
Indirect Iterator

Author: David Abrahams, Jeremy Siek, Thomas Witt
Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
Organization: Boost Consulting, Indiana University Open Systems Lab, University of

Hanover Institute for Transport Railway Operation and Construction
Date: 2004-11-01
Copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003.

abstract: indirect_iterator adapts an iterator by applying an extra dereference inside
of operator*(). For example, this iterator adaptor makes it possible to view a con-
tainer of pointers (e.g. list<foo*>) as if it were a container of the pointed-to type
(e.g. list<foo>). indirect_iterator depends on two auxiliary traits, pointee and
indirect_reference, to provide support for underlying iterators whose value_type
is not an iterator.

Table of Contents

indirect_iterator synopsis

indirect_iterator requirements

indirect_iterator models

indirect_iterator operations

Example

indirect_iterator synopsis

template <
class Iterator

, class Value = use_default
, class CategoryOrTraversal = use_default
, class Reference = use_default
, class Difference = use_default

>
class indirect_iterator
{
public:

typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference_type;
typedef /* see below */ iterator_category;

1

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@ive.uni-hannover.de
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.ive.uni-hannover.de

indirect_iterator();
indirect_iterator(Iterator x);

template <
class Iterator2, class Value2, class Category2

, class Reference2, class Difference2
>
indirect_iterator(

indirect_iterator<
Iterator2, Value2, Category2, Reference2, Difference2

> const& y
, typename enable_if_convertible<Iterator2, Itera-

tor>::type* = 0 // exposition
);

Iterator const& base() const;
reference operator*() const;
indirect_iterator& operator++();
indirect_iterator& operator--();

private:
Iterator m_iterator; // exposition

};

The member types of indirect_iterator are defined according to the following pseudo-code, where
V is iterator_traits<Iterator>::value_type

if (Value is use_default) then
typedef remove_const<pointee<V>::type>::type value_type;

else
typedef remove_const<Value>::type value_type;

if (Reference is use_default) then
if (Value is use_default) then

typedef indirect_reference<V>::type reference;
else

typedef Value& reference;
else

typedef Reference reference;

if (Value is use_default) then
typedef pointee<V>::type* pointer;

else
typedef Value* pointer;

if (Difference is use_default)
typedef iterator_traits<Iterator>::difference_type difference_type;

else
typedef Difference difference_type;

if (CategoryOrTraversal is use_default)
typedef iterator-category (

iterator_traversal<Iterator>::type,‘‘reference‘‘,‘‘value_type‘‘
) iterator_category;

else

2

typedef iterator-category (
CategoryOrTraversal,‘‘reference‘‘,‘‘value_type‘‘

) iterator_category;

indirect_iterator requirements

The expression *v, where v is an object of iterator_traits<Iterator>::value_type, shall be valid
expression and convertible to reference. Iterator shall model the traversal concept indicated by it-
erator_category. Value, Reference, and Difference shall be chosen so that value_type, reference,
and difference_type meet the requirements indicated by iterator_category.

[Note: there are further requirements on the iterator_traits<Iterator>::value_type if the
Value parameter is not use_default, as implied by the algorithm for deducing the default for the
value_type member.]

indirect_iterator models

In addition to the concepts indicated by iterator_category and by iterator_traversal<indirect_iterator>::type,
a specialization of indirect_iterator models the following concepts, Where v is an object of itera-
tor_traits<Iterator>::value_type:

• Readable Iterator if reference(*v) is convertible to value_type.
• Writable Iterator if reference(*v) = t is a valid expression (where t is an object of

type indirect_iterator::value_type)
• Lvalue Iterator if reference is a reference type.

indirect_iterator<X,V1,C1,R1,D1> is interoperable with indirect_iterator<Y,V2,C2,R2,D2>
if and only if X is interoperable with Y.

indirect_iterator operations

In addition to the operations required by the concepts described above, specializations of indirect_iterator
provide the following operations.

indirect_iterator();

Requires: Iterator must be Default Constructible.
Effects: Constructs an instance of indirect_iterator with a default-constructed m_iterator.

indirect_iterator(Iterator x);

Effects: Constructs an instance of indirect_iterator with m_iterator copy constructed
from x.

template <
class Iterator2, class Value2, unsigned Access, class Traversal

, class Reference2, class Difference2
>
indirect_iterator(

indirect_iterator<
Iterator2, Value2, Access, Traversal, Reference2, Difference2

> const& y
, typename enable_if_convertible<Iterator2, Iterator>::type* = 0 // expo-

sition
);

3

Requires: Iterator2 is implicitly convertible to Iterator.

Effects: Constructs an instance of indirect_iterator whose m_iterator subobject is
constructed from y.base().

Iterator const& base() const;

Returns: m_iterator

reference operator*() const;

Returns: **m_iterator

indirect_iterator& operator++();

Effects: ++m_iterator

Returns: *this

indirect_iterator& operator--();

Effects: --m_iterator

Returns: *this

Example

This example prints an array of characters, using indirect_iterator to access the array of characters
through an array of pointers. Next indirect_iterator is used with the transform algorithm to copy
the characters (incremented by one) to another array. A constant indirect iterator is used for the source
and a mutable indirect iterator is used for the destination. The last part of the example prints the
original array of characters, but this time using the make_indirect_iterator helper function.

char characters[] = "abcdefg";
const int N = sizeof(characters)/sizeof(char) - 1; // -
1 since characters has a null char
char* pointers_to_chars[N]; // at the end.
for (int i = 0; i < N; ++i)
pointers_to_chars[i] = &characters[i];

// Example of using indirect_iterator

boost::indirect_iterator<char**, char>
indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);

std::copy(indirect_first, indi-
rect_last, std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;

// Example of making mutable and constant indirect iterators

char mutable_characters[N];
char* pointers_to_mutable_chars[N];
for (int j = 0; j < N; ++j)
pointers_to_mutable_chars[j] = &mutable_characters[j];

4

boost::indirect_iterator<char* const*> muta-
ble_indirect_first(pointers_to_mutable_chars),
mutable_indirect_last(pointers_to_mutable_chars + N);

boost::indirect_iterator<char* const*, char const> const_indirect_first(pointers_to_chars),
const_indirect_last(pointers_to_chars + N);

std::transform(const_indirect_first, const_indirect_last,
mutable_indirect_first, std::bind1st(std::plus<char>(), 1));

std::copy(mutable_indirect_first, mutable_indirect_last,
std::ostream_iterator<char>(std::cout, ","));

std::cout << std::endl;

// Example of using make_indirect_iterator()

std::copy(boost::make_indirect_iterator(pointers_to_chars),
boost::make_indirect_iterator(pointers_to_chars + N),
std::ostream_iterator<char>(std::cout, ","));

std::cout << std::endl;

The output is:

a,b,c,d,e,f,g,
b,c,d,e,f,g,h,
a,b,c,d,e,f,g,

The source code for this example can be found here.

5

file:../example/indirect_iterator_example.cpp

	Table of Contents
	indirect_iterator synopsis
	indirect_iterator requirements
	indirect_iterator models
	indirect_iterator operations
	Example

