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Abstract In this paper we present the first large-scale scene
attribute database. First, we perform crowdsourced human
studies to find a taxonomy of 102 discriminative attributes.
We discover attributes related to materials, surface prop-
erties, lighting, affordances, and spatial layout. Next, we
build the “SUN attribute database” on top of the diverse
SUN categorical database. We use crowdsourcing to anno-
tate attributes for 14,340 images from 707 scene categories.
We perform numerous experiments to study the interplay
between scene attributes and scene categories. We train and
evaluate attribute classifiers and then study the feasibility of
attributes as an intermediate scene representation for scene
classification, zero shot learning, automatic image caption-
ing, semantic image search, and parsing natural images. We
show that when used as features for these tasks, low dimen-
sional scene attributes can compete with or improve on the
state of the art performance. The experiments suggest that
scene attributes are an effective low-dimensional feature for
capturing high-level context and semantics in scenes.

Keywords Scene understanding · Crowdsourcing ·
Attributes · Image captioning · Scene parsing

1 Introduction

Scene representations are vital to enabling many data-driven
graphics and vision applications. There is important research
on low-level representations of scenes (i.e. visual features)
such as the gist descriptor (Oliva and Torralba 2001) or spa-
tial pyramid (Lazebnik et al. 2006), but there has been little
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investigation into high-level representations of scenes (e.g.
attributes or categories). The standard category-based recog-
nition paradigm has gone largely unchallenged. In this paper,
we explore a new, attribute-based representation of scenes.

Traditionally, computer vision algorithms describe visual
phenomena (e.g. objects, faces, actions, scenes, etc.) by giv-
ing each instance a categorical label (e.g. cat, Halle Berry,
drinking, downtown street, etc.). For scenes, this model has
several significant issues, visualized in Fig. 1: (1) the extent
of scene understanding achievable is quite shallow—there
is no way to express interesting intra-category variations.
(2) The space of scenes is continuous, so hard partitioning
creates numerous ambiguous boundary cases. 1 (3) Images
often simultaneously exhibit characteristics of multiple dis-
tinct scene categories. (4) A categorical representation can-
not generalize to types of scenes which were not seen during
training.

An attribute-based representation of scenes would address
these problems by expressing variation within a scene cate-
gory. Scenes would have a multi-variate attribute representa-
tion instead of simply a binary category membership. Scene
types not seen at training time could also be identified by a
canonical set of scene attributes in a zero-shot learning man-
ner.

In the past several years there has been interest in attribute-
based representations of objects (Ferrari and Zisserman

1 Individual attribute presence might be ambiguous in certain scenes,
just like category membership can be ambiguous. Scenes only have one
category label, though, and the larger the number of categories the more
ambiguous the membership is. However, with over one hundred scene
attributes in our taxonomy, several attributes may be strongly present,
offering a description of that scene that has more context than simply
the scene category label. This also enables an attribute-based represen-
tation to make finer-grain distinctions about which which components
or characteristics of the scene are ambiguous or obvious.

123



60 Int J Comput Vis (2014) 108:59–81

Fig. 1 Visualization of a hypothetical space of scenes embedded in 2D
and partitioned by categories. Categorical scene representations have
several potential shortcomings: (1) important intra-class variations such
as the dramatic differences between four ‘village’ scenes can not be
captured, (2) hard partitions break up the continuous transitions between
many scene types such as ‘forest’ and ‘savanna’, (3) an image can depict
multiple, independent categories such as ‘beach’ and ‘village’, and (4)
it is difficult to reason about unseen categories, whereas attribute-based
representations lend themselves towards zero-shot learning (Parikh and
Grauman 2011b)

2008; Farhadi et al. 2009; Lampert et al. 2009; Farhadi et
al. 2010a; Endres et al. 2010; Berg et al. 2010; Russakovsky
and Fei-Fei 2010; Su et al. 2010), faces (Kumar et al. 2009),
and actions (Yao et al. 2011; Liu et al. 2011b) as an alternative
or complement to category-based representations. However,
there has been only limited exploration of attribute-based
representations for scenes, even though scenes are uniquely
poorly served by categorical representations. For example,
an object usually has unambiguous membership in one cat-
egory. One rarely observes issue 2 (e.g. this object is on the
boundary between sheep and horse) or issue 3 (e.g. this object
is both a potted plant and a television).

In the domain of scenes, an attribute-based representation
might describe an image with ‘concrete’, ‘shopping’, ‘natural
lighting’, ‘glossy’, and ‘stressful’ in contrast to a categori-
cal label such as ‘store’. Figure 2 visualizes the space of
scenes partitioned by attributes rather than categories. Note,
the attributes do not follow category boundaries. Indeed, that
is one of the appeals of attributes—they can describe intra-
class variation (e.g. a canyon might have water or it might
not) and inter-class relationships (e.g. both a canyon and a
beach could have water). As stated by Ferrari and Zisserman
(2008), “recognition of attributes can complement category-
level recognition and therefore improve the degree to which
machines perceive visual objects ”.

A small set of scene attributes were explored in Oliva and
Torralba’s seminal ‘gist’ paper (Oliva and Torralba 2001)
and follow-up work (Oliva and Torralba 2002). Eight ‘spatial
envelope’ attributes were found by having participants man-
ually partition a database of eight scene categories. These
attributes such as openness, perspective, and depth were pre-

Fig. 2 Hypothetical space of scenes partitioned by attributes rather
than categories. In reality, this space is much higher dimensional and
there are not clean boundaries between attribute presence and absence

dicted based on the gist representation. Greene and Oliva
show that these global scene attributes are predictive of
human performance on a rapid basic-level scene categoriza-
tion task. Greene and Oliva (2009) argue that global attributes
of the type we examine here are important for human per-
ception, saying, “rapid categorization of natural scenes may
not be mediated primarily though objects and parts, but also
through global properties of structure and affordance.”

Russakovsky and Fei-Fei identify the need to discover
visual attributes that generalize between categories in Rus-
sakovsky and Fei-Fei (2010). Using a subset of the cate-
gories from ImageNet, Russakovsky and Fei-Fei show that
attributes can both discriminate between unique examples of
a category and allow sets of categories to be grouped by com-
mon attributes. In Russakovsky and Fei-Fei (2010) attributes
were mined from the WordNet definitions of categories. The
attribute discovery method described in this paper outlines
how attributes can be identified directly by human users.
In the end we discover a larger set of attributes, including
attributes that would be either too common or too rare to be
typically included in the definition of categories.

More recently, Parikh and Grauman (Parikh and Grau-
man 2011a) argue for ‘relative’ rather than binary attributes.
They demonstrate results on the eight category outdoor scene
database, but their training data is limited—they do not have
per-scene attribute labels and instead provide attribute labels
at the category level (e.g. all highway scenes should be more
‘natural’ than all street scenes). This undermines one of the
potential advantages of attribute-based representations—the
ability to describe intra-class variation. In this paper we dis-
cover, annotate, and recognize 15 times as many attributes
using a database spanning 90 times as many categories where
every scene has independent attribute labels.
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Lampert et al. demonstrate how attributes can be used to
classify unseen categories (Lampert et al. 2009). Lampert
et al. show that attribute classifiers can be learned indepen-
dent of category, then later test images can be classified as
part of an unseen category with the simple knowledge of the
expected attributes of the unseen category. This opens the
door for classification of new categories without using train-
ing examples to learn those unseen categories. We demon-
strate in Sect. 6.1 the performance of our scene attributes for
zero-shot learning by classifying test images from all of the
categories in our dataset without training classifiers for those
scene categories.

1.1 Paper Outline

This paper describes the creation and verification of our SUN
attribute database in the spirit of analogous database creation
efforts such as ImageNet (Deng et al. 2009), LabelMe (Rus-
sell et al. 2008), and Tiny Images (Torralba et al. 2008). First,
we derive a taxonomy of more than 100 scene attributes
from crowd-sourced experiments (Sect. 2). Next, we use
crowd-sourcing to construct our attribute-labeled dataset on
top of a significant subset of the SUN database (Xiao et al.
2010) spanning more than 700 categories and 14,000 images
(Sect. 3). We visualize the distribution of scenes in attribute
space (Sect. 4). The work in these sections largely appears in
a previous publication (Patterson and Hays 2012). Section 5
contains significantly expanded work, and Sects. 6 and 7 are
previously unpublished novel experiments.

