
Edge-based Blur Kernel Estimation Using Patch Priors
Supplementary Materials I

Details on Optimization Procedures

Libin Sun∗

Brown University
lbsun@cs.brown.edu

Sunghyun Cho
Adobe Research
scho@adobe.com

Jue Wang
Adobe Research

juewang@adobe.com

James Hays
Brown University
hays@cs.brown.edu

In this document, we provide detailed mathematical
derivations on the optimization procedures we have intro-
duced in Sec. 4.1. in the paper. Specifically, we discuss the
details on updating x and {σi}.

1. Derivations for Updating x

1.1. x-step Using L2 Penalty

To facilitate our discussion, we start out with a simpler
objective function below, which is based on the L2 norm in-
stead of using the Lorentzian penalty on the patch similarity
as done in the paper:

fx(x) =
∑
δ∗

ω∗‖k ∗ δ∗x− δ∗y‖2 + α‖∇x‖2

+
β

|M |
∑
i∈M
‖xi − σiZi‖2

+ γ
∑
i∈M

(
σi − F−1ref (Fσ,x(σ

i))
)2

(1)

where all notations are as defined in the paper. Here the un-
knowns include {Zi}, {σi}, x, and M is deterministically
computed from x as discussed in the paper. The optimiza-
tion requires that we sequentially update one of {Zi}, {σi},
and x while holding the other two variables constant, un-
til convergence. Given a current latent image x, updating
{Zi} clearly boils down to a nearest neighbor search, which
is trivial.

For easier derivation of the optimization process for x,

∗This research project was conducted while the first author was intern-
ing at Adobe Research.

we rewrite Eqn. (1) in a matrix form as:

fx(x) =
∑
δ∗

ω∗‖KD∗x−D∗y‖2

+ α‖Dhx‖2 + α‖Dvx‖2

+
β

|M |
∑
i∈M
‖Pix− qi‖2

+ γ
∑
i∈M

(
σi − F−1ref (Fσ,x(σ

i))
)2

(2)

where K and D∗ represent the matrix form of k and δ∗, re-
spectively, and x and y represent the vector form of x and
y, respectively. Dh and Dv are the first order differentiation
operators along the horizontal and vertical axes. Pi is a bi-
nary matrix extraction operator, extracting the patch at loca-
tion i in the latent image x. qi is defined as qi = σiZi+µi

where Zi is a vector representing Zi.
We can update x by minimizing Eqn. (2) w.r.t. x. This

is equivalent to finding a solution of the following equation,
which is derived by differentiating Eqn. (3) and setting it
zero:(

A+
β

|M |
∑
i∈M

PTi Pi

)
x = b+

β

|M |
∑
i∈M

PTi qi (3)

where A and b are defined as:

A =
∑
δ∗

ω∗K
TDT
∗D∗K+ α

∑
δx,δy

(
DT
hDh +DT

vDv

)
,

b =
∑
δ∗

ω∗K
TDT
∗D∗y.

Since Eqn. (3) is a linear system w.r.t. x, it can be solved
efficiently using a biconjugate gradient descent method
(bicg function in MATLAB), where the right-hand side
is precomputed after fixing k, {Zi} and {σi}. Moreover, as
A and b consist of convolution matrices, Ax and b can be
computed efficiently using Fourier transforms as described
in the paper.

1

1.2. x-step Using Lorentzian Penalty

The L2 penalty gives equal weights to all example
patches Zi, meaning all latent patches under the mask M
will be optimized to be as similar to their respective ex-
ample patches as possible. However, our patch priors are
designed with restricted expressiveness, so there exist la-
tent patches not captured in our example patch set. Such
patches should be given smaller weights, so that x should
be less affected by them.

One way of achieving this is through thresholding on
the patch-pair distance and removing patches with large er-
ror values (above threshold) from the third term of Eqn.
(1). However, it is not clear how to select an ideal thresh-
old value. A better way of introducing such weighting
scheme is through the use of robust statistics. A large fam-
ily of robust penalty functions can be considered to alleviate
this problem. Some popular ones include Lp norms with
0 ≤ p < 2, Huber loss function, Lorentzian function and
Tukey’s biweight function. For our framework, we choose
the Lorentzian penalty function.

With the Lorentzian function, we rewrite our objective
function in Eqn. (2) as:

fx(x) =
∑
δ∗

ω∗‖KD∗x−D∗y‖2

+ α‖Dhx‖2 + α‖Dvx‖2

+
β

|M |
∑
i∈M

ρ (‖Pix− qi‖)

+ γ
∑
i∈M

(
σi − F−1ref (Fσ,x(σ

i))
)2

(4)

where ρ(r) is the Lorentzian function, defined as ρ(r) =

log
(
1 + r2

2ε2

)
. Recall that Pi is the binary matrix operator

extracting the ith patch from image x. Based on the defini-
tion of the Lorentzian function, the third term on the right
hand side of Eqn. (4) can be expanded as:

ρ(‖Pix− qi‖) = log

(
1 +

1

2ε2
‖Pix− qi‖2

)
. (5)

By differentiating Eqn. (5) w.r.t. x, we obtain:

dρ(‖Pix− qi‖)
dx

=
PTi Pix−PTi qi

ε2 + 1
2 ‖Pix− qi‖2

. (6)

By substituting Eqn. (6) into Eqn. (3), we get:(
A+

2β

|M |
∑
i∈M

wiP
T
i Pi

)
x = b+

2β

|M |
∑
i∈M

wiP
T
i qi (7)

where wi =
(
2ε2 + ‖Pix− qi‖2

)−1
. Note that Eqn. (7) is

similar to Eqn. (3) but with weights wi. This equation is no

longer linear in x, because wi is a function of x. Thus, we
use an iterative reweighted least squares (IRLS) method to
alternatingly optimize x and wi.

2. Derivations for Updating {σi}
{σi} is an important part of our formulation, designed

specifically to restore image gradient variations destroyed
by the blur process. Recall in Eqn. (4) only the last two
terms involve {σi}, so we need to minimize the follow-
ing objective function for updating {σi}, which is a sub-
problem in the x-step:

fσ({σi}) =
β

|M |
∑
i∈M

ρ
(
‖Pix− σiZi − µi‖

)
+ γ

∑
i∈M

(
σi − σi∗

)2
(8)

where σi∗ is defined as:

σi∗ = F−1ref (Fσ,x(σ
i)). (9)

Holding σi∗ constant, we differentiate Eqn. (8) w.r.t. σi, then
we have:

∂fσ({σi})
∂σi

=
2βwi
|M |

Zi
T (

Pix− σiZi − µi
)

+ 2γ(σi − σi∗). (10)

Again, wi is a function of σi, making direct optimization
tricky. Thus, we adopt an IRLS and update {σi} by iterating
the following steps:

1. Compute {σi∗} given current {σi} using Eqn. (9).

2. Compute {wi} given current {σi}.

3. Update {σi} by finding a solution which makes Eqn.
(10) zero while holding {wi} constant, i.e:

σi ←
wiβ/|M |Zi

T (
Pix− µi

)
− γσi∗

wiβ/|M |ZiTZi − γ
(11)

4. Repeat the steps 2 and 3.

Note that Eqn. (9) can be efficiently solved by simple his-
togram matching.

