Distortion Lower Bounds for Line Embeddings

Claire Mathieu and Charalampos Papamanthou

Department of Computer Science, Brown University, P.O. Box 1910
Providence RI, U.S.A.
{claire,cpap}@cs.brown.edu

Abstract. In this paper, we show how we can derive lower bounds and
also compute the exact distortion for the line embeddings of some special
metrics, especially trees and graphs with certain structure. Using linear pro-
gramming to formulate a simpler version of the problem gives an interesting
intuition and direction concerning the computation of general lower bounds
for distortion into the line. We also show that our lower bounds on special
cases of metrics are a lot better than previous lower bounds.

1 Introduction

Embedding a metric induced by an unweighted graph into the line with minimum
distortion is a well-known NP-hard problem [4]. Approximation algorithms and
hardness results are discussed in [3,4, 8]. Improved algorithms for optimal embed-
dings are presented in [6], where, however, the embedding is required to be a bijec-
tion. In [1], embeddings of series-parallel graphs into ¢; and embeddings between
two line metrics are discussed. In this paper, we show how we can derive lower
bounds for the line distortion of some special metrics, especially trees and graphs
with certain structure. To do this, we use linear programming to formulate another
simpler version of the problem, where we know the permutation of the vertices of
the graph on the line in advance. This approach gives an interesting intuition and
direction concerning the computation of general lower bounds for distortion into
the line.

Problem. Let G = (V, E) be an unweighted graph with the implied shortest
path metric d(u,v). A map f of V into the real line is non-contracting if | f(u) —
f()| > d(u,v) for all u,v. The minimum distortion problem is to find a map f with
minimum distortion, where the distortion of a non-contracting map f is defined as
max,vev | F(u) — f(0)]/d(u,v).

Previous work. There are some results on lower bounds concerning embeddings
into higher dimensions. For example you can embed the complete binary tree in the
Euclidean space with distortion > £2(1/Iglgn) [5], where n is the size of the tree.
A short proof for that is also presented in [12]. Also upper bounds for embedding
the binary tree into Euclidean space are presented in [5]. Additionally, in [2], lower
bounds of embeddings of trees into R*? are discussed. Lower bounds of low distortion
embeddings to higher dimensional spaces are also presented in [5].

However, there are few results for the computation of lower bounds concerning
embeddings into the line. Actually, in [4,9], it is proved that the least distortion
required to embed the star into the line is £2(n). Also, in [3] a lower bound method
that applies to all unweighted graphs is presented.

In [3], an O(y/n) approximation algorithm for computing embeddings of un-
weighted graphs (n is the size of the graph) into the line is described. This algorithm
partitions the nodes of the graph into distinct clusters and explicitly computes the
intervals between the nodes on the line.



Define the local density of an unweighted graph G = (V, E) to be the quantity
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where B(v,r) = {u € V : d(u,v) < r}. In [3], the following general lower bound on
the distortion of the embedding of an unweighted graph is presented:

Theorem 1 ([3]) Let G = (V,E) be an unweighted graph with local density A.
Then, any embedding of G into the line has distortion more or equal than A.

The local density was also extensively used and studied in the context of band-
width (see for example [7]).

Our results. We present some unweighted graph cases for which we are able to
prove exact distortion based on lower bounds produced by using a linear program-
ming formulation. We compute the optimal distortion by computing an embedding
of a distortion ¢ and then by proving that ¢ is also a lower bound on the optimal
distortion of these graph instances. More specifically we compute the optimal dis-
tortion for a structured tree (we call it two-path tree) and the n x j square grid.
We apply our results to a star metric, giving a better lower bound and finally we
set up a conjecture for the binary tree.

2 An explicit formula for the minimum distortion

Theorem 2 Given an unweighted graph G = (V, E) then the minimum distortion
embedding of G into the line has distortion equal to
w(v)—1
*

¢ = min max E TR
m:V—{1,..,n} | {u,v}€EE
k=m(u)

where rT = d(r71(i), 77 (i + 1)).
We start the proof with two simple observations.