In order to use scene attributes for vision tasks, we train
and test classifiers for predicting attributes (Sect. 5). We
demonstrate the output of these classifiers on novel images.
Furthermore, in Sect. 6 we explore the use of scene attributes
for scene classification and the zeroshot learning of scene
categories. We compare how scene classifiers derived using
scene attributes confuse scene categories to how human
respondents confuse categories.

The final section of the paper experiments with using
scene attributes for challenging scene understanding tasks.
We use attributes as features in the pipelines for the tasks
of scene parsing (Sect. 7.1) and automatic image captioning
(Sect. 7.2). We also investigate image retrieval with image
descriptors derived from attributes (Sect. 7.3).

2 Building a Taxonomy of Scene Attributes from
Human Descriptions

Our first task is to establish a taxonomy of scene attributes
for further study. The space of attributes is effectively
infinite but the majority of possible attributes (e.g., “Was
this photo taken on a Tuesday”, “Does this scene con-
tain air?”) are not interesting. We are interested in find-

ing discriminative attributes which are likely to distin-
guish scenes from each other (not necessarily along cat-
egorical boundaries). We limit ourselves to global, binary
attributes. This limitation is primarily economic—we collect
millions of labels and annotating binary attributes is more
efficient than annotating real-valued or relative attributes.
None-the-less, by averaging the binary labels from multi-
ple annotators we produce a real-valued confidence for each
attribute.

To determine which attributes are most relevant for
describing scenes we perform open-ended image description
tasks on Amazon Mechanical Turk (AMT). First we establish
a set of ‘probe’ images for which we will collect descriptions.
There is one probe image for every category, selected for its
canonical appearance. We want a set of images which is max-
imally diverse and representative of the space of scenes. For
this reason the probe images are the images which human
participants found to be most typical of 707 SUN dataset
categories (Ehinger et al. 2011).

We first ask AMT workers to provide text descriptions of
the individual probe images. From thousands of such tasks
(hereafter HITs, for human intelligence tasks) it emerges that
people tend to describe scenes with five types of attributes:
(1) materials (e.g. cement, vegetation), (2) surface proper-
ties (e.g. rusty) (3) functions or affordances (e.g. playing,
cooking), (4) spatial envelope attributes (e.g. enclosed, sym-
metric), and (5) object presence (e.g. cars, chairs).

Within these broad categories we focus on discrimina-
tive attributes. To find such attributes we develop a sim-
plified, crowd-sourced version of the ‘splitting task’ used
by Oliva and Torralba (2001). We show AMT workers two
groups of scenes and ask them to list attributes of each type
(material, surface property, affordance, spatial envelope, and
object) that are present in one group but not the other. The
images that make up these groups are typical scenes from dis-
tinct, random categories. In the simplest case, with only one
scene in each set, we found that participants would focus
on trivial, happenstance objects or attributes (e.g. ‘tread-
mill’ or ‘yellow shirt’). Such attributes would not be broadly
useful for describing other scenes. At the other extreme,
with many category prototypes in each set, it is rare that
any attribute would be shared by one set and absent from
the other. We found that having two random scene proto-
types in each set elicited a diverse, broadly applicable set of
attributes.

Figure 3 shows an example interface. The attribute gath-
ering task was repeated over 6000 times. From the thousands
of raw discriminative attributes reported by participants we
manually collapse nearly synonymous responses (e.g. dirt
and soil) into single attributes. We omit attributes related
to aesthetics rather than scene content. For this study we
also omit the object presence attributes from further dis-
cussion because prediction of object presence, i.e. object
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Fig. 3 Mechanical Turk interface for discovering discriminative
attributes

Fig. 4 Scene attributes. A word cloud of all the scene attributes where
the area of the word is proportional to its popularity in the dataset

classification, has been thoroughly investigated (Addition-
ally, the SUN database already has dense object labels for
most scenes). Our participants did not report all of the spa-
tial envelope attributes found by Oliva and Torralba (2001),
so we manually add binary versions of those attributes so that
our taxonomy is a superset of prior work. In total, we find
38 material, 11 surface property, 36 function, and 17 spatial
envelope attributes. Attributes which were reported in <1 %
of trials were discarded (Fig. 4).2

3 Building the SUN Attribute Database

With our taxonomy of attributes finalized we create the first
large-scale database of attribute-labeled scenes. We build the
SUN attribute database on top of the existing SUN categorical
database (Xiao et al. 2010) for two reasons: (1) to study the
interplay between attribute-based and category-based repre-
sentations and (2) to ensure a diversity of scenes. We annotate
20 scenes from each of the 717 SUN categories. Of the full
SUN database, which has over 900 categories, only 717 con-
tain at least 20 instances. Our goal is to collect ground truth
annotations for all of the 102 attributes for each scene in our
dataset. In total we gather more than four million labels. This
necessitates a crowdsourced annotation strategy and we once
again utilize AMT.

2 Word cloud made using the software available at www.wordle.net by
Jonathan Feinberg.

Fig. 5 Annotation interface for AMT workers. The particular attribute
being labeled is prominently shown and defined. Example scenes which
contain the attribute are shown. The worker can not scroll these defi-
nitions or instructions off of their screen. When workers mouse over
a thumbnail a large version appears in the preview window in the top
right corner

3.1 The Attribute Annotation Task

The primary difficulty of using a large, non-expert work-
force is ensuring that the collected labels are accurate while
keeping the annotation process fast and economical (Sorokin
and Forsyth 2008). From an economic perspective, we want
to have as many images labeled as possible for the low-
est price. From a quality perspective, we want workers to
easily and accurately label images. We find that particular
UI design decisions and worker instructions significantly
impacted throughput and quality of results. After several iter-
ations, we choose a design where workers are presented with
a grid of 4 dozen images and are asked to consider only
a single attribute at a time. Workers are asked to click on
images which exhibit the attribute in question. Before work-
ing on our HITs, potential annotators are required to pass
a quiz covering the fundamentals of attribute identification
and image labeling. The quiz asked users to select the correct
definition of an attribute after they were shown the definition
and example pictures. Users were also graded on how many
images they could identify containing a given attribute. The
quiz closely resembled the attribute labeling task. An exam-
ple of our HIT user interface is shown in Fig. 5.

Even after the careful construction of the annotation inter-
face and initial worker screening, many workers’ annotations
are unreasonable. We use several techniques to filter out bad
workers and then cultivate a pool of trusted workers:
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Fig. 6 These plots visualize our criteria for identifying suspicious
workers to grade. a shows the heavy-tailed distribution of worker con-
tributions to the database. The top workers spent hundreds of hours
on our HITs. The red line in plot b demarcates the average work time

across all workers, and the blue lines mark the positive and negative
standard deviation from the mean. Work time statistics are particularly
useful from identifying scam workers as they typically rush to finish
HITs (Color figure online)

3.2 Filtering Bad Workers

Deciding whether or not an attribute is present in a scene
image is sometimes an ambiguous task. This ambiguity com-
bined with the financial incentive to work quickly leads to
sloppy annotation from some workers. In order to filter out
those workers who performed poorly, we flag HITs which are
outliers with respect to annotation time or labeling frequency.
Some attributes, such as ‘ice’ or ‘fire’, rarely appear and
are visually obvious and thus those HITs can be completed
quickly. Other attributes, such as ‘man-made’ or ‘natural
light’, occur in more than half of all scenes thus the expected
completion time per HIT is higher. Any worker whose aver-
age number of labels or work time for a given attribute is
greater or less than than one standard deviation away from
the average for all workers is added to a list of workers to man-
ually review. This way workers who are randomly labeling
images and workers who may have been confused by the task
are both caught. Workers who clicked images randomly fin-
ished faster than workers who considered each image on the
HIT. We review by hand a fraction of the HITs for each suspi-
cious worker as well as a random sampling of non-suspicious
workers. Any worker whose annotations are clearly wrong
is added to a blacklist. They are paid for their time, but none
of their labels become part of the final dataset.

3.3 Cultivating Good Workers

The pay per HIT is initially $0.03 but increases to $0.05
plus 10 % bonus after workers have a proven track record of
accuracy. The net result of our filtering and bonus scheme
is that we cultivate a pool of trained, efficient, and accurate
annotators as emphasized by Chen and Dolan (2011). In gen-
eral, worker accuracy rose over time and we omit over one

million early annotations from the final dataset. Worker accu-
racy improved over time as the workers who did not follow
instructions were culled from the pool of workers who were
offered the opportunity to complete HITs.

