
CHET: A System for Checking Dynamic Specifications
Steven P. Reiss

Department of Computer Science
Brown University

Providence, RI 02912
spr@cs.brown.edu

Abstract

Software specifications describe how code is suppose to
behave. Software model checking and related activities
statically investigate software behavior to ensure that it
meets a particular specification. We have developed a tool,
CHET, that uses model checking techniques to do large-
scale checking of dynamic specifications in real systems.
The tool uses a finite state specification of the properties to
check in terms of abstract events. It first finds all instances
in the system where this specification is applicable. For
each such instance, it creates an abstract model of the
software with respect to the events and then checks this
model against the specification. Key aspects of CHET
include a full interprocedural flow analysis to identify
instances of the specifications and restrict the resultant
models, and greatly simplified abstract programs that are
easily checked. The system has been used to check a vari-
ety of specifications in moderate-sized Java programs.

1. Introduction

Many of the problems with software systems derive
from the code not behaving as it is specified to do. In
today’s world of components and libraries, one of the most
pressing problems is ensuring the libraries and components
are used correctly. This is true both for system libraries and
outside components as well as for the packages and inter-
nal components that comprise the system.

Our goal was to develop a framework where the behav-
ior or usage of a class or package can be specified and then
checked against a program. We wanted this framework to
be practical and useful on real systems. It had to be able to
take specifications from a variety of sources. It had to be
fully automatic, taking a specification, finding all instances
of that specification in the program, and then checking
each instance. It had to be efficient so it can work with
large programs. Moreover, to be useful, it had to be accu-
rate, identifying all violations of the specifications with a
minimum of false positives.

The framework we have developed meets most of these
criteria. In the next section we discuss some of the related
work in this area. The following sections describe our

approach, first by providing the overall architecture and
then going into detail on the various components. We con-
clude by discussing our experiences and future directions.

2. Related Work

Static checking of software systems has a long history
that includes original attempts at proving software correct,
extended compiler checking such as Lint [27], static condi-
tion checking as in CCEL [10], and verification-based
static checking such as in LCLint [14]. More recently, there
has been a significant body of work on software model
checking [20].

Software model checking typically starts with a soft-
ware system and a property to check. The software system
is then abstracted into a representation that is more amena-
ble to model checking by abstracting the original program
into a much smaller program and then converting that
program into a finite state representation. The various
systems that have been developed differ in what they con-
sider the software system to be checked, in the way they
define the property to be checked, in the way they do
abstraction, in how they map the program into a finite state
representation, and in how they actually do the checking.
Our system combines aspects of a number of other systems
to produce a practical alternative that works on real pro-
grams.

Most of the software model checking systems start with
source code. For example, the original Java Pathfinder
[15,16] translated Java programs into Promela, the input
language for the SPIN model checker [19,20]. Java
Pathfinder 2 [4,25,29] instead starts from Java byte codes,
essentially a binary representation, while the Bandera
system [7,8,11] uses both the source and the byte code rep-
resentation. The advantages of using the binary representa-
tion are that it is often simpler than the source, one does not
have to worry about the vagaries of the language, and, most
importantly, one can easily check not only the user’s
system but also libraries and the interactions between the
user’s system and libraries. Thus we also start with byte
code, using IBM’s JikesBT package [23].

Finite state automata are the principal representations
used for specifying properties. These are defined either

directly or using a language that can be mapped into a
finite state representation. The automata are triggered by
program events and it is the characterization of these
program events that differentiates the systems. Most of the
systems including Bandera and Flavers [6] require that the
user explicit define events or predicates in terms of the
code for each item being checked. Other systems such as
Metal [13] and ESP [9] use simple parameterized source
code patterns which let the programmers specify all events
of a given type with a single specification. SLIC [1]
achieves the same effect using an event-oriented language.
The MaC framework [24] takes a similar approach for
specifying dynamic instrumentation using an event defini-
tion language. Patterns have also been used to simplify the
definition of commonly occurring idioms in the specifica-
tions [12]. Our approach provides the functionality of
Metal or ESP using an event-based specification similar to
MaC or SLIC.

The key to successful software model checking is the
generation of small abstractions that reflect the property
being checked without irrelevant details. The different
approaches do this in different ways. The C2BP package
within SLAM [2,3] and the DEOS system [28] convert the
user’s code into a Boolean program using predicate
abstraction where each predicate relevant to the specifica-
tion being checked is replaced with a Boolean variable.
Bandera uses data abstraction to map the program types
into abstract predicates that can be finitely modeled. Trail-
blazer looks only at control flow events and actions and
eliminates all data [21]. ESP does a combination of control
and data flow analysis to build a simplified version of the
original program. Flavers constructs a trace flow graph by
inlining control flow graphs of the various methods and
adding arcs to represent synchronization events. Java Path-
finder 2 uses static analysis to reduce the state space by
finding concurrent transitions [5]. Bandera, ESP, Java Path-
finder, and Flavers all use some type of slicing technology
to restrict the abstraction to those portions of the program
that are relevant to the conditions being checked. BLAST
takes a additional step, using the verification process to
identify what needs to be refined in the abstraction and
building a new model based on this information [17]. Later
work on BLAST uses Craig interpolation and proof tech-
niques to better the abstraction [18]. Our approach to date
is probably closest to that of ESP in that we use both
control and data flow analysis. However, we do not attempt
to find all relevant variables, which greatly simplifies the
abstraction in exchange for a loss of accuracy, and we
achieve the effect of path-sensitive analysis using automata
simplification techniques.

