Improved Approximation Algorithms for
Budgeted Allocations*

Yossi Azar!, Benjamin Birnbaum?, Anna R. Karlin?, Claire Mathieu®,
and C. Thach Nguyen?

! Microsoft Research and Tel-Aviv University
azar@tau.ac.il
2 University of Washington
{birnbaum,karlin,ncthach}@cs.washington.edu
3 Brown University
claire@cs.brown.edu

Abstract. We provide a 3/2-approximation algorithm for an offline
budgeted allocations problem with applications to sponsored search auc-
tions. This an improvement over the e/(e—1) approximation of Andelman
and Mansour [I] and the e/(e — 1) — e approximation (for e ~ 0.0001)
of Feige and Vondrak [2] for the more general Maximum Submodular
Welfare (SMW) problem. For a special case of our problem, we improve
this ratio to /2. We also show that the problem is APX-hard.

1 Introduction

The rising economic importance of online sponsored search advertising has led
to a great deal of research focused on developing its theoretical underpinnings.
(See e.g., [3] for a survey.) Since search engines such as Google, Yahoo! and
MSN depend on sponsored search for a significant fraction of their revenue,
a key problem is how to optimally allocate ads to keywords (user searches)
so as to maximize search engine revenue [IJ4BIGI7]. In this direction, Mehta
et al. [7] studied a stylized version of the problem, which we call the Online
Budgeted Allocation problem. In their model, there is a set of bidders U and a
set of keywords V. Each bidder ¢ € U has a known daily budget B; and a non-
negative bid b;; for every keyword j € V. The keywords arrive one-by-one in an
online fashion, with the bids for keyword j revealed only when j arrives. At each
keyword arrival, the algorithm (i.e., the search engine) allocates the keyword
to one of the bidders (i.e., displays that bidder’s ad as one of the sponsored
search results the user sees). The total profit extracted by the algorithm from
each bidder is the minimum of the budget B; of that bidder and the sum of the
bi;’s for keywords j allocated to it. The goal is to find an allocation of keywords
to bidders that maximizes the total profit extracted by the algorithm. Mehta
et al. [7] presented an algorithm that achieves an optimal competitive ratio of

* This research was supported by the Israeli Science Foundation, NSF Grant CCF-
0635147, and by an NSF Graduate Research Fellowship.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 186 2008.
© Springer-Verlag Berlin Heidelberg 2008

Improved Approximation Algorithms for Budgeted Allocations 187

e/(e —1) for the case when the bids are much smaller than the budgets, a result
also proved by Buchbinder et al. [4]. When there is no restriction on the values
of the bids relative to the budgets, the best known competitive ratio is 2 [g].

Surprisingly, the approximability of the offline version of Budgeted Allocation,
in which the algorithm can see all of the bids before allocating keywords, is still
not well understood. Lehmann et al. [§] showed that the problem is NP-hard,
and Andelman and Mansour [I] provided the first non-trivial approximation
ratio of e/(e — 1). Feige and Vondrak [2] improved this ratio to e/(e — 1) — € (for
€ ~ 0.0001) for the more general SMW problem.

In this paper, we give improved approximation algorithms for two versions of
the offline Budgeted Allocation problem. In the uniform version, each keyword
J has a single price b;. If a bidder ¢ is interested in j, its bid b;; is equal to b;.
Otherwise, its bid b;; is 0. The non-uniform version removes this restriction, so
that the b;; values can be arbitrary for each ¢ and j.

1.1 Our Results

We provide a deterministic 3/2-approximation algorithm for the non-uniform
Budgeted Allocation problem (Section). This improves the previous best-
known approximation ratio of e/(e — 1) — e (for e ~ 0.0001) [2]. For the uniform
version of the problem, we improve the approximation ratio to v/2 (Section [3).
In both these algorithms, we assume that the maximum bid is no larger than
the smallest budget, i.e. max; ; b;; < min; B;.

We also show that the problem is APX-hard (Section H).

1.2 Related Work

As discussed above, before this work, the first non-trivial approximation ratio
for Budgeted Allocation was e/(e — 1), due to Andelman and Mansour [I]. For
the special case in which the bidders all have the same budget, these authors
were able to lower this ratio to approximately 1.39. Our algorithms apply to the
more general case in which the budgets may be different for different bidders.