After labeling the entire dataset once with the general
AMT population, we identify a smaller group of 38 trusted
workers out of the ∼800 who participated. We repeat the
labeling process two more times using only these trusted
workers. We repeat the labeling process in order to obtain
consensus as the presence of some of the scene attributes
may be a subjective decision. No worker is allowed to label
the same image for the same attribute more than once. The
idea of finding and heavily utilizing good workers is in con-
trast to the “wisdom of the crowds” crowdsourcing strategy
where consensus outweighs expertise. Our choice to utilize
only workers who give higher quality labels is supported by
recent research such as (Lasecki et al. 2011) where good
workers were shown to be faster and more accurate than the
average of many workers. Figure 6 shows the contributions
of all workers to our database.

Figure 7 qualitatively shows the result of our annotation
process. To quantitatively assess accuracy we manually grade
∼600 random positive and ∼600 random negative AMT
annotations in the database. The population of labels in the
dataset is not even (8%/92% positive/negative). This does
not seem to be an artifact of our interface (which defaults to
negative), but rather it seems that scene attributes follow a
heavy-tailed distribution with a few being very common (e.g.
‘natural’) and most being rare (e.g. ‘wire’).

We graded equal numbers of positive and negative labels
to understand if there was a disparity in accuracy between
them. For both types of annotation, we find ∼93 % of labels
to be reasonable, which means that we as experts would agree
with the annotation.
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Fig. 7 The images in the table above are grouped by the number of
positive labels (votes) they received from AMT workers. From left to
right the visual presence of each attribute increases. AMT workers are
instructed to positively label an image if the functional attribute is likely

to occur in that image, not just if it is actually occurring. For material,
surface property, or spatial envelope attributes, workers were instructed
to positively label images only if the attribute is present

In the following sections, our experiments rely on the con-
sensus of multiple annotators rather than individual annota-
tions. This increases the accuracy of our labels. For each of
our 102 attributes, we manually grade 5 scenes where the
consensus was positive (2 or 3 votes) and likewise for nega-
tive (0 votes). We find that if 2 out of 3 annotations agree on
a positive label, that label is reasonable ∼95 % of the time.
Many attributes are very rare, and there would be a signifi-
cant loss in the population of the rare attributes if consensus
was defined as 3/3 positive labels. Allowing for 2/3 positive
labels to be the consensus standard increases the population
of rare attributes without degrading the quality of the labels.

4 Exploring Scenes in Attribute Space

Now that we have a database of attribute-labeled scenes
we can attempt to visualize that space of attributes. In Fig. 8
we show all 14,340 of our scenes projected onto two dimen-
sions by t-SNE dimensionality reduction (Van der Maaten
and Hinton 2008). We sample several points in this space
to show the types of scenes present as well as the nearest
neighbors to those scenes in attribute space. For this analysis
the distance between scenes is simply the Euclidean distance
between their real-valued, 102-dimensional attribute vectors.

To better understand where images with different attributes
live in attribute space, Fig. 9 illustrates where dataset images
that contain different attributes live in this 2D version of the
attribute feature space.

Figure 10 shows the distribution of images from 15 scene
categories in attribute space. The particular scene categories
were chosen to be close to those categories in the 15 scene
benchmark (Lazebnik et al. 2006). In this low dimensional
visualization, many of the categories have considerable over-
lap (e.g. bedroom with living room, street with highway,
city with skyscraper). This is reasonable because these over-
lapping categories share affordances, materials, and layouts.
With the full 102 dimensional attribute representation, these
scenes could still be differentiated and we examine this task
in Sect. 6.

5 Recognizing Scene Attributes

A motivation for creating the SUN Attribute dataset is to
enable deeper understanding of scenes. For scene attributes
to be useful they need to be machine recognizable. To assess
the difficulty of scene attribute recognition we perform exper-
iments using the features and kernels which achieve state of
the art category recognition on the SUN database. In Xiao et
al. (2010) show that a combination of several scene descrip-
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Fig. 8 2D visualization of the SUN Attribute dataset. Each image
in the dataset is represented by the projection of its 102-dimensional
attribute feature vector onto two dimensions using t-Distributed Sto-
chastic Neighbor Embedding (Van der Maaten and Hinton 2008). There
are groups of nearest neighbors, each designated by a color. Interest-
ingly, while the nearest-neighbor scenes in attribute space are seman-

tically very similar, for most of these examples (underwater_ocean,
abbey, coast, ice skating rink, field_wild, bistro, office) none of the
nearest neighbors actually fall in the same SUN database category. The
colored border lines delineate the approximate separation of images
with and without the attribute associated with the border. Figure best
viewed in color (Color figure online)

Fig. 9 Distributions of scenes with the given attribute. This set of
reduced dimensionality plots highlights the populations of images with
the listed attributes. Grey points are images that do not contain the
given attribute. The boldness of the colored points is proportional to
the amount of votes given for that attribute in an image, e.g. darkest
colored points have 3 votes. ‘Enclosed area’ and ‘open area’ seem to

have a strong effect on the layout of scenes in “attribute space”. As
one might hope, they generally occupy mutual exclusive areas. It is
interesting to note that ‘sailing/boating’ occurs in two distinct regions
which correspond to open water scenes and harbor scenes (Color figure
online)

tors results in a significantly more powerful classifier than any
individual feature. Accordingly, our classifiers use a com-
bination of kernels generated from gist, HOG 2 × 2, self-
similarity, and geometric context color histogram features

[see (Xiao et al. 2010) for feature and kernel details]. These
four features were chosen because they are each individu-
ally powerful and because they can describe distinct visual
phenomena.
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Fig. 10 Location of member images of 15 scene categories in attribute
space. Figure best viewed in color (Color figure online)

5.1 How Hard is it to Recognize Attributes?

To recognize attributes in images, we create an individual
classifier for each attribute using random splits of the SUN
Attribute dataset for training and testing data. Note that
our training and test splits are scene category agnostic—
for the purpose of this section we simply have a pool of
14,340 images with varying attributes. We treat an attribute
as present if it receives at least two votes, i.e. consensus is
established, and absent if it receives zero votes. As shown
in Fig. 7, images with a single vote tend to be in a transition
state between the attribute being present or absent so they are
excluded from these experiments.

We train and evaluate independent classifiers for each
attribute. Correlation between attributes could make ‘multi-
label’ classification methods advantageous, but we choose to
predict attributes independently. For each attribute we wish
to recognize, we first evaluate SVM classifiers trained inde-
pendently on each of our four features. We report their perfor-
mance in Fig. 11. To train a classifier which uses all features,
we construct a combined kernel from a linear combination of
individual feature kernels. Each classifier is trained on 300
images and tested on 50 images and AP is computed over
five random splits. Each classifier’s train and test sets are
half positive and half negative even though most attributes
are sparse (i.e. usually absent). We fix the positive to negative
ratio so that we can compare the intrinsic difficulty of recog-
nizing each attribute without being influenced by attribute
popularity.

Figure 11 shows that the combined classifier outperforms
any individual feature. Not all attributes are equally easy

Fig. 11 Average Precision values averaged for all attributes. The com-
bined feature classifier is more accurate than any individual feature
classifier. Average Precision steadily increases with more training data

to recognize Fig. 12a plots the average precision for each
attribute’s combined feature SVM. It is clear from Fig. 12a
that certain attributes, especially some surface properties and
spatial envelope attributes, are particularly difficult to recog-
nize with our global image features.

Figure 12a evaluates attribute recognition with fixed pro-
portions of positive and negative examples. However, some
attributes are vastly more popular than others in the real
world. To evaluate attribute recognition under more realistic
conditions, and to make use of as much training data as the
SUN attribute database affords us, we train classifiers on 90 %
of the dataset and test on the remaining 10 %. This means that
some attributes (e.g. ‘natural’ will have thousands of posi-
tive examples, and others e.g. ‘smoke’ will have barely 100).
Likewise, chance is different for each attribute because the
test sets are similarly skewed. The train and test instances for
each attribute vary slightly because some images have con-
fident labels for certain attributes and ambiguous labels for
others and again we only use scenes with confident ground
truth labels for each particular attribute classifier. Figure 12b
shows the AP scores for these large scale classifiers.