The various systems also differ in their representation of
an abstract program for checking. Some of the systems
actually generate an automata. For example, Flavers inlines

routines and adds synchronization arcs to build a single
large automata that can be checked. Bandera and the first
Java Pathfinder map the program into Promela, the input
language for the SPIN model checker. Our approach is dif-
ferent. We generate an abstract program with calls, syn-
chronized blocks, and events. This lets us handle complex
and recursive programs easily and compactly. In addition,
we use a Flavers-like automata (still with calls, synchro-
nized blocks and events) to represent the behavior of each
program thread other than the primary one. We do not
attempt to generate a program that includes all the possibly
relevant state variables on the assumption that this is too
much in a large system. Instead, we include a minimal set
of variables and let the specification indicate additional
ones as needed.

Checking in Bandera is done using the SPIN model
checker. SLAM and Java Pathfinder 2 use their own model
checkers, SLAM’s is based on Boolean programs, and
Pathfinder’s is based on a modified JVM [4,25]. Our
approach has been to develop our own checker to match
our program-like abstraction representation. The checker is
unique in the way it handles routines and synchronization,
and extends from a detailed single-threaded analysis to an
approximate multithreaded analysis quite naturally.

3. Architecture

Our framework uses multiple passes to first find all
occurrences of the given specifications in the user program,
then to check each of those occurrences. The checking
itself is done in two phases: the first builds a model of the
program with respect to the particular instance of the spec-
ification and the second checks whether that model meets
the specification.

We start with the code base of the program and a set of
specifications. The code base is given as the set of Java
class files that comprise the system, and involves not only
the user’s code but also all system and other libraries that
are used by the program. The specifications are defined as
extended finite state machines over program events. These
are described in detail in the next section.

The first phase of the system does a full interprocedural
flow analysis to find all the instances of each specified
check and to identify the potential set of events for each
instance. This is done by tracking sources in the code
where a source is the trigger or variable used in a specifica-
tion event. This is described in Section 5.

The result of the data flow is used to create a set of spec-
ification instances each of which is the combination of a
single specification automaton and a single source of the
appropriate type. For each of these instances, the system
creates a abstract program consisting of a set of finite state
machines each representing a particular method. The nodes
of the machine represent actions that either generate the

events of the specification or model program behavior. The
use of a set of machines here lets the system readily model
recursion and complex systems. This process is described
in Section 6.

Once a model is created, it is checked by effectively
simulating all possible runs of the model with respect to
the specification automata. This is done by determining for
each method and each specification state that might apply
at the start of executing the method, the possible specifica-
tion states when the method returns. This is described in
Section 7. The result of this provides the set of potential
result states for the specification. A report with these
results is then augmented with a trace of a program execu-
tion that exhibits the corresponding behavior as described
in Section 8.

4. Specifications

We wanted a fairly generic specification mechanism that
was able to model UML action diagrams, class and library
usage rules, and the behavior part of design patterns. Based
on an analysis of these different inputs, we settled on finite
state machines utilizing parameterized events.

Because we didn’t want to modify the application, the
candidate events had to relate directly to what occurred in
the program at run time. Moreover, we needed to have
events that we could determine from a static analysis of the
Java class files. This is a similar problem to that faced by
aspect-oriented languages such as Aspect/J [22].

The set of events that we currently provide include:

• CALL events that are triggered by a call to a particular
method or optionally any method that redefines it. This
event can be parameterized by a combination of the this
object, the first parameter to the method, or the this
object of the calling method.

• RETURN events that are triggered by the normal return
from a particular method. This can be parameterized by
the this object of the call or the value being returned.

• ENTRY events that occur when a method is entered.
These can be parameterized by the this object or the
first parameter.

• FIELD events that occur when a given field is assigned
a given value. The event can be parameterized by the
object containing the field. If the value is numeric, the
check can be equal or not-equal to an integer. If the
value is an object, the value can be null or non-null.

• ALLOC events that are triggered by an allocation of an
object of a particular class or optionally any of its sub-
classes.
These are sufficient for defining a wide range of specifi-

cations. In addition, the system is designed to be extensible
so that new event types can be added as needed as long the
instructions generating the event can be determined using
flow analysis. For example, adding support for events rep-

resenting throws, catches, or uses of an object could be
done in under a day.

Automata are defined over these events using an XML
notation that specifies the set of relevant events, defines the
states, identifies the starting state, and then defines for each
state and event, the appropriate transition. At least one of
the events must be designated as a trigger event. This event
is used to define an instance of the specification in the
source using its corresponding parameter.

An example specification is shown in Figure 1. This
specification starts by defining the classes to be used where
each class usage represents a potential parameter. Then it
defines three events. The first occurs whenever an imple-
mentation of the method Collection.iterator returns. It is a
trigger and is parameterized by the returned value C1. This
causes the return value to be associated with C1. The other
two events occur when the methods hasNext and next are
called on the value associated with C1. The automaton
itself is fairly simple, essentially saying that hasNext must
be called before next can be.

