Desert editor involves incremental parsing and
semantic analysis. Incremental parsing typically shows how to extend standard
parsing techniques to support incrementality [18]. A variety of techniques have been
proposed for incremental semantic analysis, including attribute grammars [12],
model-based functions [37], unification [47], and functions [22]. All these techniques
attempt to preserve full semantic information and depend on having the full, error-
free program available. Our simplified techniques provide the information needed
for editing without the cost of maintaining the more detailed information needed by
a compiler. Moreover, they work well in the presence of syntactic and semantic
errors.

8. Experiences and Conclusions

Desert is currently implemented as a research prototype designed to get experience
with and evaluate the potential of the various concepts it introduces. Our concerns to
date have focused on whether such an environment can be made to work, and, if so,
how to fit the various pieces together. We have been particularly interested in the
potential uses of the various data stores and a common editor and in finding ways for
the environment to improve programmer productivity.

At present Desert consists of about 250,000 lines (five megabytes) of C++ code evenly
split between the actual implementation of Desert and general support facilities
(templates, Motif interface, data store framework and query engine, Java parser).
The actual implementation of the data store and of all the scanners each involve
about 12,000 lines of code. The current search tool implementation involves 4,000
lines for CAMEL and 2,000 lines for SEGO. The FRED program-editing interface,
the largest single component, is about 30,000 lines of code. The implementation has
been done over four years.

The current environment has been used for its own development, for developing a
number of related projects and course software, and, to a modest extent, in a small
set of projects at Brown. This use, although quite limited, has demonstrated that the
ideas are practical and scale to large software systems. Moreover, they have provided
interesting feedback and ideas for possible future extensions.

The major strengths of the environment has established from the point of view of the
environment developer are:

= A flexible control integration mechanism that makes it easy to add new tools;

= The introduction of fragment integration as a basis for finer-grain practical data
integration among tools;

The Desert Environment January 26, 1999 41

Tool-accessible data stores with fast response and access to semantic information;

Integrated support for creating and saving virtual files;

A powerful word processor as a basis for presentation integration and for tool inte-
gration in general; and

A context database supporting flexible project definition and file-base associations.
The strengths from a potential users point of view have been:

= Support for working in terms of virtual files including the ability to lock files at
the fragment level for cooperative development;

< A common query interface that can do semantic searches throughout a project for
either finding locations or for building virtual files;

= A single editor for most aspects of software development;
= Unobtrusive semantic feedback while editing; and
= An adaptive interface for context management.

The major weaknesses of the current environment and thus the primary directions
for future work, as noted in the evaluation sections of this paper, are the lack of a
system model for the data stores and the minimal use of virtual file-based presenta-
tions. We expect to pursue various ideas in both of these areas. For example, we are
looking into different front ends that would allow a more structured and flexible pre-
sentation schema, possibly based on XML. We will also use the current environment
as a basis for studying program visualization tools (using the information available
in the various data stores) and intelligent program editing and presentation mecha-
nisms.

We also plan to get significantly more experience with the Desert environment. We
will begin to encourage its use in-house for student projects in a variety of software
engineering courses. We are also making the system available, in both binary (for
Solaris 2.X) and source form, at

http://www.cs.brown.edu/software/desert

As we get more in-house experience with the system, we will encourage and support
outside users.

9. References

1. James Archer, Jr. and Richard Conway, “COPE: a cooperative programming environment,”
Cornell TR81-459 (June 1981).

2. Ronald M. Baecker and Aaron MarcHsiman Factors and Typography for More Readable
Programs Addison-Wesley (1990).

3. Robert A. Ballance, Susan L. Graham, and Michael L. Van De Vanter, “The Pan language-
based editing system for integrated development environm&@bd)’ Software Engineering
Notes\Vol. 15(6) pp. 77-93 (December 1990).

The Desert Environment January 26, 1999 42

4. lIsrael Z. Ben-Shaul, Gail E. Kaiser, and George T. Heineman, “An architecture for multi-user
software development environmentSgftware Engineering Notafl. 17(5) pp. 149-158
(December 1992).