For these classifiers, we averaged the kernels from
each feature. With the larger training set, there was no
observed benefit to weighting individual feature kernels
differently. Figure 12b demonstrates how more popular
attributes are easier to recognize, as expected. Overall,
the average AP scores for different types of attributes are
similar—functions/affordances (AP 0.44), materials (AP
0.51), surface properties (AP 0.50), and spatial envelope (AP
0.62).
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Fig. 12 a 300 training/50 test examples; training and testing sets have
a balance positive to negative example ratio. The AP of chance selection
is marked by the red line. AP scores are often high even when the visual
manifestation of such attributes are subtle. This plot show that it is pos-
sible to recognize global scene attributes. Attributes that occur fewer
than 350 times in the dataset were not included in this plot. b 90 % of the

dataset for training/10 % for test. All of the scene attributes are included
in this plot. Chance is different for every attribute as they appear with
variable frequency in nature. Note that the most difficult to recognize
attributes are also the rarest. Many attributes that are not strongly visual
such as‘studying’, ‘spectating’, or ‘farming’ are nonetheless relatively
easy to recognize. Average precision for attribute classifiers

The classifiers used for Fig. 12b and the code used to gen-
erate them are publicly available.3 The attribute classifiers
trained on 90 % of the SUN Attribute dataset are employed
in all further experiments in this paper.

5.2 Attribute Classifiers in the Wild

We show qualitative results of our attribute classifiers in
Fig. 13. Our attribute classifiers perform well at recogniz-
ing attributes in a variety of contexts. Most of the attributes
with strong confidence are indeed present in the images.

3 SUN Attribute Classifiers along with the full SUN Attribute
dataset and associated code are available at www.cs.brown.edu/~gen/
sunattributes.html.

Likewise, the lowest confidence attributes are clearly not
present. It is particularly interesting that function/affordance
attributes and surface property attributes are often recognized
with stronger confidence than other types of attributes even
though functions and surface properties are complex con-
cepts that may not be easy to define visually. For example the
golf course test image in Fig. 13 shows that our classifiers
can successfully identify such abstract concepts as ‘sports’
and ‘competing’ for a golf course, which is visually quite
similar to places where no sports would occur. Abstract con-
cepts such as ‘praying’ and ‘aged/worn’ are also recognized
correctly in both the abbey and mosque scenes in Fig. 13.
Figure 14 shows several cases where the most confidently
detected attributes are incorrect.
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Fig. 13 Attribute detection. For each query, the most confidently
recognized attributes (green) are indeed present in the test images, and
the least confidently recognized attributes (red) are either the visual
opposite of what is in the image or they are irrelevant to the image
(Color figure online)

In earlier attribute work where the attributes were discov-
ered on smaller datasets, attributes had the problem of being
strongly correlated with each other (Farhadi et al. 2009). This
is less of an issue with the SUN Attribute dataset because
the dataset is larger and attributes are observed in many dif-
ferent contexts. For instance, attributes such as “golf” and
“grass” are correlated with each other, as they should be.
But the correlation is not so high that a “golf” classifier can
simply learn the “grass” visual concept, because the dataset
contains thousands of training examples where “grass” is
present but “golf” is not possible. However, some of our
attributes, specifically those related to vegetation, do seem
overly correlated with each other because the concepts are
not semantically distinct enough.

Figure 15 shows the most confident classifications in our
test set for various attributes. Many of the false positives,

Fig. 14 Failure cases. In the top image, it seems the smooth, blue
regions of the car appear to have created false positive detections of
‘swimming’, ‘diving’, and ‘still water’. The bottom images, unlike all
of our training data, is a close-up object view rather than a scene with
spatial extent. The attribute classifiers seem to interpret the cat as a
mountain landscape and the potato chips bag as several different mate-
rials ‘carpet’, ‘concrete’, ‘glossy’, and ‘cloth’

highlighted in red, are reasonable from a visual similarity
point of view.‘Cold’, ‘moist/damp’, and ‘eating’ all have false
positives that could be reasonably considered to be confusing.
‘Stressful’ and ‘vacationing’ have false positives that could
be subjectively judged to be correct—a crowded subway car
could be stressful, and the New Mexico desert could be a
lovely vacation spot.

5.3 Correlation of Attributes and Scene Categories

To better understand the relationships between categories and
attributes, Table 1 lists a number of examples from the SUN
397 categories with the attribute that is most strongly corre-
lated with each category.

The correlation between the scene category and the
attribute feature of an input image is calculated using Pear-
son’s correlation. We calculate correlation between the pre-
dicted attribute feature vectors for 50 examples from each of
the SUN 397 categories and a feature vectors that indicate
the category membership of the example images.
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Fig. 15 Top 5 most confident detections in test set. For each attribute,
the top five detections from the test set are shown. Images boxed in
green are true positives, and red are false positives. Examples of false
positives, such as the ‘praying’ examples, show how attributes are iden-
tified in images that arguably contain the attribute, but human annotators
disagreed about the attribute’s presence; in this case the false positives
were a sacristy, which is a room for the storage of religious items, and a
cathedral pictured at a distance. The false positive for ‘glass’ also con-
tain glass, although photographed under glancing illumination, which
may have caused the human annotators to mislabel it. For several of the
examples, all of the top 5 detections are true positives. The detections
for ‘brick’, ‘metal’, and ‘competing’ demonstrate the ability of attribute
classifiers to recognize the presence of attributes in scenes that are quite
visually dissimilar. For ‘brick’ and ‘metal’ even the kinds of bricks and
metals shown are differ greatly in type, age, and use case. Figure best
viewed in color (Color figure online)

Table 1 has many interesting examples where an attribute
is strongly correlated with visually dissimilar but semanti-
cally related categories, such as ‘praying’ for both the indoor
and outdoor church categories. Even attributes that are quite
abstract concepts, such as ‘socializing’ and ‘stressful’, are
the most strongly correlated attributes for ‘pub/indoor’ and
‘cockpit’, respectfully. Scene attributes capture information
that is intrinsic to the nature of scenes and how humans inter-
act with them.

6 Predicting Scene Categories from Attributes

In this section we measure how well we can predict scene
category from attributes. While the goal of this paper and
our database is not necessarily to improve the task of scene
categorization, this analysis does give some insight into the
interplay between scene categories and scene attributes.

Attributes allow for the exploration of scenes using infor-
mation that is complementary to the category labels of those
scenes. Because attributes are powerful descriptors of scenes,
they can also be used as a feature to predict scene cat-
egories. To the best of our knowledge these experiments
are the first to explore the use of attributes as features for
scene classification. As with objects (Lampert et al. 2009),
attributes also offer the opportunity to learn new scene cate-
gories without using any training examples for the new cat-
egories. This “zero-shot” learning for scenes will also be
explored.

We evaluate the task of classifying all 397 categories of
the SUN 397 dataset (Xiao et al. 2010) using our 102 attribute
classifiers as an intermediate representation. We compare this
to scene recognition using recent low-level features. We also
compare to classifiers trained with ground-truth attributes to
derive a scene classification upper bound for our attribute
taxonomy. Finally, we evaluate zero-shot learning scenarios
where an oracle provides attribute distributions for all cat-
egories and we use our classifiers to estimate attributes for
query instances.

One hundred binary attributes alone could potentially pre-
dict membership in 397 categories if the attributes were (1)
independent and (2) consistent within each category, but nei-
ther of these are true. Many of the attributes are correlated
(e.g. farming and open area) and there is significant attribute
variation within categories. Furthermore, many groups of
SUN database scenes would require very specific attributes to
distinguish them (e.g. forest/needleleaf and forest/broadleaf),
so it would likely take several hundred attributes to very accu-
rately predict scene categories.
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Table 1 Most correlated attributes

Category Most corr. attribute Pearson’s
corr. coeff.