5. Finding Instances

The specification of Figure 1 says that for every iterator
in the program the given condition must hold. The first
phase of our framework finds all occurrences of the specifi-
cation in the program so that each can be checked sepa-
rately. We define an instance statically, creating one for
each program location where the triggering event might

 <CHECK META="generic" NAME="iterator_check" >
<CLASSES>

<USE ID="C1" CLASS="java.util.Iterator"/>
<USE ID="C2" CLASS="java.util.Collection" />

</CLASSES>
<EVENTS>

<EVENT ID="E1" NAME="NewIterator"
TYPE="RETURN"
VALUE="C1" METHOD="iterator"
TRIGGER="1" CLASS="C2" />

<EVENT ID="E2" NAME="hasNext"
TYPE="CALL" OBJECT="C1"
METHOD="hasNext" />

< EVENT ID="E3" NAME="next"
TYPE="CALL" OBJECT="C1"
METHOD="next" />

</EVENTS>
<AUTOMATON START="S1" TRIGGER="NEW">
<STATE ID="S1" ACCEPT="1" NAME="Start" >

<ON EVENT="E1" GOTO="S2" />
</STATE>
<STATE ID="S2" ACCEPT="1" NAME="IteratorAllocated" >

<ON EVENT="E2" GOTO="S3" />
<ON EVENT="E3" GOTO="S4" />

</STATE>
<STATE ID="S3" ACCEPT="1" NAME="hasNextCalled" >

<ON EVENT="E3" GOTO="S2" />
</STATE>
<STATE ID="S4" ERROR="1" NAME="nextCalled" />
</AUTOMATON>

</CHECK>

FIGURE 1. Specification of Iterator behavior.

occur. For example, the program in Figure 2 has two
instances of the iterator check, one for line 22 and one for
line 27. CHET provides the option of looking for instances
in the actual system code or in the system code as well as
any libraries used. We generally restrict ourselves to
looking at instances in the user’s code.

We find specification instances by doing a full interpro-
cedural data flow analysis of the program. The flow analy-
sis has two objectives. First, it must identify and track the
potential objects in the program that correspond to possible
parameters from the specifications. This is needed to iden-
tify instances of the specifications and to locate the possi-
ble sources for the specification events. Second, it should
simplify the next stages of static checking through the use
of flow information. For example, it should let us correlate
synchronized regions, identify the potential uses and values
of relevant fields, determine which virtual methods are
callable from each particular call site, differentiate static
methods instances based on parameters, and determine
code that can never be executed.

Flow analysis is based on sources. A source is a repre-
sentation of a value that has a specific creation point in the
program. For each source, our flow analysis computes all
points in the program to which the source can flow. CHET
uses several types of sources. Model sources are those that
are developed from the specification events. For example,
an ALLOC event identifies a new model source for any
corresponding new statement; CALL and RETURN events

can generate model sources for the this parameter, the first
argument, or the return value; FIELD events generate a
model source for each field access and set. Local sources
represent objects created directly by the code. Each new
operator creates a new local source of the corresponding
type. Arrays are represented as specialized local sources.
Finally, fixed sources are used to represent values that are
created implicitly, either by the run time system or by
native code.

The flow analysis does a symbolic execution of the
whole program (including libraries) that tracks the possible
sets of sources on the stack, in local variables, and in fields
and arrays at each point in the program. The sets of sources
are represented as values which include information about
the data type, whether the value can or must be null, the
actual set of sources, and, for numerics, an optional range
of values. While much of this intermediate information is
discarded, information relating model sources to their cor-
responding locations is retained for later use. The algo-
rithm uses a worklist to look at each method separately and
requeue methods whenever an associated value such as the
return from a called method or the contents of an accessed
field changes.

The flow analysis represents a conservative approxima-
tion. It ensures that if there is an execution where a source
can flow to a particular value, then the source will be asso-
ciated with that value. It is conservative in that sources will
be associated with values even in cases where no possible
execution could result in that association.

Several flow analysis techniques are included to make
the analysis both accurate and efficient. Field and array
values are generally associated with their corresponding
local sources. This means that the system can accurately
track the set of values that a particular instance of a field
can have. Because this is costly in general, the system also
supports global field values and chooses between using a
global and the local representation of the field based on
parameter settings, for example, using local values for
project fields and global values for library fields.

The analysis is also able to distinguish different instanti-
ations of a method based on the values associated with the
parameters, effectively doing inlining of methods at their
different call sites. Using a different instance of a method
for a call site ensures that one more accurately tracks the
flow of values both from and to the parameters of that
method. It also allows us to distinguish methods where the
behavior is dependent on parameter flags. Again, this can
be costly in general since it results in more code that needs
to be analyzed and more states and values to track. The
system chooses whether to create a new instance for a call
site based on whether the caller or callee is a project or
library method and whether any of the parameters contain a
model source.

1 package spr.simple;
2 import java.util.*;
3
4 public class Simple {
5 public static void main(String [] args) {
6 Simple s = new Simple();
7 s.setupList();
8 s.printList();
9 }
10
11 private List our_list;
12
13 public Simple() { our_list = new Vector(); }
14
15 private void setupList() {
16 our_list.add("Hello");
17 our_list.add("World");
18 our_list.add("Goodbye");
19 }
20
21 private void printList() {
22 for (Iterator it = our_list.iterator();
23 t.hasNext();) {
24 System.out.println((String) it.next());
25 }
26 int sz = our_list.size();
27 Iterator it = our_list.iterator();
28 for (int i = 0; i < sz; ++i) {
29 System.out.println((String) it.next());
30 }
31 }
32 } // end of class Simple

FIGURE 2. Java program using Iterators

Fixed sources are normally used for those instances
where values originate outside the analyzable object code.
An additional optimization in our flow analysis allows the
algorithm to use a fixed source in place of local sources for
particular types. This is used, for example, for sources that
represent exceptions in library methods since we rarely
need to track any detailed information associated with
these.

