
Goals: 

• What makes modern optical flow techniques accurate and why?

• How can we use such insights to improve flow techniques further?

Secrets: Quantitative analysis of current practices in optical flow
estimation starting from a simple, classical formulation

Principles: Formalization of the heuristic median filtering step as an
unweighted non-local term added to the original objective

Improved model: Introduce weighted non-local term that uses color,
flow, and occlusion information to better preserve motion details

MATLAB code: http://www.cs.brown.edu/~dqsun/

What makes optical flow accurate?

Classical formulation:

Modern implementation:
• Preprocessing: Rudin-Osher-Fatemi (ROF) structure texture decomposition [3]

• Standard incremental multi-resolution technique, 10 warping steps per level

• Graduate non-convexity (GNC) for non-quadratic penalty

• Bicubic interpolation to warp image and its derivatives

• 5-point image derivative filter

• Temporal averaging of image derivatives

• 5X5 median filtering of intermediate flow field per warping step [3]

How good is it?

What is important?

Approach: Change one property of Classic-C at a time, compare
avg. EPE, and test statistical significance

Median filtering leads to lower EPE, but higher energy solutions!

What is being minimized? 

Observation: Median filtering can be posed as L1 energy 
minimization [1]. Replace median filter with minimization of this 
objective function: 

New objective function: Non-local term robustly integrates 
information over a large spatial neighborhood

Optimization: Alternate optimization between coupled classical and
non-local terms

Alternating optimization (Classic-C-A) leads to similar performance

• Classical formulations competitive with current practices

• Median filtering is key to accuracy, but increases energy

• Formalize median filtering as a non-local term that integrates
information over a large spatial neighborhood

• Weighting neighbors adaptively preserves motion details

• MATLAB code: http://www.cs.brown.edu/~dqsun/
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Secrets of Optical Flow Estimation and Their Principles 

Secrets uncovered
• Pre-processing: Some kind of image filtering is useful but simple gradient
constancy is as good as more sophisticated texture decomposition;
overfitting is more severe for brightness constancy

• Interpolation and image derivatives: Bicubic interpolation is slightly
better than bilinear but not significantly; spline-based bicubic interpolation is
consistently better than convolution-based (MATLAB built-in); removing
temporal averaging of image derivatives, central difference filter, and 7-point
derivative filter reduce accuracy, but not significantly

• Coarse-to-fine estimation and GNC: Pyramid downsampling factor does
not matter for the convex penalty and 0.5 is fine; graduated non-convexity
(GNC) helps even the convex robust Charbonnier penalty

• Penalty function: Less robust Charbonnier is better than
Lorentzian; a slightly more robust penalty (generalized
Charbonnier , a = 0.45) is better still

Median filtering: Median filtering the intermediate flow field is the single
most important secret; 5x5 is a good filter size

Best practices (Classic++): Modify baseline Classic-C to use the slightly
non-convex generalized Charbonnier and spline-based bicubic interpolation.
This method is directly descended from HS and BA, yet updated with
current best practices known to us. It ranks 8th in EPE on the public
Middlebury test set.

Middlebury test set Avg. Rank Avg. EPE

Classic-Charbonnier 14.9 0.408

HS (Horn & Schunk) 24.6 0.501

Classic-Lorentizan (BA) 19.8 0.530

HS 35.1 0.872

BA (Black& Anandan) 30.9 0.746

Adaptive 11.5 0.401

Complementary OF 10.1 0.485

Classic-C-brightness N/A 0.726
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Middlebury training set Avg. EPE signif. p-value

Classic-C 0.298 - -

Brightness constancy 0.288 0 0.9453

Gradient  constancy 0.305 0 0.4609

Bilinear interpolation 0.302 0 0.1016

Central difference filter 0.300 0 0.7266

7-point derivative filter 0.302 0 0.3125

Spline-based bicubic interpolation 0.290 1 0.0391
No temporal average of derivatives 0.306 0 0.1562

Downsampling factor 0.5 0.298 0 1.0000

3 warping steps per level 0.304 0 0.9688

No graduated non-convexity (GNC ) 0.354 0 0.1094

Generalized Charbonnier-0.45 0.292 1 0.0156
Generalized Charbonnier-0.25 0.298 0 1.0000

Median filter size 3 X 3 0.305 0 0.1016

Median filter size 7 X 7 0.305 0 0.5625

Median filtering twice 0.300 0 1.0000

No median filtering 0.352 1 0.0078
Classic++ 0.285 1 0.0078
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Problem: Unweigthed non-local term (median filtering) destroys fine
structures that differ from the majority of neighbors
Solution: Weight neighbors adaptively according to color, flow, and
occlusion state information

Figure 4. Median filtering over-smooths the rifle in the “Army” sequence 
while the proposed non-local term preserves the details. 

Table 4. Screen shot of the Middlebury optical flow benchmark (June 2010).

Classic++ Classic+NL

Figure 3. Neighbor weights of the proposed non-local term at 
different positions in the “Army” sequence.
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Previous implementation

Previous state of the art

Current implementation

Middlebury 
training set

Avg. EPE Significance p-value

Classic-C 0.298 - -
Classic-C-A 0.305 0 0.8125
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Wilconxon signed rank test 
between each variant and 

baseline Classic-C








Figure 1. Different penalty functions for the spatial terms.

Overview

Secrets
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Figure 2. Estimated flow fields on “RubberWhale” by Classic-C.
With MF: Energy 502,387, EPE 0.093 Without MF: Energy 449,290, EPE 0.113

Principles

Conclusions

Interpolation 
and image 
derivatives

Coarse-to-fine 
estimation and 
GNC

Penalty function

Median filtering

Preprocessing

Best practices

Baseline

Classical formulation

Coupling term

Non-local term

For later comparison

Standard data 
constancy term

Table 1. Models. Average end-point error (EPE) on Middlebury test
set by Classical formulation with different penalty functions. 

Table 2. Models and Methods. Average end-point error (EPE) on 
Middlebury training set for Classic-C and its variants. 

Table 3. Average EPE on training set for the new objective with alternating optimization.

5X5 neighborhood
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Occlusion state determined by flow divergence and data constancy error [2]

Improved model
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Smoothness term: 
Pairwise Markov 

random field (MRF) 
with 4 neighbors
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