Airport terminal Socializing 0.051

Art studio Cluttered space 0.039

Assembly line Working 0.055

Athletic field/outdoor Playing 0.116

Auditorium Spectating 0.096

Ball pit Rubber/plastic 0.149

Baseball field Sports 0.088

Basilica Praying 0.101

Basketball court/outdoor Exercise 0.074

Bathroom Cleaning 0.092

Bayou Still water 0.092

Bedroom Carpet 0.054

Biology laboratory Research 0.053

Bistro/indoor Eating 0.055

Bookstore Shopping 0.079

Bowling alley Competing 0.055

Boxing ring Spectating 0.049

Campsite Camping 0.053

Canal/natural Still water 0.080

Canal/urban Sailing/boating 0.038

Canyon Rugged scene 0.110

Car interior/backseat Matte 0.079

Car interior/frontseat Matte 0.098

Casino/indoor Gaming 0.070

Catacomb Digging 0.081

Chemistry lab Research 0.067

Chicken coop/indoor Dirty 0.039

Chicken coop/outdoor Fencing 0.045

Cathedral/indoor Praying 0.148

Church/outdoor Praying 0.088

Classroom Studying/learning 0.070

Clothing store Cloth 0.063

Cockpit Stressful 0.048

Construction site Constructing/building 0.041

Corn field Farming 0.111

Cottage garden Flowers 0.106

Dentists office Medical activity 0.070

Dining room Eating 0.064

Electrical substation Wire 0.054

Factory/indoor Working 0.047

Fastfood restaurant Waiting in line 0.057

Fire escape Railing 0.051

Forest path Hiking 0.111

Forest road Foliage 0.095

Fountain Running water 0.041

Ice skating rink/indoor Sports 0.058

Ice skating rink/outdoor Cold 0.065

Table 1 continued

Category Most corr. attribute Pearson’s
corr. coeff.

Iceberg Ocean 0.148

Lecture room Studying/learning 0.080

Mosque/indoor Cloth 0.060

Mosque/outdoor Praying 0.066

Operating room Sterile 0.058

Palace Vacationing 0.045

Poolroom/establishment Gaming 0.068

Poolroom/home Gaming 0.075

Power plant/outdoor Smoke 0.074

Pub/indoor Socializing 0.065

Restaurant Eating 0.088

Restaurant kitchen Working 0.058

Stadium/football Spectating 0.132

Subway station/platform Railroad 0.052

Underwater/coral reef Diving 0.165

Volcano Fire 0.122

Wheat field Farming 0.133

A sampling of scene categories from the SUN 397 dataset listed with
their most correlated attribute

6.1 Scene Classification

6.1.1 Attributes as Features for Scene Classification

Although our attributes were discovered in order to under-
stand natural scenes more deeply than by simply knowing
their scene categories, scene classification remains a chal-
lenging and interesting task. As a scene classification base-
line, we train one-vs-all non-linear SVMs with the same
low level features used to predict attributes. Figure 16 com-
pares this with various classifiers which instead operate on
attributes as an intermediate representation.

The simplest way to use scene attributes as an intermediate
representation is to run our attribute classifiers on the scene
classification training instances and train one-vs-all SVMs in
the resulting 102 dimensional space. This “predicted attribute
feature” performs better than three of the low-level features,
but worse than the HoG 2 × 2 feature. 4

It is important to note that the low-level features live in
spaces that may have thousands of dimensions, while the

4 The images in the SUN Attribute dataset were originally taken from
the whole SUN dataset, which includes more than 900 scene categories.
Thus, some portion of the SUN Attribute images also appear in the SUN
397 dataset, which is also a subset of the full SUN dataset. The scene
classifiers using low-level and predicted attribute features were trained
and tested on the SUN397 dataset minus any overlapping images from
the SUN Attribute dataset to avoid testing scene classification on the
same images used to train attribute classifiers.
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Fig. 16 Scene category recognition rate versus number of training
examples. Classification tested on the SUN 397 dataset (Xiao et al.
2010). Images that occur in both the SUN 397 and SUN attribute datasets
were omitted from the training and test sets of the above classifiers.
Each trend line plots the scene classification accuracy of the associated
feature. All predicted features use the same test/train sets, and results
averaged over several random test/train splits. When combined with
the 4 low-level features originally used in the attribute classifiers, the
‘attributes’ feature clearly improves performance over a scene classifier
that only uses low-level features. This further supports our claim that
attributes are encoding important contextual knowledge. Classification
accuracy using 15 different low-level features (the same features used
in Xiao et al.) plus attribute features at 50 training examples is 40.22 %,
slightly beating the 38.0 % accuracy reported in Xiao et al. (2010). The
ground truth attribute feature is trained and tested on 10 random splits of
the SUN Attribute dataset. Thus the number of test examples available
for the ground truth feature are (20 − ntrain), where ntrain is the num-
ber of training examples. As the number of training examples increases,
the ground truth feature trend line is less representative of actual perfor-
mance as the test set is increasingly small. Using ground truth attributes
as a feature gives an upper bound on what attribute features could possi-
bly contribute to scene classification. Figure best viewed in color (Color
figure online)

attribute feature is only 102-dimensional. Partly for this rea-
son, the attribute-based scene classifier seems to benefit less
from additional training data than the low level features. This
makes sense, because lower dimensional features have lim-
ited expressive capacity and because the attribute distribution
for a given category isn’t expected to be especially complex
(this is, in fact, a motivation for zero-shot learning or easy
knowledge transfer between observed and unobserved cate-
gories).

The performance of a scene classifier that uses 15 canon-
ical low-level features plus attributes is 40.22 %. The 15
features used were HoG 2 × 2, geometric texton histograms,

self-similarity measure, dense SIFT, local binary patterns,
texton histograms, gist, the first nearest neighbor, LBP HF
feature, sparse SIFT histograms, geometric color histograms,
color histograms, geometric classification map, straight line
histograms, and tiny image feature Xiao et al. (2010). This
improves on the 38 % highest accuracy reported in Xiao et
al., which uses these 15 features combined without attributes.
Scene classification with attributes falls short of the more
recent features suggested by Sanchez et al. which acheive
47 % average accuracy (Sanchez et al. 2013). The perfor-
mances of scene classifiers trained on each low-level feature
and attributes separately are shown in Fig. 16.

It is also important to remember that attribute classifica-
tion itself is a difficult task. If it were possible to perfectly pre-
dict attributes, scene classification performance would jump
dramatically. We estimate an upper bound for scene classi-
fication with our attribute taxonomy by training and testing
on the ground truth attribute annotations for each scene cat-
egory. As shown in Fig. 16, such a classifier outperforms
the best low-level feature by a huge margin 25 versus 15%
accuracy with 10 training examples per category.5

6.1.2 Learning to Recognize Scenes Without Visual
Examples

In zero-shot learning, a classifier is presented (by some ora-
cle) a ground truth distribution of attributes for a given cate-
gory rather than any visual examples. Test images are clas-
sified as the category whose oracle-annotated feature vector
is the nearest neighbor in feature space to the test images’
features.

Canonical definitions of zero-shot learning use an interme-
diate feature space to generalize important concepts shared
by categories (Lampert et al. 2009; Palatucci et al. 2009).
Lampert et al. uses an attribute representation to enable
knowledge transfer between seen and unseen categories, and
Palatucci et al. uses phonemes. In these zero-shot learning
scenarios, it is prohibitively difficult or expensive to collect
low-level feature examples of an exhaustive set of categories.
The use of oracle features for those unseen categories is a way
to identify them without collecting enough examples to train
a classifier.

The goal of zero-shot learning is to learn a classifier
f : X → Z for a label set Z , where some categories in Z
were not seen during training. This is accomplished by learn-
ing two transfer functions, g : X → A and h : A → Z .
The set A is an intermediate feature space like attributes or
phonemes. Some oracle provides the labels for the unseen
categories in Z using the feature space of A. In traditional

5 Because ground truth attributes were collected on the SUN Attribute
set of images, the classifiers using the ground truth attributes directly
as features were trained and tested on the SUN Attribute dataset.
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Fig. 17 Scene category recognition without visual examples. The
‘attributes averaged per category’ feature is calculated by averaging
the predicted attribute features of all of the training instances of a given
scene category in the SUN 397 dataset. Test instances are evaluated by
selecting the nearest neighbor scene category feature, and taking that
scene category’s label

zero-shot learning experiments, instances from the unseen
categories in Z are not used to learn the transfer function
g : X → A. This makes sense if obtaining examples of
the unseen categories is difficult as in Lampert et al. (2009),
Palatucci et al. (2009).

Because we already had a nearly exhaustive set of scene
categories in the SUN Attribute dataset, the attribute classi-
fiers were trained using images that belonged to categories
that were held out during the “zero-shot” testing of the trans-
fer function h : A → Z . In our “zero-shot” experiment, all
of the possible scene category labels in Z were held out. The
experiments conducted using scene attributes as features in
this subsection are an expanded version of traditional zero-
shot learning, and we have maintained that term to support
the demonstration of how a scene category can be identified
by it’s typical attributes only, without any visual examples of
the category. The entire “zero-shot” classification pipeline
in this section never involved showing the classifier a visual
training example of any scene category. The classifier gets
an oracle feature listing the typical attributes of each of the
397 categories.