In addition to these various optimizations, the algorithm
is designed to work with complete Java programs. This
entails dealing with all the complications of such programs
including native code, exceptions, threads, synchroniza-
tion, callbacks, dynamic loading and binding using reflec-
tion, and large numbers of library routines. It also means
tracking the implicit execution semantics of Java such as
calls to static initializers and implicit field initializations.
We handle the latter by encoding the implicit semantics
into the flow analysis algorithms, for example ensuring that
the static initializer for a class is called before we evaluate
any methods of that class (unless the methods are called
from within the static initializer). For the other issues, we
use a common solution that lets the programmer specify
routines that are to receive special handling.

Method special handling can take a variety of forms.
Standard library and native methods can be flagged so that
their internals are ignored and the value they return is a
fixed source of the appropriate type. Methods that return
values other than their declared type (e.g. are declared to
return an interface type) can be declared to return a fixed
source that is mutable. Such a source will be automatically
converted to another fixed source upon an implicit or
explicit cast. Other methods can be flagged with a substi-
tute method. This is used for some internal java security
calls, for methods that dynamically bind to implementation
classes, and for methods such as Thread.start which actu-
ally invokes Thread.run asynchronously. Other methods,
such as System.arraycopy need to be treated as special
cases and are flagged as such. Finally, methods that register
callbacks can be flagged so that the parameters for the call-
backs will be computed correctly and the callback will be
invoked as part of the dataflow.

The result is a package that does source-based data flow
analysis of real java programs including all the various
libraries and does it relatively efficiently. It handles small
systems (5000 methods, 200,000 byte codes, 5000 in the
system itself) in under 1 minute. On CHET itself (6400,
340,000/47,000), it takes under 3 minutes. On a larger
project that includes 12 different executables (10158,
575,000/100,000) it takes 12 minutes.

Once this data flow analysis is complete, the framework
identifies all instances of the specifications. It does this by
finding, for each given specification, all instances of a
source created by a trigger event for that specification. The

instance is stored as the combination of the specification
and this source.

6. Building Program Abstractions

Once we have identified an instance of a specification,
we need to check that instance. We do this in two steps,
first creating an abstraction of the application that only
includes those portions that are relevant to the particular
instance, and then checking if this abstraction meets the
specification. The generated abstraction here is actually an
abstract program that generates events for the specification.

6.1 The Abstract Program

This abstract program is generated to ensure that if there
is an execution of the actual program which exhibits a
certain sequence of specification events, then there is an
execution of the abstract program that generates the same
sequence. This is again conservative in that the abstract
program may generate sequences that can never be exhib-
ited in the actual program.

The abstract program consists of a set of routines. Each
routine is composed of nodes and arcs similar to an autom-
ata. There are actions associated with each node, but the
arcs are uninterpreted. The associated actions control the
behavior of the program and the generation of events. The
current actions include:

• Enter a routine.
• Exit a routine (return or end of program).
• Call a routine.
• Generate an event.
• Set a variable to a given value.
• Set the return value for the current routine.
• Test a variable or return value.

In addition, to facilitate checking of multithreaded
applications, we have added the following actions:

• Asynchronous call of a routine.
• Begin synchronization for a set of sources.
• End synchronization for a set of sources.
• Wait or timed wait on a set of sources.
• Notify or notify all on a set of sources.

Execution of this abstract program is nondeterministic.
Consider the single threaded case. At any point in time
there is a current node. This node is executed to determine
the current node at the next point in time. If the node is a
call, then the current node is pushed onto the call stack and
the next current node is the enter node of the called routine.
If the node is a return, then the calling node is popped off
the call stack. If there was no calling node, the program
exits normally. If there was, then one of its successor nodes
is chosen nondeterministically as the next node. If the node

is an event node, a variable set, or a return set, the next
node is chosen nondeterministically from this node’s suc-
cessors after an event is output or the program state is
changed accordingly. If the node is a test node and the test
fails, the program fails; if the test succeeds then the next
node is determined nondeterministically from the succes-
sors.

The threaded case assumes that there are multiple such
programs with a common program state. A new thread is
created by an asynchronous call node. Synchronization can
be applied by keeping track of the set of sources that are
currently being synchronized on and having a synchronize
node block (i.e. use the current node as the next node) if
synchronization would fail. This is not accurate in general
since we cannot guarantee from the flow analysis that the
same source from the analysis implies the same object at
execution time; a true conservative approach requires us to
ignore the synchronization statements. Wait and notify can
also be modeled conservatively. A true wait blocks until
there is a notify or notify all that shares a common source.
Then it nondeterministically chooses to either continue
blocking or to proceed to one of its successor nodes.

As an example of an abstract program, the code in
Figure 2 yields the automata shown in Figure 3. Here entry
nodes are rounded boxes containing the name of the rou-
tine, exit nodes are empty circles, and event generation
nodes are boxes containing the event name. The automata
for main is the same for both instances of the iterator
check. The top automata is the one generated for the first
instance of the iterator in printList, while the bottom
automata is the one generated for the second instance.

6.2 Building the Abstraction

We build a program abstraction by mapping each
method of the system being analyzed into an abstract
program routine. The methods here are those that were
used in the flow analysis phase, so that a method that was
inlined in multiple versions actually appears as multiple

methods in the abstraction. Moreover, we add additional
methods to represent complex virtual calls, with the new
method simply doing a parallel call of all possible alterna-
tives as determined by the data flow analysis.

The program abstraction is generated in three phases.
First, a prepass checks all the methods in the system to
determine which ones are definitely not relevant to the
given specification and instance. These methods and any
calls to them can be ignored.