5. P. Borras, D. Clement, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pascual,
“CENTAUR: the system,SIGPLAN Notice¥0l. 24(2) pp. 14-24 (February 1989).

6. Gerard Boudier, Ferdinando Gallo, Regis Minot, and lan Thomas, “An overview of PCTE and
PCTE+,”SIGPLAN Notice¥0l. 24(2) pp. 248-257 (February 1989).

7. Eugene Charniak, Curtis Hendrickson, Neil Jacobson, and Mike Perkowitz, “Equations for
part-of-speech tagging,” pp. 784-78%Hroceedings of the Eleventh National Conference on
Artificial Intelligence AAAI Press/MIT Press, Menlo Park (1993).

8. Bart Childs, “Literate programming, a practitioner’s vieWMJGboat Proceedings of the 1991
annual meeting/ol. 12(3) pp. 1001-1008 (1991).

9. Frame Technology Corporatidgirame Developés Kit Programme's Guide Frame
Technology Corporation (May 1995).

10. PROCASE Corporation, “SMARTsystem Technical Overview,” PROCASE Corporation
(1989).

11. Norman M. Delisle, David E. Menicosy, and Mayer D. Schwartz, “Viewing a programming
environment as a single too§1IGPLAN Notice®0l. 19(5) pp. 49-56 (May 1984).

12. Alan Demers, Thomas Reps, and Tim Teitelbaum, “Incremental evaluation for attribute
grammars with application to syntax-directed editdPsgc. 8th ACM Symposium on Principles
of Programming Languagesp. 105-116 (1981).

13. Veronique Donzeau-Gouge, Gerard Heut, Gilles Kahn, and Bernard Lang, “Programming
environments based on structured editors: the MENTOR experiendaténactive Programming
Environmentsed. E. Sandewall,McGraw-Hill, New York (1984).

14. Robert J. Ellison and Barbara J. Staudt, “The evolution of the GANDALF sysdenrhal of
Systems and Softwa¥el. 5(2)(May 1985).

15. James C. Ferrans, David W. Hurst, Michael A. Sennet, Burton M. Covnot, Wenguang Ji, Peter
Kajka, and Wei Ouyang, “HyperWeb: a framework for hypermedia-based environments,”
Software Engineering Notica®l. 17(5) pp. 1-10 (December 1992).

16. David Garlan, “Views for tools in integrated environments,” pp. 314-3A8wanced
Programming EnvironmentSpringer Verlag (1986).

17. David Garlan and Ehsan llias, “Low-cost, adaptable tool integration policies for integrated
environments,Software Engineering Nota®l. 156) pp. 1-10 (December 1990).

18. Carlo Ghezzi and Dino Mandrioli, “Augmenting parsers to support increment?Gi\
Vol. 27(3) pp. 564-579 (July 1980).

19. James GoslingJnix EmacsCarnegie-Mellon Computer Science Department (August 1982).

20. Judith E. Grass and Yih-Farn Chen, “The C++ information abstra@tocgedings of the
Second USENIX €+ Conference pp. 265-275 (April 1990).

The Desert Environment January 26, 1999 43

21. George T. Heineman and Gail E. Kaiser, “An architecture for integrating concurrency control
into environment frameworksI7th Intl. Conf on Software Engineeringpp. 305-313 (April
1995).

22. Galil E. Kaiser, “Semantics for Structure Editing Environments,” Ph.D. Dissertation,
Carnegie-Mellon University (1985).

23. Donald E. Knuth, “Literate programminge Computer Journafol. 27(2) pp. 97-111
(1984).

24. Donald E. Knuth, “Literate Programming,” Stanford University Center for the Study of
Languages and Information, Stanford University (1992).

25. Moises Lejter, Scott Meyers, and Steven P. Reiss, “Support for maintaining object-oriented
programs,1EEE Trans on Software Engineeringol. 18(12) pp. 1045-1052 (December 1992).

26. Yi-Jing Lin and Steven P. Reiss, “Configuration management in terms of modeites,’5th
Intl. Workshop on Software Configuration Manageméfpril 1995).