Our goal is to show that given some reasonable estimate
of a scene’s attributes it is possible to estimate the scene cate-
gory without using the low-level features to classify the query
image. Scene attributes are correlated with scene categories,
and query scenes can be successfully classified if only their
attributes are known. In this sense our experiment is simi-
lar to, but more stringent than canonical knowledge transfer
experiments such as in Rohrbach et al. because the scene cat-
egory labels were not used to help learn the mapping from
pixel-features to attributes (Rohrbach et al. 2011).

Despite the low number of training examples (397, one
oracle feature per category, for zero-shot features vs. n ×397
for pixel-level features), the zero-shot classifier shown in
Fig. 17 performs about as well as the gist descriptor. It
does, however, perform significantly worse than the attribute-

Fig. 18 Comparison to human confusions. Using the human scene
classification confusions from Xiao et al. (2010), we report how often
the large incorrect (i.e. off-diagonal) confusion is the same for a given
feature and the human classifiers

based classifier trained on n examples of predicted attributes
shown in Fig. 16. Averaging the attributes into a single
“characteristic attribute vector” for each category is quite
lossy. In some ways, this supports the argument that there is
significant and interesting intra-category variation of scene
attributes.

6.2 Predicting Human Confusions

Scene classification is a challenging task, even for humans.
In the previous sections, we show that attributes do not
always out-perform low-level features at scene classification.
Figure 18 shows the performance of several features at
another challenging task—predicting human confusions for
scene classification on the SUN 397 dataset. At this task,
attributes perform slightly better than any other feature.

We compare the confusions between features and humans
using the scene classification confusion matrices for each
feature. The human classification confusion for the SUN
397 dataset is reported in Xiao et al. (2010). We determined
that a feature classifier and the humans had the same confu-
sion if the largest off-diagonal elements of the corresponding
rows of their confusion matrices were the same, e.g. both
the attribute classifier and the human respondents confused
‘bayou’ for ‘swamp’.

In Xiao et al. (2010), the low-level features that per-
formed the best for scene classification also performed the
best at predicting human confusions. Here we demonstrate
that although predicted attributes do not perform as well as
HoG 2 × 2 features at scene classification, they are indeed
better at predicting human confusions.

This result supports the conclusions of Greene and Oliva
(2009). Attributes, which capture global image concepts like
structure and affordance, may be closer to the representations
humans use to do rapid categorization of scenes than low-
level image features by themselves.
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7 Image Retrieval Applications with Attribute-Based
Representations

Thus far we have introduced the SUN Attribute dataset and
we have measured how well attributes can be recognized
based on typical global image features. We have also used
predicted attributes as an intermediate representation for
scene classification and zero shot learning. An appealing
property of attributes as an intermediate, low-dimensional
representation is that distances in attribute space tend to be
more meaningful than distances in the high-dimensional,
low-level feature spaces from which those attributes were
predicted. For example, with the SUN 397 database, the best
combination of features gets 38 % scene classification accu-
racy with a non-linear SVM, but those same features get
only 13 % accuracy with a nearest neighbor classifier. Strong
supervision is required to harness global image descriptors
for recognition tasks and this is a problem for the numerous
highly data-driven recognition tasks which rely on unsuper-
vised image retrieval (or “scene matching”) is at the start
of the pipeline. In this section we demonstrate three tasks in
which we have replaced (or augmented) typical global image
features with attribute-based representations (1) scene pars-
ing (2) image captioning and (3) text-based image retrieval.
In all of these applications, the attribute representation for
image retrieval is the 102 dimensional real-valued confi-
dences from the classifiers in Sect. 5.

7.1 Scene Parsing with Attribute-Based Scene Retrieval

Scene parsing is the task of segmenting and recognizing
all objects and surfaces in an image. Categorical labels can
be assigned to either each pixel or each region (e.g. super-
pixel) of the input image, giving a thorough interpretation of
the scene content. Most methods proposed for this problem
require a generative or discriminative model to be trained
for each category, and thus only work with a handful of pre-
defined categories (Gould et al. 2009; He et al. 2004; Hoiem
et al. 2007; Ladickỳ et al. 2010; Malisiewicz and Efros 2008;
Rabinovich et al. 2007; Shotton et al. 2008, 2006; Socher et
al. 2011). The training process can be very time-consuming
and must be done in advance. Even worse, the entire training
has to be repeated whenever new training images or class
labels are added to the dataset. Recently, several nonpara-
metric, data-driven approaches have been proposed for the
scene parsing problem (Liu et al. 2011; Tighe and Lazebnik
2013; Eigen and Fergus 2012). These approaches require no
training in advance. They can easily scale to hundreds of cat-
egories and have the potential to work with Internet-scale,
continuously growing datasets like LabelMe (Russell et al.
2008).

In this section we show how well we can improve data-
driven scene parsing by adopting scene attributes. Tighe

and Lazebnik investigate nonparametric, data-driven scene
parsing and achieve state-of-the-art performance (Tighe and
Lazebnik 2013). We follow their system pipeline and show
that by simply adding scene attributes as one of the features
used for scene representation we can achieve significant per-
formance gains.

7.1.1 System Pipeline

The first step in parsing a query image is to find a retrieval set
of images similar to the query image. The purpose of finding
this subset of training images is to expedite the parsing system
and at the same time throw away irrelevant information which
otherwise can be confusing. In Tighe and Lazebnik (2013),
three types of global image features are used in this step: gist,
spatial pyramid, and color histogram. For each feature type,
Tighe and Lazebnik sort all the training images in increasing
order of Euclidean distance from the query image. They take
the minimum rank accross all feature types for each training
image and then sort the minimum ranks in increasing order to
get a ranking among the training images for the query image.
The top ranking K images are used as the retrieval set.

After building the retrieval set, the query image and the
retrieval set images are segmented into superpixels. Each
superpixel is then described using 20 different features. A
detailed list of these features can be found in Table 1 in Tighe
and Lazebnik (2013). For each superpixel in the query image,
nearest-neighbor superpixels in the retrieval set are found
according to the 20 features for that superpixel. A likelihood
score is then computed for each class based on the nearest-
neighbor matches.

In the last step, we can simply assign the class with the
highest likelihood score to each superpixel in the query
image, or use Markov Random Field (MRF) framework
to further incorporate pairwise co-occurrence information
learned from training dataset. As in Eigen and Fergus (2012),
we report the performance without using the MRF layer in
this paper so differences in local classification performance
can be observed more clearly.

7.1.2 Scene Attributes as Global Features

Our goal in investigating scene parsing is to characterize
how well our scene attributes work as a scene representation
for image retrieval. Thus, we keep the system in Tighe and
Lazebnik (2013) unchanged except for using scene attributes
as global image features, either by themselves or in conjunc-
tion with the low-level features used in the original system.

The dataset we use for this experiment is the SIFT-Flow
dataset (Liu et al. 2011). It is composed of 2,688 annotated
images from LabelMe and has 33 semantic labels. Since the
class frequencies are highly unbalanced, we report both per-
pixel classification rate and per-class rate, which is the aver-

123



74 Int J Comput Vis (2014) 108:59–81

Fig. 19 Evaluation of using our scene attributes as a global feature for
scene parsing on the SIFT-Flow dataset. The x-axis shows mean per-
class classification rate and the y-axis shows per-pixel classification
rate. The plots show the impact of using different retrieval set sizes K
ranging from 10 to 800. The closer a line gets to the top-right corner of
the space (regardless of the value of K ), the better the retrieval method.
The blue plot shows the result of using gist (G), spatial pyramid (SP), and
color histogram (CH) together as scene descriptors for finding retrieval
sets (Tighe and Lazebnik 2013). Using scene attributes alone improves
the per-pixel rates while the per-class rates are similar. Using scene
attributes together with the previous three features increases both the
per-pixel rates and the per-class rates. Maximum histogram intersection
is the upper bound we get by finding retrieval set using ground-truth
labels of the query image (Color figure online)

age of the per-pixel rates over all classes. We also report the
performance of an “optimal retrieval set”, which uses ground-
truth class labels instead of global features to find similar
scenes for the query image. This retrieval set is called Max-
imum Histogram Intersection. It is found by ranking train-
ing images according to the class histogram intersections
they have with the query image. This optimal retrieval set is
meant to be a performance upper bound and should provide
an insight into how much room for improvement there is in
the image retrieval step.