Next, we construct an automata for each potentially rel-
evant method. This is done by making a symbolic execu-
tion pass over the code for the method. A new node is
created whenever there is a synchronization entry or exit,
when an event for the specification would be generated,
when a method that is not ignored is called, when a moni-
tored field is accessed, when a method returns, and at the
start of each basic block. When a conditional occurs and
one of the items tested is a monitored field or a return
value, then nodes testing the value of the field are gener-
ated for the different resultant branches.

This generation is done using a path-sensitive analysis.
While doing the symbolic execution, we keep track of the
values on the stack and in local variables in a minimal way.
For objects, we track whether the value is null or non-null.
For numbers, we note if the value is constant and if so,
what constant. When we have a branch in the program to
the start of a basic block, we create a new abstract program
node each time we have a different value set. This lets us
construct finite programs that reflect local variable values.
This value-based generation can be turned on or off for
each particular method. We currently do it for all methods
that are less than a certain size (currently 400 byte codes).
This provides accuracy for most items while avoiding the
relatively small number of cases where the procedure gen-
erates an initial excessively large graph.

The third phase of program abstraction is to simplify the
resultant automata. This first involves local simplification,
where we eliminate nodes without actions (e.g. all the extra
nodes we inserted for basic blocks), eliminate empty or
unneeded synchronized regions, eliminate unneeded tests,
and eliminate meaningless returns. Second, it involves
finding methods where the graph becomes trivial and elim-
inating these automata and any calls to them. These two
steps are done concurrently using a worklist algorithm. A
final step involves applying automata minimization to each
remaining automata.

7. Checking Abstractions

Once we have generated the abstract program, the next
step is to check whether all sequences of events that can be
generated by that program are consistent with the given
specification.

main

init

printList

printList has next

initprintList next

FIGURE 3. Generated automata for Simple.

Many of the types of specifications we want to check.
for example design patterns, UML interaction diagram, and
class usage, are generally not thread-related. Thus, we first
developed a means for efficiently and accurately checking
specifications for the single threaded case and then
extended this to the multithreaded case.

7.1 The Single Threaded Case

The overall approach to testing specifications is to
determine the set of checking states that are reachable at
each node of the program. We first define what we mean by
a checking state. This has to reflect the program state and
the state in the specification being checked. A checking
state thus consists of a state from the specification (e.g. S2
from Figure 1) along with values for each of the monitored
variables and the latest return value. Value settings are cur-
rently limited to {Null, NonNull, Unknown} for objects
and either a specific value or Unknown for numerics.

Next we determine for each routine and each possible
checking state on entry to that routine, the set of checking
states that are possible on exit. This is done using a
worklist algorithm that takes a node and a set of states that
can apply at the start of the node and then computes the set
of states that apply at the start of any successors to the
node. Each node is handled based on its associated action:

• Start nodes just propagate the current state to their suc-
cessors.

• End nodes add the set of states that are generated to the
states that apply after each corresponding call node,
queuing up call nodes that might have changed.

• Call nodes check if the called method has been checked
for each of the current states. If it has, they propagate
the result states of the call to the successors; if not, they
queue the starting node of the called method for later
checking.

• Event nodes modify the state by applying the transition
given in the specification for the given event.

• Field set and return nodes modify the state by changing
the value of the field that is being set.

• Test nodes check the value of the field and either propa-
gate the current state or nothing to their successors.
We note that this process handles recursion correctly. A

recursive routine will be checked once for each achievable
entry state. At least one of these states should represent the
bottom of the recursion and thus should yield an output
state. Propagating this state back, even through recursive
calls, produces the correct set of output states in the light of
recursion.

The final stage is to look at the possible exit states of
each main program. These represent the final states that
can be reached in any execution and thus indicate whether

the specification succeeds by reaching an accepting state or
fails by reaching an error state.

To handle programs that don’t return or don’t return if a
particular state is reached, we distinguish specification
states for which all transitions go to the state itself. These
states typically represent either error conditions or a
desired target state. Whenever the simulation gets into one
of these states, we simulate an immediate return from the
current method. This ensures that if the program can reach
one of these “final” states, the algorithm will detect it.

For the example of Figure 3, the algorithm finds one
final state for the first instance and two for the second. For
the first instance, it notes that it is always the case that
starting in main in state S1, one will end up in state S3. For
the second instance, it finds that starting in state S1, one
can actually end up in either state S2 where the iterator has
been allocated but never used, or state S4, the error state.

7.2 The Multithreaded Case

We had several choices in extending this approach to
handle real multithreaded programs. One approach would
be to model each thread as a separate program as above and
track the cross product of the states at each point. This
would require, however, that the state include the call stack
which would make it potentially infinite. The alternative
we use is to find all instances of threads (based on asyn-
chronous call nodes) and convert each into an automata
based on the method graphs. This eliminates the call stack
as part of the state while still preserving much of the infor-
mation in the abstract program.

We build an initial thread automata using an inlining
process, handling recursive calls by only having one copy
of each method in the resultant graph. Then we simplify
the resultant automaton first by removing unnecessary
nodes and then doing automata minimization. The result is
again a conservative approximation to the original pro-
gram, ensuring that any execution of the thread in the orig-
inal program will be reflected by some execution of the
automata, but allowing executions of the automata that do
not correspond to program executions.

