

Overview

Goals:

• What makes modern optical flow techniques accurate and why?

• How can we use such insights to improve flow techniques further?

Secrets: Quantitative analysis of current practices in optical flow estimation starting from a simple, classical formulation

Principles: Formalization of the heuristic median filtering step as an unweighted non-local term added to the original objective

Improved model: Introduce weighted non-local term that uses color, flow, and occlusion information to better preserve motion details

MATLAB code: http://www.cs.brown.edu/~dqsun/

Secrets of Optical Flow Estimation and Their Principles

Deqing Sun¹, Stefan Roth², and Michael J. Black¹ ¹Brown University, ²TU Darmstadt

Secrets uncovered

• **Pre-processing:** Some kind of image filtering is useful but simple gradient constancy is as good as more sophisticated texture decomposition; overfitting is more severe for brightness constancy

• Interpolation and image derivatives: Bicubic interpolation is slightly better than bilinear but not significantly; *spline-based bicubic interpolation* is consistently better than convolution-based (MATLAB built-in); removing temporal averaging of image derivatives, central difference filter, and 7-point derivative filter reduce accuracy, but not significantly

• Coarse-to-fine estimation and GNC: Pyramid downsampling factor does not matter for the convex penalty and 0.5 is fine; graduated non-convexity (GNC) helps even the convex robust Charbonnier penalty

• Penalty function: Less robust Charbonnier is better than Lorentzian; a slightly more robust penalty (generalized **Charbonnier** $\rho(x) = (x^2 + \varepsilon^2)^a$, a = 0.45) is better still

Figure 1. Different penalty functions for the spatial terms.

Median filtering: Median filtering the intermediate flow field is the single most important secret; 5x5 is a good filter size

			Wilconxon signed rank test between each variant and baseline Classic-C						
	Middlebury <i>training</i> set	Avg.	EPE	signif.	<i>p</i> -value				
Baseline	Classic-C	0.2	298	-	-				
. .	Brightness constancy	0.2	288	0	0.9453				
Preprocessing	Gradient constancy	0.3	805	0	0.4609				
	Bilinear interpolation	0.3	802	0	0.1016				
Interpolation and image derivatives	Central difference filter	0.3	800	0	0.7266				
	7-point derivative filter	0.3	802	0	0.3125				
	Spline-based bicubic interpolation	0.2	90	1	0.0391© 🔪				
	No temporal average of derivatives	0.3	806	0	0.1562				
Coarse-to-fine estimation and GNC	Downsampling factor 0.5	0.2	298	0	1.0000				
	3 warping steps per level	0.3	804	0	0.9688				
	No graduated non-convexity (GNC)	0.3	854	0	0.1094				
Penalty function	Generalized Charbonnier-0.45	0.2	92	1	0.0156 🙂 🔪				
r enalty function	Generalized Charbonnier-0.25	0.2	298	0	1.0000				
Median filtering	Median filter size 3 X 3	0.3	805	0	0.1016				
	Median filter size 7 X 7	0.3	805	0.5625					
	Median filtering twice	0.3	800	1.0000					
	No median filtering	0.3	52	0.0078 🛞					
Best practices	Classic++	0.2	.85	1	0.0078 🙂 📕				

Table 2. Models and Methods. Average end-point error (EPE) on Middlebury training set for Classic-C and its variants.

Best practices (Classic++): Modify baseline Classic-C to use the slightly non-convex generalized Charbonnier and spline-based bicubic interpolation. This method is directly descended from HS and BA, yet updated with current best practices known to us. It ranks 8th in EPE on the public Middlebury test set.

Principles

Median filtering leads to lower EPE, but higher energy solutions!

With MF: Energy 502,387, EPE 0.093 Without MF: Energy 449,290, EPE 0.113 Figure 2. Estimated flow fields on "RubberWhale" by Classic-C.

What is being minimized?

Observation: Median filtering can be posed as L1 energy minimization [1]. Replace median filter with minimization of this objective function:

$$E(\hat{\mathbf{u}}) = \lambda_2 \| \mathbf{u} - \hat{\mathbf{u}} \|^2 + \sum_{i,j} \sum_{(i',j') \in N_{i,j}} |\hat{u}_{i,j} - \hat{u}_{i',j'}|$$

New objective function: Non-local term robustly integrates information over a large spatial neighborhood

$$\begin{aligned} \mathcal{E}_{A}(\mathbf{u}, \mathbf{v}, \hat{\mathbf{u}}, \hat{\mathbf{v}}) &= \sum_{i,j} \left\{ \rho_{D}(I_{1}(i, j) - I_{2}(i + u_{i,j}, j + v_{i,j})) \\ &+ \lambda [\rho_{S}(u_{i,j} - u_{i+1,j}) + \rho_{S}(u_{i,j} - u_{i,j+1}) + \rho_{S}(v_{i,j} - v_{i,j+1})] \right\} \end{aligned} \\ & \quad \left\{ \begin{array}{l} \text{Classical formulation} \\ &\rho_{S}(v_{i,j} - v_{i+1,j}) + \rho_{S}(v_{i,j} - v_{i,j+1})] \right\} \end{aligned} \\ & \quad \left\{ \begin{array}{l} + \lambda_{2}(|| \mathbf{u} - \hat{\mathbf{u}} ||^{2} + || \mathbf{v} - \hat{\mathbf{v}} ||^{2}) \\ &+ \lambda_{2}(|| \mathbf{u} - \hat{\mathbf{u}} ||^{2} + || \mathbf{v} - \hat{\mathbf{v}} ||^{2}) \end{aligned} \\ & \quad \left\{ \begin{array}{l} \text{Coupling term} \\ &+ \sum_{i,j} \sum_{(i',j') \in N_{i,j}} \lambda_{3}(| \hat{u}_{i,j} - \hat{u}_{i',j'} | + | \hat{v}_{i,j} - \hat{v}_{i',j'} |) \\ & \quad \left\{ \begin{array}{l} \text{Non-local term} \end{array} \right\} \end{aligned} \end{aligned}$$