Lemma 3 The distortion of a map f that maps the vertices of an unweighted graph
G = (V, E) into the line equals maxy, yep |f(u) — f(v)].

Proof. For u,v € V,let u=y1,¥ya,...,yr = v be a shortest path from w to v. Then
k—1
[f(u) = F)] <Y 1F () = Flysen)] < ek — 1) = cd(u, v)
j=1

where ¢ = maxg, ,yep | f(u) — f(v)]. Since for every edge {u,v} € Eitisd(u,v) =1,
the result follows. O

Lemma 4 The map f is non-contracting if and only if f(yi+1)— f(vi) = d(yit1,Y:)
for all i, where (y;) is a labelling of the vertices in order of their embedding on the
line by f, i.e., f(y1) < f(y2) <... < f(yn).

Proof. For u,v € V, let 4,5 be such that v = y; and v = y;, and without loss of
generality ¢ < j. Then

j—1

Fw) = f0) =Y (Fre) = Fr) =Y dynia, ye) > d(ys, vi) = d(u, v)
k=1

k=i



The inverse holds trivially by the definition of a non-contracting embedding and
the hypothesis. [

Combining the two lemmas, we can write a linear program to compute the minimum
distortion ¢ of a non-contracting map, given the permutation 7 such that 7(u) is
the rank of u in the embedding. Here x; is the distance on the real line between the
i-th point and the (i + 1)-th point of the embedding.

Z(:Uz(*ul) rp < c V{u,v} € E
min(c) s.t. < >d(n (), 7 i+ 1)) Vi
T, C >0

Recall that rT = d(x1(i),7 1(i + 1)). It is easy to see that the minimum
is reached when z; = 77, and given that, that the minimum is obtained for
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€ =MaX(y y}eE { Zgz(_ul) rg} Minimizing over all permutations 7 yields the proof.

Theorem 5 Let G be an unweighted graph. Let vi,vs,vs be three wvertices, and
p,p’,p" be three paths from vi to vs, from vz to vy and from vy to vi Tespectively.
Then
¢* > 2min{min{d(ve,w)}, min{d(vy,w)}, min{d(vs,u)}}
uep u€p’ u€p’’

where c* is given in Theorem 2.

Proof. Let t denote the minimum of the three quantities. Let m be an arbitrary
permutation and f be the optimal embedding respecting 7. First assume that in 7,
vg is between v; and vs, and so, f(v2) is between f(v1) and f(v3). Since p is a path
from vy to vz in G, there must exist an edge (z,2’) of p such that f(vs) is between
f(x) and f(z’). Then, since f is non-contracting:

d(a’,v2) + d(v2, ) < (f(2') = f(v2)) + (fv2) = f(@) = f(a') = fl@) = D rE

Here the last equality comes from the fact that for f optimal, the second set of
inequalities of the linear program are tight. Therefore for edge (x,x’)

m(z')—1

S 0T > d@l,vs) + d(vn, ) W
k=m(x)

which can be more simplified into (decreasing the lower bound a little bit)
Zz(jﬂ)(;)l rf > 2t. The other cases are similar. Thus, for every permutation T,
there exists an edge (x, ') such that Ez(zwﬂ)(;)l r > 2t. By Theorem 2 this implies
c* > 2t.