Once we have constructed an automata for each possible
thread in the program, we can extend the single-threaded
checking approach to handle multiple threads. We start by
extending the notion of a checking state to include thread
information. We first add synchronization information to
the checking state in the form of the set of sources that are
currently synchronized for each active thread. Second, the
checking state is extended to include the automaton node
of each active thread. We allow a finite number of instances
of each thread to be created, where the number is deter-
mined by the specification and defaults to three.

Next we extend the checking algorithm to deal with
transitions caused by the threads. For each node, we
augment the set of states at the start of the node with the set
of all states that can arise by having any of the threads
execute an action. This process is repeated to construct the
full set of potential states for the given node.

Finally we handle the action nodes associated with
threads, both when they are inside a thread automaton and
when they are in the original program:

• For a begin synchronization node, we first check if the
sources are in the current synchronization set for
another thread. If they are and we are checking syn-
chronizations then the resultant state set is empty. Oth-
erwise we add the associated sources to the
synchronization set for the current thread.

• For an end synchronization node, we remove the asso-
ciated sources from the synchronization set.

• For a wait node, the set of states is empty unless we can
execute a notify or notify all from that state on any of
the same sources.

• For an asynchronous call node, we add a new thread
instance to the current state provided that there not
already too many instances of that thread currently
active; otherwise the call is ignored.
Synchronization checking is optional here since it is

essentially unsafe. However, in most of the programs we
have looked at, once they are restricted to a particular spec-
ification, the approximate synchronization represented by
the set of sources has accurately reflected the actual syn-
chronization done by the program and hence yields a more
meaningful abstract program.

8. Reporting the Result

The output from the above procedure is simply the set
of possible ending states that can be achieved for a given
main program. While this is helpful, it is not enough infor-
mation for a programmer to understand why or how the
program can achieve these states. To provide this informa-
tion, we augmented the framework to produce a trace of the
execution to the point where the target state is reached.

This is done as a separate pass over the program rather
than as an addition to the checking algorithm because the
checking algorithm treats each method separately while the
trace reporting has to keep track of the call stack and the
actual sequence of method calls.

This pass uses much of the same techniques as the
checking pass, doing a breadth-first search over the execu-
tions while tracking calls and attempting to find the speci-
fied target state.

The actual output from the framework consists of infor-
mation gathered from each of the passes. Flow analysis
reports all routines that are never used or that never return.
For each instance of a specification, the output includes the

specification, the source of the instance, and a top-level
indicator of whether the particular instance passed or failed
(or both). Then, based on the result of the data flow analy-
sis, the output contains the program location (method, line,
and even the instruction number) where each of the events
that would be associated with the instance might be gener-
ated. This information could be used to instrument the
application to dynamically check the instance if desired.
Next, it outputs the program abstraction that was generated
for the instance. Finally, it reports, for each different end
state, the fact that there is an execution that yields that end
state and includes a program trace for a sample such execu-
tion. All this is stored in an XML file that can either be read
by the programmer or by another application.

Figure 4 shows excerpts from the output for the second
instance of example of Figure 2. The first part of the figure
identifies the specification and the source as well as indi-
cating the status. The status OK-ERR here indicates that
the specification can both succeed and fail. The next
section of the output identifies the events that are used by
this instance. Finally, the last portion of the output provides
two program traces, one for each of the end states that was
found. The actual output also includes the automata of the
specification, the automata generated for each method for
each instance, and more details on each of the event loca-
tions such as the instruction number.

9. Experience and Future Directions

We have been using this system to perform a variety of
checks in a range of software systems. In particular, we
have been checking the use of iterators and files in all sys-
tems. In addition, we have checked system-specific condi-
tions such as the proper use of a support libraries for a web
crawler and for a pinball program. CHET correctly identi-
fied several improper uses of iterators in our code (and in
Sun’s libraries), and pointed out files that were never
closed. It also was instrumental in identifying odd cases in
our web crawler sample program that were handled incor-
rectly. All this was done without any modifications or
annotations in the systems being checked.

Performance has been dominated in most cases by the
cost of flow analysis. For the largest system we have been
working on (65,000 lines of source, 575,000 analyzed byte
codes) [26], CHET identifies over 300 specification
instances from within the project. The cost of generating
and checking the resultant automata is less than one-tenth
the cost of flow analysis, with most of the checks taking
less than 10 ms., and only one requiring more that 100 ms.
CHET itself comprises about 24,000 lines of Java code.

The system works as well as it does because of the
detailed flow analysis and the use of simplified abstrac-
tions. The flow analysis lets us accurately identify
instances of the specification without any user interaction.

Moreover, it lets us simplify the abstract programs reflect-
ing these specifications to the point where they are still
accurate but easy to check.

Most of the work to date has concentrated on the single
threaded cases. However, we have worked on checking
multithreaded examples such as the web crawler cited
above and a number of the thread-based specifications used
as examples for Flavers and Bandera. Our experiences with
the latter have been mixed. Where the program is relatively
straightforward, we are able to do the checks and do them
quickly, generally in under a minute. For some, such as the
Flavers’ dining philosophers example we get complete
results. However, for others some of the checks are incon-
clusive because they require a more detailed analysis of
program variables and data flow than our current defaults.

Our future work here will concentrate on making this
system practical for checking a variety of conditions in
large, complex systems. The particular directions we are
interested in include:

• Finding easier ways of providing specifications to be
checked and of extending our current specification lan-
guage to handle more complex conditions such as
nested objects and privacy concerns.

• Improving the performance and accuracy of flow analy-
sis. One approach we are currently trying here is to
model the basic library data structures directly rather
than analyzing the library code.