Figure 19 shows the performance comparison among dif-
ferent global features. As we can see from the result, using
only scene attributes as global features we get higher per-
pixel rates than (Tighe and Lazebnik 2013), which uses
three global features (G+SP+CH), while getting similar per-
class rates. When combining our scene attributes with those
three global features (Attributes+G+SP+CH), both the per-
pixel rates and the per-class rates increase significantly [73.4,
29.8 % (K = 200) vs. 76.2, 33.0 % (K = 100)]. Consider-
ing the compact size of our scene attributes, 102 dimensions
compared with the 5184-dimension G+SP+CH, this result
supports the hypothesis that scene attributes are a compact

and useful high-level scene representation. It is also worth
noting that adding more features beyond this point does not
necessarily improve the performance because all features,
including weak ones, contribute equally to the found retrieval
sets. For instance, by using all 12 features from (Xiao et al.
2010) together with the scene attributes, the per-pixel rate
and the per-class rate drop to 74.6 and 30.4 % respectively
(K = 100).

7.2 Data-Driven Image Captioning with Attribute-Based
Scene Retrieval

In the previous subsection we showed that attribute-based
image retrieval can lead to improved scene parsing perfor-
mance. Here we take an analagous approach—modifying
the image retrieval stage of data-driven pipeline—for the
task of image captioning. There has been significant recent
interest in generating natural language descriptions of pho-
tographs (Kulkarni et al. 2013; Farhadi et al. 2010b). These
techniques are typically quite complex: they recognize var-
ious visual concepts such as objects, materials, scene types,
and the spatial relationship among these entities, and then
generate plausible natural language sentences based on this
scene understanding. However, the “Im2text” (Ordonez et al.
2011) method offers a simple data-driven alternative. Instead
of trying to achieve deep scene understanding and then link
visual entities to natural language entities, Im2text simply
tries to find a similar scene in a large database and then
“steals” the existing caption in its entirety. Because the suc-
cess of Im2text depends entirely on its ability to find similar
scenes (which hopefully have similar captions), we use it to
evaluate attribute-based scene representations.

In its simplest form, Im2text uses the gist and tiny image
descriptors (Torralba et al. 2008) as the global features for
image retrieval. On top of this baseline, Im2text also exam-
ines “content matching” in which the retrieved scenes are re-
ranked according to overlap of recognized objects, “stuff”,
people, and scene types. In Table 2, top we compare to the
“baseline” Im2text by replacing the high dimensional global
image features with our 102 dimensional predicted attributes.
As in Im2text, the experiments are carried out by retriev-
ing scenes from the SBU Captioned Photo Dataset 6 which
contains 1 million Flickr images with captions. Image cap-
tioning performance is quantified as the similarity between
a ground truth caption and a predicted caption according to
BLEU score (Papineni et al. 2002). As used in Im2text, the
BLEU score is the proportion of words in the captions which
are the same. This corresponds to the “unigram precision”
BLEU score which does not consider the ordering of words.
Stricter forms of BLEU also measure “n-gram precision”
which considers how many word sequences of length n are

6 http://dsl1.cewit.stonybrook.edu/vicente/py/website/search
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Table 2 Global matching BLEU score comparison between baseline
features and attributes on 10K, 100K and 1M dataset, 10K*, 100K* and
1M* are the dataset results with caption preprocessing

10K 100K 1M

Gist + tiny image 0.0869 ± 0.002 0.0999 ± 0.009 0.1094 ± 0.0047

Attributes 0.0934 ± 0.01 0.1058 ± 0.015 0.1140 ± 0.0199

Chance 0.086

10K* 100K* 1M*

Gist + tiny image 0.02 ± 0.006 0.0255 ± 0.0079 0.0398 ± 0.0122

Attributes 0.0298 ± 0.0052 0.0366 ± 0.0132 0.0551 ± 0.0258

Chance 0.0144

Removing stop words, punctuations, stemming, all lower case

shared between sentences. The ambiguity of the BLEU score
has been criticized in the literature, and despite its techni-
cal shortcomings we use it here in order to compare to pre-
vious methods. By using attributes instead of the baseline
Im2text image features we see small gains in captioning per-
formance – from average BLEU of 0.109 with gist and tiny
images to 0.114 with predicted attributes. However, the con-
tent matching approach in Im2text which re-ranks similar
scenes based on deeper scene understanding still exceeds
both global matching schemes with an average BLEU of
0.126.

In the course of the experiments, we noticed that “chance”
performance, in which a random caption is taken from the
database for each query, was surprisingly competitive with
the retrieval methods (average BLEU of .086). We believe
this is because the unigram BLEU score rewards matched
words such as “the” and “a” just as much as more con-
tent descriptive terms such as “forest” and “baby” and this
obscures the differences between the retrieval methods. In
Table 2, bottom we measure performance when we perform
three operations to try and make the caption evaluation more
rigorous: (1) stemming captions to root words, e.g. “run”,
“ran”, “running” and “runs” are stemmed to “run”. (2) con-
verting all words to lower case and (3) removing frequent
“stop words” such as articles and prepositions. While steps
1 and 2 make it easier for captions to match under the BLEU
criteria, step 3 dramatically decreases performance. Chance
performance drops by a factor of 6 to .014. The difference
between attributes and the baseline global image features is
more pronounced under this scheme −0.055 versus 0.040,
respectively. These numbers are quite low in absolute terms
because the captions in the Im2text database are exceed-
ingly diverse, even for very similar scenes. Figure 20 shows
example retrieval results where scene attributes lead to bet-
ter matching scenes than the baseline features (gist + tiny
images). For these examples, the captions obtained using
attributes get higher BLEU scores than the captions from
the baseline features.

Fig. 20 Attribute search versus Im2Text baseline. Example image
retrieval results that show how scene attributes can provide more rele-
vant results than the Im2Text baseline

7.3 Text-Based Image Retrieval with Scene Attributes

In the previous subsection we address generating captions
from images and here we address the inverse task—retrieving
images most relevant to a text query. There has been recent
work on directly using attributes to search image collec-
tions (Kumar et al. 2011; Siddiquie et al. 2011; Kovashka
et al. 2012; Scheirer et al. 2012) but here we investigate the
longstanding problem of query-by-text, as in typical search
engines. Therefore we first focus on learning a mapping from
text keywords to attributes and then perform image retrieval
in the 102 dimensional predicted attribute space. While the
observed correlations between attributes and keywords are
interesting and the retrieval results are promising, we do
not claim that this application represents the state of the art
in text-based image retrieval. Instead we offer a qualitative
comparison to the most common image retrieval baseline tf-
idf (term frequency-inverse document frequency) weighted
comparisons of query keywords to captions.

7.3.1 Attribute and Word Correlation

To link keyword queries to our scene attribute representation,
we measure the correlation of individual scene attributes and
words with a method inspired the co-occurrence model of
Hironobu et al. (1999). Hironobu et al. (1999) counts the
number of co-occurrences of image patch features and cap-
tion keywords to find correlations between keywords and fea-
tures. We discover the correspondence of attributes and key-
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Table 3 Examples of top correlated words for attributes

Attr. Sail./boat. Driving Eating Railroad Camping

Top 20
correlated
words

Cruis Sand Bar Moon Grass

Harbor Road Cabinet Railwai Pastur

Ocean Sidewalk Desk Lit Field

Sail Lane Kitchen Exposur Forest

Swim Dune Oven Harbour Landscap

Boat Highwai Tv Track Fallen

Dock Moon Een Southern Lone

Sunset Traffic Shelf Train Hidden

Sky Canyon Breakfast Mother Hill

Airplan Track Dine Star Flow

Beach Wind Tabl Light Stream

Sea Order Ceil Tank Canyon

Coast Cross Candl Traffic Oak

Wave Bridg Lit Night Trail

Ski Cabl Sunris Glow Distanc

Clear Ga Chocol Pass Road

Lake Drive Second Shadow Camp

Ship Fallen Room Salt Creek

Moon Colorado Bathroom Site Grow

Sunris Toward Cherri Wing Wind

Words are stemmed

words by counting the number of times that a given attribute
and keyword appear in the same image.