27. Mark A. Linton, “Implementing relational views of progran8lGPLAN Notice¥/l. 195)
pp. 132-140 (May 1984).

28. Alex Mahler and Andreas Lampen, “An integrated toolset for engineering software
configurations,'SIGPLAN Notice&0l. 24(2)(February 1989).

29. Scott Meyers, “Difficulties in integrating multiview development systelBEE Software
\ol. 8(1) pp. 50-57 (January 1991).

30. Sun Microsystems, Ind he G-+ Application Binary Interface 1995.

31. Gail Mitchell, “Extensible query processing in an object-oriented database,” Brown
University Computer Science Technical Report CS-93-16 (May 1993).

32. Robert Munck, Patricia Oberndorf, Erhard Ploedereder, and Richard Thall, “An overview of
DOD_STD_1838A (proposed), the common APSE interface set, RevisidBl&PLAN Notices

Vol. 24(2) pp. 235-247 (February 1989).

33. Lee R. Nackman, “An overview of MontanlBM Research(1996).

34. Norman Ramsey, “Literate programming: weaving a language-independent @/A€BVI
\ol. 32(9) pp. 1051-1055 (September 1989).

35. Norman Ramsey, “Literate programming tools need not be complex,” Princeton University
Department of Computer Science Research Report CS-TR-351-91 (October 1991).

36. Steven P. Reisd:fis: the design and implementation of an experimental relational
information system,” Brown University (1983).

37. Steven P. Reiss, “An approach to incremental compilattwo¢! SIGPLAN 84 Symposium
on Compiler Construction(June 1984).

38. Steven P. Reiss, “PECAN: program development systems that support multiple Vs,
Trans Soft Eng Vol. SE-11pp. 276-284 (March 1985).

The Desert Environment January 26, 1999 44

39. Steven P. Reiss, “On the use of annotations for integrating the source in a program
development environment,” iHuman Factors in Analysis and Design of Information Sysjehs
R. Traunmuller,North-Holland (1990).

40. Steven P. Reiss, “Connecting tools using message passing in the FIELD envirdi&Bént,”
Software\Vol. 7(4) pp. 57-67 (July 1990).

41. Steven P. Reiss, “Interacting with the FIELD environm&uftware Practice and
Experienca/ol. 20(S1) pp. 89-115 (June 1990).

42. Steven P. ReisB|ELD: A Friendly Integrated Environment for Learning and Development
Kluwer (1994).

43. Steven P. Reiss, “An engine for the 3D visualization of program informalanyial of
Visual LanguageqDecember, 1995).

44. Thomas Reps, “Demonstration of a prototype tool for program integration,” U. Wisc.-
Madison Computer Sci. Dept TR 819 (January 1989).

45. Ron Rivest, “The MD5 message-digest algorithm,” MIT Laboratory for Computer Science
and RSD Data Security, Inc. (April 1992).

46. Dick Schefstrom and Ger van den Brokigl Integration Environments and Frameworks
John Wiley and Sons (1993).

47. Gregor Snelting and Wolfgang Henhapl, “Unification in many-sorted algebras as a device for
incremental semantic analysi®foc. 13th ACM POPL. pp. 229-235 (January 1986).

48. TakeFive Softwar§NiFF Version 10 Reference Guid&akeFive Software (1993).

49. Robert Stockton and Nick Kramer, “The Sheets hypercode editor,” Carnegie Mellon
University (1998).

50. Kevin Sullivan and David Notkin, “Reconciling environment integration and component
independence Software Engineering Noté®ol. 156) pp. 22-33 (December 1990).

51. SunSoftJooltalk 11.1 Usels Guide November, 1993.

52. Daniel C. Swinehart, Polle T. Zellweger, and Robert B. Hagmann, “The structure of Cedar,”
SIGPLAN Notice¥/l. 20(7) pp. 230-244 (July 1985).

53. Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W. Selby, Jack C.
Wileden, Alexander L. Wolf, and Michal Young, “Foundations for the Arcadia environment
architecture,SIGPLAN Notice¥/0l. 24(2) pp. 1-13 (February 1989).