• Incorporating thread information into the flow analysis
so that thread-based specifications can be better written
and checked.

• Making the generated automata more accurate by auto-
matically detecting data fields that should be tracked as
part of the analysis of a specification.

• Extending generation and checking to support limited
arithmetic and a broader range of values on selected
data fields.

• Extending generation to handle callbacks from native
code (as in Swing). Such callbacks are handled cor-
rectly in the flow analysis, but currently are not incor-
porated into the abstract programs.

• Improving the checking of multithreaded applications
either by an improved thread abstraction mechanism or
by using a traditional model checker.

• Improving the user interface and robustness of the sys-
tem so that we can make it available to students and
other researchers and gain more experience.
Overall, however, we feel that our approach provides a

practical means of checking dynamic specifications in real
programs. The combination of data flow analysis to find
instances of the specification along with the ability to
create and check abstract programs rather than automata
for each instance demonstrates a usable framework that has
a lot of potential for use in future software systems.

10. Acknowledgements

This work was done with support from the National
Science Foundation through grants ACI9982266,
CCR9988141 and CCR9702188 and with the generous
support of Sun Microsystems. Manos Renieris, Shriram

 <TEST STATUS=’OK-ERR’ NAME=’iterator_check’ META=’generic’>
<SOURCES>

< SOURCE METHOD=’spr.simple.Simple.printList’ LINE=’33’ FILE=’Simple.java’ />
</SOURCES>
<EVENTS>

<EVENTLOC STATEID=’S_78’ METHOD=’spr.simple.Simple.printList’ SIGNATURE=’void()’ FILE=’Simple.
<EVENT ID=’E3’ TRIGGER=’false’ NAME=’next’ TYPE=’CALL’ METHOD=’next’ />

</EVENTLOC>
<EVENTLOC STATEID=’S_69’ METHOD=’spr.simple.Simple.printList’ SIGNATURE=’void()’ FILE=’Simple.

<EVENT ID=’E1’ TRIGGER=’true’ NAME=’NewIterator’ TYPE=’CALL’ METHOD=’iterator’ />
</EVENTLOC>

</EVENTS>
<CHECKER>
<TRANSITION START=’S1’ FINAL=’S2’ STATUS=’OK’>

<ELEMENTSTATE=’S1’><EVENTLOC METHOD=’spr.simple.Simple.main’ FILE=’Simple.java’ LINE=’9’ /></ELEMENT>
<ELEMENT STATE=’S1’ ><EVENTLOC METHOD=’spr.simple.Simple.main’ FILE=’Simple.java’ LINE=’11’ />/ELEMENT>
<ELEMENT STATE=’S1’ ><EVENTLOC METHOD=’spr.simple.Simple.printList’ FILE=’Simple.java’ LINE=’27’ /></ELEMENT>
<ELEMENT STATE=’S1’ ><EVENTLOC METHOD=’spr.simple.Simple.printList’ FILE=’Simple.java’ LINE=’33’ /></ELEMENT>
<ELEMENT STATE=’S2’ ><EVENTLOC METHOD=’spr.simple.Simple.printList’ FILE=’Simple.java’ LINE=’37’ /></ELEMENT>
<ELEMENT STATE=’S2’ ><EVENTLOC METHOD=’spr.simple.Simple.main’ FILE=’Simple.java’ LINE=’12’ /></ELEMENT>

</TRANSITION>
<TRANSITION START=’S1’ FINAL=’S4’ STATUS=’ERR’>

<ELEMENT STATE=’S1’ ><EVENTLOC METHOD=’spr.simple.Simple.main’ FILE=’Simple.java’ LINE=’9’ /></ELEMENT>
<ELEMENT STATE=’S1’ ><EVENTLOC METHOD=’spr.simple.Simple.main’ FILE=’Simple.java’ LINE=’11’ /></ELEMENT>
<ELEMENT STATE=’S1’ ><EVENTLOC METHOD=’spr.simple.Simple.printList’ FILE=’Simple.java’ LINE=’27’ /></ELEMENT>
<ELEMENT STATE=’S1’ ><EVENTLOC S METHOD=’spr.simple.Simple.printList’ FILE=’Simple.java’ LINE=’33’/></ELEMENT>
<ELEMENT STATE=’S2’ ><EVENTLOC METHOD=’spr.simple.Simple.printList’ FILE=’Simple.java’ LINE=’35’/></ELEMENT>
<ELEMENT STATE=’S4’ ><EVENTLOC METHOD=’spr.simple.Simple.printList’ FILE=’Simple.java’ LINE=’37’ /></ELEMENT>

</TRANSITION>
</CHECKER>
</TEST>

FIGURE 4. Excerpts from the XML output for the simple sample program.

Krishnamurthi, and Philip Klein provided significant
advise and feedback.

11. References
1. Thomas Ball and Sriram K. Rajamani, “SLIC: a specification
language for interface checking,” Microsoft Research Technical
Report MSR-TR-2001-21, (2001).

2. Thomas Ball, Todd Millstein, Rupak Majumdar, and Sriram
K. Rajamani, “Automatic predicate abstraction of C programs,”
Proc. SIGPLAN 01, pp. 203-213 (June 2001).

3. Thomas Ball and Sriram K. Rajamani, “The SLAM project:
debugging system software via static analysis,” Proc. POPL
2002, (2002).

4. Guillaume Brat, Klaus Havelund, Seung Joon Park, and
Willem Visser, “Java PathFinder: Second generation of a Java
model checker,” Proc. Post-CAV Workshop on Advances in
Verification, (July 2000).