We use the 10,000 images and captions from Im2text
dataset as our training set. We only consider the 1,000 most
common words in the Im2text dataset as keywords. Let n be
the size of image dataset. We create an n-long vector Wi , for
each word wi and an n-long vector A j for each attribute a j .
The kth element of Wi indicates if the word wi exists in the
caption of the kth example in the dataset. Similarly the kth
element of A j indicates if the attribute ai exists in the image
of the kth example in the dataset. For these experiments, an
attribute exists in an image if the SVM classifier’s confidence
is above −0.75. This threshold is set fairly low so that the
attribute detections are not overly sparse.

We use a binary-idf, binary-inverse document frequency,
style weighting for word vectors and tf-idf, term frequency-
inverse document frequency, style weighting for attribute
vectors. In detail, if wi exists in the caption of the kth exam-
ple, the weight of the kth element in Wi is set to be 1/ fw,
where fw is the inverse document frequency of wi ; otherwise
the weight is zero. Similarly, if a j exists in the image of the
kth example, the weight of the kth element in A j is set to be
con f/ fa , where con f is the scene attribute confidence score
passed through a sigmoid, and fa is the inverse document
frequency of a j ; otherwise the weight is zero. Finally, the

Table 4 Examples of top correlated attributes for words

Words Kitchen Mountain

Top 10
correlated
attr.

Tiles Far-away horizon

Enclosed area Hiking

Cleaning Camping

Reading Natural

Wood (not part of a tree) Foliage

Glossy Vegetation

Electric/indoor lighting Trees

Glass Rugged scene

Eating Shrubbery

Studying/learning Leaves

Words Beach Dress

Top 10
correlated
attr.

Ocean Cloth

Far-away horizon Medical activity

Sand Enclosed area

Waves/surf Paper

Sunbathing No horizon

Sailing/boating Sterile

Diving Research

Swimming Electric/indoor lighting

Still water Stressful

Open area Man-made

correlation between word wi and attribute a j is simply the
inner product of Wi and A j ; Ci j = Wi ∗ A j .

Binary-idf is very similar to tf-idf. The difference between
the two is that for binary a word is counted only one for
the document it appears in.T he number of times the word
appears in the document is not considered. If a word appears
in one document, the binary-idf value will be 1/(inverse doc-
ument frequency), otherwise the value is zero. Binary-idf
can suppress some words that have little semantic mean-
ing in terms of our scene attributes but appear often in
the document. For example, the words “nice”, “like” may
appear more times than “sky” does in one document, but
they are less informative and less related to our scene
attributes.

Table 3 shows top correlated words for attributes and
Table 4 shows top correlated attributes for words. We find
that attributes predicted by our classifiers have high cor-
relation with text words. The correlations tend to be quite
reasonable, e.g. for the attribute ‘sailing/boating’ the most
correlated keywords are ‘cruise’, ‘harbor’, ‘ocean’, ‘sail’,
‘swim’, etc. Note some words are transformed because of
stemming.

123



Int J Comput Vis (2014) 108:59–81 77

Fig. 21 Attribute based image retrieval results on 1M Im2text dataset.
Although the captions are shown here for completeness, our text-based
image retrieval method did not see them at query time, whereas the TF-

IDF method (Fig. 22) uses the captions exclusively. These search terms
were selected for variety and breadth. We believe they are representative
of results from our attribute based image retrieval pipeline generally

7.3.2 Word-to-Attribute Correlation Applied to Image
Retrieval

Now that we can relate keywords to attributes, we apply the
word-to-attribute correlation scores to the image retrieval
task. Our text-based image retrieval approach is content-

based because it does not rely on text metadata (captions)
for the database images at query time. For example, if user
inputs a text query “sky”, we hope to map that text to its
corresponding visual features (via attributes), such as blue
background, clustered clouds and horizon line, and retrieve
images which contain those visual features.
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Fig. 22 Tf-idf based image retrieval results on 1M Im2text dataset

Given the query text, we break the text into words. Let
Tquer y be the vector of query word indices. These indices are
the positions of the query words in the list of 1,000 most com-
mon caption words. We use Tquer y and word-attribute corre-
lation we have obtained to create a “target” scene attributes
representation. Each word wi has a vector of correlations
Ci =< ci,1, . . . , ci, j , . . . , ci,102 >, where each element ci, j

is the correlation of word wi and attribute a j . The target scene

attribute representation is defined as the average of correla-
tion vectors of the words in the query,

Ftarget = 1

N

N∑

k=1

CTquer y,k (1)

where N is the length of Tquer y , and Tquer y,k is the kth element
of Tquer y , the index of the kth query word in common words
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list. We consider the same word multiple times if it appears
multiple times in the caption.

We then learn multi-linear regressions to map target scene
attributes to predicted scene attributes, which are the out-
put feature vectors of attributes classifiers. In the training
dataset, for each image, we know both its target attributes
and predicted attributes. We then learn the regression to map
from those attributes in the target representation to a j in the
predicted representation. Finally, we search for the nearest
neighbors of the query’s predicted attribute representation in
the test dataset.

7.3.3 Experiments

For testing we search 90,000 captioned images from the
Im2text dataset. We compare our method to tf-idf based
retrieval because it is a widely used baseline method for text-
based image retrieval. Figures 21 and 22 show the results of
both methods separately. From the results, we can see that
attribute-based image retrieval gives very promising search
results. For most search results returned by attribute-based
method, the target specified by the query text are the domi-
nant visual concept in the retrieved images. However, that
is not the case for tf-idf based method. For example, for
the “flower” query, the five images returned by the attribute-
based method all depict flowers, while the dominant objects
in images returned by the tf-idf based method contain a mug,
pony and bee. Our method also has some success with mul-
tiple keyword queries. For the queries “snow mountain” and
“dark sky” most of the retrieved scenes have the correct
semantics. These qualitative results again reinforce the idea
that the 102 dimensional scene attributes are surprisingly
expressive given their compact size and that our attribute
classifiers are reliable enough to support other image under-
standing applications.

8 Discussion

In this paper, we use crowdsourcing to generate a taxonomy
of scene attributes and then annotate more than ten thousand
images with individual attribute labels. In order to promote
the trustworthy responses from the Mechanical Turk users
we employ several simple yet effective techniques for qual-
ity control. We explore the space of our discovered scene
attributes, revealing the interplay between attributes and
scene categories. We measure how well our scene attributes
can be recognized and how well predicted attributes work
as an intermediate representation for zero shot learning and
image retrieval tasks.

8.1 Future Work

Scene attributes are a fertile, unexplored recognition domain.
Many attributes are visually quite subtle and nearly all scene
descriptors in the literature were developed for the task of
scene categorization and may not be the optimal descrip-
tors for attribute recognition. Even though all of our attribute
labels are global, many attributes have clear spatial sup-
port (materials) while others may not (functions and affor-
dances). Techniques from weakly supervised object recogni-
tion might have success at discovering the spatial support of
our global attributes where applicable. Classification meth-
ods which exploit the correlation between attributes might
also improve accuracy when recognizing attributes simulta-
neously. We hope that the scale and variety of our dataset
will enable many future explorations in the exciting space of
visual attributes.
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Appendix: Scene Attributes

See Appendix Table 5.

Table 5 Complete list of discovered scene attributes

Scene attributes
Functions/affordances

Sailing/boating Driving

Biking Transporting things or people

Sunbathing Vacationing/touring

Hiking Climbing

Camping Reading

Studying/learning Teaching/training

Research Diving

Swimming Bathing

Eating Cleaning

Socializing Congregating

Waiting in line/queuing Competing

Sports Exercise

Playing Gaming

Spectating/being in an audience Farming

Constructing/building Shopping

Medical activity Working

Using tools Digging

Conducting business Praying
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Table 5 continued

Materials

Fencing Railing
Wire Railroad

Trees Grass

Vegetation Shrubbery

Foliage Leaves

Flowers Asphalt

Pavement Shingles

Carpet Brick

Tiles Concrete

Metal Paper

Wood (not part of a tree) Vinyl/linoleum

Pubber/plastic Cloth

Sand Rock/stone

Dirt/soil Marble

Glass Waves/surf

Ocean Running water

Still water Ice

Snow Clouds

Smoke Fire

Surface properties/lighting

Natural light Direct sun/sunny

Electric/indoor lighting Aged/worn

Glossy Matte

Sterile Moist/damp

Dry Dirty

Rusty Warm

Cold

Spatial envelope

Natural Man-made

Open area Semi-enclosed area
Enclosed area Far-away horizon

No horizon Rugged scene

Mostly vertical components Mostly horizontal components

Symmetrical Cluttered space

Scary Soothing

Stressful
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