54. Tim Teitelbaum and Thomas Reps, “The Cornell program synthesizer: a syntax-directed
programming environmentCACM Vol. 24(9) pp. 563-573 (September 1981).

55. Warren Teitelmannterlisp Reference ManugKEROX (1974).
56. Warren Teitelman, “A tour through CeddEEE Softwaré/ol. 1(2) pp. 44-73 (April 1984).

57. lan Thomas and Brian Nejmeh, “Definitions of tool integration for envrionm&aEF
Software\Vol. 9(2) pp. 29-35 (March 1992).

The Desert Environment January 26, 1999 45

58. Anthony I. Wasserman, “Tool integration in software engineering environments,” pp. 137-149
in Software Engineering Environmengroc. Int’| Workshop on Environmentsd. F.
Long,Sprinter-Verlay (1990).

59. Richard C. Waters, “The programmer’s apprentice: knowledge-based program editing,” in
Interactive Programming Environmentsd. D. R. Barstow, H. E. Shrobe and E.
Sandewall,McGraw-Hill, New York (1984).

60. Jim Welsh, Brad Broom, and Derek Kiong, “A design rationale for a language-based editor,”
Software Practice and Experien®el. 21(9) pp. 923-948 (September 1991).

61. Steven R. Wood, “Z - the 95% program edit8iGPLAN Notice¥/0l. 16(6) pp. 1-7 (June
1981).

The Desert Environment January 26, 1999 46

	The Desert Environment
	Revised Paper
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912
	401-863-7641, FAX: 401-863-7657
	spr@cs.brown.edu
	Abstract
	1. Introduction
	1.1 The FIELD Environment
	1.2 Our Goals for a New Environment
	1.3 An Overview of the Desert Environment
	FIGURE 1. Overview of the Desert Environment.

	2. Basic Integration Mechanisms in Desert
	2.1 Control Integration
	FIGURE 2. Extract from Policy Message Mapping File for FRED editor. This specifies, for example, ...

	2.2 A Basis for Data Integration
	2.2.1 Fragments
	FIGURE 3. Sample C++ code fragment with brackets showing the different fragments.

	2.2.2 Fragment Data Store
	FIGURE 4. Relations and fields of the fragment database.

	2.2.3 Fragment Scanning

	2.3 Evaluation

	3. Data Stores
	3.1 Specialized Data Stores
	FIGURE 5. The basic architecture of the Desert data stores.
	FIGURE 6. Relations in the semantic cross-reference database SXRF.

	3.2 Collecting Program Information
	3.3 Updating the Data Stores
	3.4 Query Mechanisms
	3.5 Evaluation

	4. Virtual Files
	4.1 Managing Virtual Files
	4.2 CAMEL: Defining Virtual Files
	FIGURE 7. A view of a CAMEL search window.

	4.3 Evaluation

	5. Common Editor
	FIGURE 8. The architecture of the Desert program editing tools.
	5.1 FRED: The Program Editing Interface
	5.1.1 Symbol Table Management
	5.1.2 Parsing
	FIGURE 9. An example of parsing inside the editor.

	5.1.3 Formatting
	FIGURE 10. The basic character formats used by the editor interface.
	FIGURE 11. Formatting styles for different types of identifiers. Most identifiers have different ...
	FIGURE 12. Example of formatting in the editor interface.

	5.2 FLUFF: Support for Virtual Files
	5.3 FINS: Insets for Software Artifacts
	5.4 FLIP: Literate Programming Support
	5.5 FOOD: Object-oriented Analysis and Design Support
	FIGURE 13. FrameMaker windows showing the object-oriented design tool FOOD in action. The top win...

	5.6 Evaluation

	6. Context Management in Desert
	6.1 Contexts
	6.2 The Context Interfaces
	FIGURE 14. The tool architecture of the Desert environment. The message server connects the vario...
	FIGURE 15. The COMD interface for a project showing its various directories. Colors code the date...

	6.3 Evaluation

	7. Related Work
	8. Experiences and Conclusions
	9. References