3 Examples

3.1 The Two-Path Tree

Theorem 6 A two-path tree T'(n,j) is an unweighted graph which is the tree con-
sisting of two paths V = v1,v2,...,0, and U = uy,us, ..., u, and an edge {v;,u;}



Fig. 1. A two-path tree T'(n, j) (left) and the grid S(n,j) (right).

such that j < (n+1)/2. Let ¢*(T(n,j)) denote the optimal distortion into the line
of a 2-path tree T'(n,j). Then:

2j—2<c(T(n,j) <2j—-1

Proof. To prove the lower bound, use Theorem 5 for the nodes vy, u1,v, to yield
¢ >2min{j — 1,5,n —j} = 2(§ — 1). Also we can get an even better lower bound
equal to 2j — 1, by using directly Equation 1. To prove the upper bound, embed the
nodes in the following order (see Figure 1):

P(n,j) = vn(Lvn—1(1) ... (Dv1(§)u;(Luj—1(1) ... (Dur (fujra (D2 (1) . (Dug

where z(d)y means that node y is embedded after node x at distance d. Note that
the embedding is non-contracting and also
[f(ug) = flvj)l _ 25 -1

= =27 -1
d(uj, v;) 1 /

Hence ¢*(T'(n,j)) < 2j — 1 and the presented embedding is optimal. [J

Note that Theorem 1 would give a lower bound of §2(1) only, whereas our lower
bound is essentially tight.

3.2 The Rectangular Grid

Theorem 7 Let S(n,j), n > j denote the unweighted graph with nj nodes consisting
of the n x j rectangular grid. Let ¢*(S(n,j)) denote the optimal distortion. Then:

2j =2 < c*(S(n,j)) <2 — 1

Proof. Each node of the grid is denoted si;, i =1,...,n,l=1,..., 7. For the lower
bound, use Theorem 5 with nodes s11, sn1, 5nj. The paths we are using are

511,821, -+, 5n1
S’I'L17S’I'L27 . ‘7s7lj
SnjyS(n—1)jy+--»S15,51(j—1)s -+ S11-

By using again Equation 1 we can easily get the best lower bound equal to 2j — 1.
For the upper bound, consider the embedding (see Figure 1) represented with the
following permutation (without loss of generality we assume n is odd):

P = 511,812, --+,515,525,52(j—1)y+ -+ 1521y - -+, Snj, Sn(j—1),- -+ Snl



For this permutation 7, by the linear programming formulation we have that

m(v)—1 w(s21)—1 m(sn1)—1

c*(S(n,j)) = max Z TR = TR = Z rp =25—1

{u,v}eE o= (1) k=m(s11) k=m(s(n-1)1)

Hence the optimal distortion is 25 — 1. [

3.3 Star Metrics

Consider a star metric that consists of a star with O(1) branches of length O(n)
with the following properties: Then, our lower bound is £2(n), hence tight, whereas
the lower bound by [3] is £2(1) (There is no ball of constant radius that contains
O(n) nodes).

3.4 The Complete Binary Tree

Next, we give some thoughts that may help in order to prove some bounds for the
optimal distortion of the complete binary tree.

Corollary 8 The complete binary tree of n nodes and height { cannot be embedded

in the line with a distortion less than WM = 2‘7[1 = Q(lgin) = 0(2—;)

Proof. Follows from Theorem 1 if we choose the root as the center of the ball. (I
Also, we can easily prove the following:

Theorem 9 Let T be a complete binary tree of height £. Then, an inorder traversal
of the tree gives a non-contracting embedding of distortion 2¢ — 1.

Finally we believe that the following conjecture holds:

Conjecture 10 The complete binary tree can be embedded into the line with dis-
tortion ©(2°).

Optimal embeddings of a complete binary tree under a different setting though
(where non-contractness is not an issue and also expansion is allowed) are presented
in [11].

4 Concluding Remarks

In this paper we propose a technique to compute good lower bounds for the optimal
distortion into the line of certain metrics. We give better lower bounds than the ones
derived when using an already proposed general lower bound. To do this we use a
linear programming formulation that gives the optimal solution when the optimal
permutation of the embedding is known. We give explicit constructions for various
metrics, such as trees, grids and star metrics. Also, we propose an interesting con-
jecture. Finally we note that it might be possible to resolve the proposed conjecture
by taking some ideas from [11] in order to compute an optimal upper bound.
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