Optimization: Alternate optimization between coupled classical and non-local terms

Alternating optimization (Classic-C-A) leads to similar performance

Middlebury <i>training</i> set	Avg. EPE	Significance	<i>p</i> -value
Classic-C	0.298	-	-
Classic-C-A	0.305	0	0.8125

Table 3. Average EPE on *training* set for the new objective with alternating optimization.

15X15 neighborhood

Table 4. Screen shot of the Middlebury optical flow benchmark (June 2010).

		Army (Hidden texture)		Mequon (Hidden texture)		Schefflera (Hidden texture)			Wooden (Hidden texture)			Grove (Synthetic)			Urban (Synthetic)			Yosemite (Synthetic)					
	avg.	GT	<u>im0</u>	<u>im1</u>	GT	<u>im0</u>	<u>im1</u>	GT	<u>im0</u>	<u>im1</u>	GT	im0	<u>im1</u>	<u>GT</u>	im0	<u>im1</u>	GŤ	<u>im0</u>	<u>im1</u>	GŤ	<u>im0</u>	<u>im1</u>	
	rank	al	disc	untext	al	disc	untext	al	disc	untext	al	disc	untext	al	disc	untext	a	<u>disc</u>	untext	a	disc	untext	
38]	5.8	<u>0.08</u> 1	0.231	0.072	<u>0.22</u> 8	0.74	0.18 10	<u>0.29</u> 7	0.657	0.197	<u>0.15</u> 1	0.73 3	0.091	<u>0.64</u> 1	0.93 (0.471	<u>0.52</u> 9	1.123	0.336	<u>0.16</u> 21	0.136	0.29 27	0
30]	6.4	0.092	0.25 3	0.085	<u>0.19</u> 2	0.54	2 0.18 10	0.24 1	0.553	0.209	<u>0.16</u> 4	0.91 8	0.091	0.742	1.062	0.61 5	0.46 <u></u> 5	1.02 2	0.358	0.127	0.14 11	0.177	0.
28]	7.4	0.107	0.266	0.085	0.228	0.72	0.153	0.359	0.85 🛚	0.161	<u>0.15</u> 1	0.70 2	0.091	0.795	1.167	0.513	0.78 17	1.388	0.48 14	0.16 21	0.15 16	0.26 19	0
[37]	8.1	0.092	0.28 12	0.085	0.228	0.74	0.19 13	0.254	0.584	0.21 11	<u>0.17</u> 6	0.92 10	0.091	<u>0.87</u> 9	1.17 🛛	0.94 21	0.35 <u>1</u>	0.95 1	0.314	0.16 <mark>21</mark>	0.136	0.28 25	0
OF [24]	9.1	<u>0.10</u> 7	0.266	0.09 10	<u>0.20</u> 6	0.70	s 0.14 <u>2</u>	<u>0.35</u> 9	0.85 9	0.161	<u>0.19</u> 9	1.05 14	0.107	<u>0.87</u> 9	1.25 10	0.718	<u>1.46</u> 28 1	1.61 18	0.73 22	<u>0.11</u> 5	0.124	0.21 13	0
3]	10.2	0.092	0.26 6	0.061	0.23 13	0.78 1	2 0.18 10	0.54 20	1.192	2 0.21 11	0.187	0.91 8	0.107	0.88 12	1.25 10	0.73 13	0.508	1.286	0.314	0.14 14	0.16 21	0.22 15	0
[36]	11.5	0.107	0.24 2	0.09 10	0.19 ₂	0.59	0.153	0.27 5	0.64 5	0.174	0.187	0.82 5	0.11 11	0.742	1.07 3	0.564	1.78 35	1.73 18	0.95 30	0.22 33	0.16 21	0.45 36	0.
9]	12.2	0.092	0.253	0.072	0.2313	0.78 1	2 0.19 13	0.43 12	1.00 14	4 0.22 14	0.20 12	1.11 17	0.107	0.87 9	1.30 1	0.666	0.476	1.62 18	5 0.33 6	0.17 25	0.14 11	0.32 31	0.

TECHNISCHE UNIVERSITÄT DARMSTAD

• Weighting neighbors adaptively preserves motion details

• MATLAB code: http://www.cs.brown.edu/~dqsun/

References

- [1] Li and Osher. A new median formula with applications to PDE based denoising. Commun. Math. Sci., 7(3):741–753, 2009.
- [2] Sand and Teller. *Particle video: Long-range motion* estimation using point trajectories. IJCV, 2008. [3] Wedal et al. An improved algorithm for TV-L1 optical
- flow. Dagstuhl Motion Workshop, 2008. [4] Yoon and Kweon. Adaptive support-weight approach for correspondence search. PAMI, 2006.