5. Guillaume Brat and WIllem Visser, “Combining static
analysis and model checking for software analysis,” Proc. ASE
2001, pp. 262-271 (2001).

6. J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil, “FLAVERS:
A finite state verification technique for software systems,” IBM
Systems Journal Vol. 41(1) pp. 140-165 (2002).

7. James C. Corbett, Matthew B. Dwyer, John Hatcliff, and
Robby, “A language framework for expressing checkable
properties of dynamic software,” SPIN 2000, pp. 205-223 (2000).

8. James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn
Laubach, Corina S. Pasareanu, Robby, and Hongjun Zheng,
“Bandera: extracting finite-state models from Java source code,”
ICSE 2000, pp. 439-448 (May 2000).

9. Manuvir Das, Sorin Lerner, and Mark Seigle, “ESP: Path-
sensitive program verification in polynomial time,” Proc. PLDI
2002, (June 2002).

10. Carolyn K. Duby, Scott Meyers, and Steven P. Reiss, “CCEL:
a metalanguage for C++,” Proc. Second Usenix C++ Conference,
(August 1992).

11. Matthew B. Dwyer and John Hatcliff, “Slicing software for
model construction,” Proc. 1999 ACM Workshop on Partial
Evaluation and Program Manipulation, pp. 105-118 (1999).

12. Matthew B. Dwyer, George S. Avrunin, and James C.
Corbett, “Patterns in property specifications for finite-state
verification,” Proc. ICSE 99, pp. 411-420 (1999).

13. Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem, “Checking system rules using system-specific,
programmer-written compiler extensions,” Proc. 6th USENIX
Conf. on Operating Systems Design and Implementation, (2000).

14. David Evans, John Guttag, James Horning, and Yang Meng
Tan, “LCLint: a tool for using specifications to check code,”

Software Engineering Notes Vol. 19(5) pp. 87-96 (December
1994).

15. Klaus Havelund and Jens Ulrik Skakkebaek, “Applying
model checking in Java verification,” Proc. 5th and 6th SPIN
Workshop, Lecture Notes in Computer Science Vol. 1680 pp. 216-
231 Springer-Verlag, (1999).

16. Klaus Havelund and Thomas Pressburger, “Model checking
Java programs using Java Pathfinder,” Intl Journal on Software
Tools for Technology Transfer Vol. 2(4)(April 2000).

17. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and
Gregoire Sutre, “Lazy abstraction,” Proc. POPL ’02, pp. 58-70
(2002).

18. Thomas A. Henzinger, Ranjit Jhala, Rpak Majumdar, and
Kenneth L. McMillan, “Abstration from proofs,” Proc. POPL ’04,
pp. 232-244 (2004).

19. Gerard Holzmann, The Design and Validation of Computer
Protocols, Prentice Hall (1991).

20. Gerard J. Holzmann and Margaret H. Smith, “Software
model checking,” Forte, pp. 481-497 (1999).

21. Gerard J. Holzmann and Margaret H. Smith, “Software
model checking: extractin verification models from source code,”
Software Testing, Verification, and Reliability Vol. 11(2) pp. 65-
79 (2001).

22. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold, “An Overview of AspectJ,” in European
Conference on Object-Oriented Programming, (2001).

23. Chris Laffra, Doug Lorch, Dave Streeter, Frank Tip, and John
Field, “What is Jikes Bytecode Toolkit,” http://
www.alphaworks.ibm.com/tech/jikesbt, (March 2000).

24. I. Lee, S. Kannan, M. Kim, O. Sololsky, and M. Viswanathan,
“Runtime assurance based on formal specifications,” Intl. Conf.
on Parallel and Distributed Processing Techniques and
Applications, (June 1999).

25. Flavio Lerda and Willem Visser, “Addressing dynamic issues
of program model checking,” Lecture Notes in Computer Science,
Proc. 8th SPIN Workship Vol. 2057 pp. 80-102 (2001).

26. Steven P. Reiss, “Constraining software evolution,”
International Conference on Software Management, pp. 162-171
(October 2002).

27. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W.
Kernighan, “The C programming language,” Bell Systems Tech. J.
Vol. 57(6) pp. 1991-2020 (1978).

28. Willem Visser, Seung Joon Park, and John Penix, “Using
predicate abstraction to reduce object-oriented programs for
model checking,” Proc. ACM SIGSOFT Workshop on Formal
Methods in Software Practice, (August 2000).

29. Willem Visser, Klaus Havelund, Guillaume Brat, and Seung
Joon Park, “Model checking programs,” IEEE Intl. Conf. on
Automated Software Engineering, (September 2000).

	CHET: A System for Checking Dynamic Specifications
	Steven P. Reiss
	Department of Computer Science
	Brown University
	Providence, RI 02912
	spr@cs.brown.edu
	Abstract
	1. Introduction
	2. Related Work
	3. Architecture
	4. Specifications
	FIGURE 1. Specification of Iterator behavior.

	5. Finding Instances
	FIGURE 2. Java program using Iterators

	6. Building Program Abstractions
	6.1 The Abstract Program
	FIGURE 3. Generated automata for Simple.

	6.2 Building the Abstraction

	7. Checking Abstractions
	7.1 The Single Threaded Case
	7.2 The Multithreaded Case

	8. Reporting the Result
	FIGURE 4. Excerpts from the XML output for the simple sample program.

	9. Experience and Future Directions
	10. Acknowledgements
	11. References