Two recent unpublished works also study the Budgeted Allocation problem
and provide better approximation ratios than those obtained in this paper: In-
dependently of our work, Chakrabarty and Goel [9] have provided two elegant
algorithms, an iterative rounding algorithm and a primal-dual algorithm, both
of which achieve an approximation ratio of 4/3, matching the integrality gap of
the linear program used in this and other papers. Their paper also shows that it
is N P-hard to approximate Budgeted Allocation to a factor better than 16/15,
which subsumes the result in this paper on APX-hardness. In addition, build-
ing on our approach, Srinivasan [I0] has recently provided another LP-rounding
algorithm that achieves an approximation ratio of 4/3.

The Budgeted Allocation problem is an important special case of SMW, the
problem of maximizing utility in a combinatorial auction in which the utility
functions are submodular. In the combinatorial auction setting the keywords are
items to be sold. SMW has been widely studied [2I8[TTIT2/T3!T4]. For submodular

188 Y. Azar et al.

auctions using the value query model, the best approximation algorithm gives
a factor e/(e — 1) [I4]. This ratio has been shown to be the best possible for
this model [I2/I3]. For the stronger demand query model it is possible to do at
least slightly better, that is e/(e — 1) — € (for € ~ 0.0001) [2]. For solving the
Budgeted Allocation problem using the SMW demand query model one needs
to provide a polynomial-time demand query oracle. As noted by [15], one can
use a knapsack-type FPTAS algorithm to provide an approximate oracle that is
good enough for solving the problem.

The Budgeted Allocation problem is also similar to the generalized assignment
problem (GAP) [2[I5/16/17]. The main difference between Budgeted Allocation
and GAP is that in GAP every keyword (or item, in GAP parlance) has a weight
and each bidder (or bin) has a fixed capacity that cannot be exceeded, whereas
in Budgeted Allocation, budgets can be exceeded, but no extra profit is obtained
from doing so. The best approximation algorithm for GAP does slightly better

than e/(e — 1) [2].

2 The 3/2-Approximation Algorithm

In this section, we describe the 3/2-approximation for the non-uniform version
of the problem.

2.1 High-Level Idea

Our algorithms use linear program rounding. We represent the Budgeted Allo-
cation problem with the same natural integer program used in [II9/T10], in which
the 0-1 variables x;; represent whether keyword j is allocated to bidder i:

(B Y . dicr Tijg S1VjeV
max%;mm(Bu ;/bml‘zy) s.t. {ffij i1} VieUjev
i J

Let L be the linear relaxation of this integer program in which the second con-
straint is replaced by « > 0. (The upper-bound of 1 is guaranteed by the other
constraint.) Rounding the optimal solution carefully is what allows us to beat
the factor of e/(e — 1) of Andelman and Mansour [IJ.

For any fractional allocation x, define the graph G induced by x to be the
bipartite graph over UUV with an edge {3, j} for every z;; > 0, with weight w;; =
bi; xi]‘E Rounding x can be viewed as a transformation of G into another graph
in which the degree of every keyword is 1. Our algorithms do this iteratively,
at each step modifying local structures so that the degree of at least one new
keyword is reduced to 1. Some weight in the objective function will be lost at
each step, but we use a charging argument to bound this loss by 1/3 of the
original value of x.

! Notice that in a fractional solution, we can assume without loss of generality that
no bidder’s budget is exceeded. Therefore, the value of x is equal to the sum of the
edge weights in G.

Improved Approximation Algorithms for Budgeted Allocations 189

The first observation for the proofs is that one can assume that the graph
G induced by a feasible fractional solution to L has a special structure. This
observation was made for optimal fractional solutions by [I], proved in [I§], and
used by [9IT0]. We use a slightly stronger version that holds for any feasible
solution. This will allow us to assume that this special structure holds after
each rounding step, not just at the beginning. Say that bidder i is saturated if
min(B;, Y jev bijxi;) = B; and is unsaturated otherwise.

Lemma 1. Any feasible solution x of L with induced graph G can be trans-
formed, in polynomial time, to another feasible solution X that has an induced
graph that is a subgraph of G and that is a forest with at most one unsaturated
bidder per tree.

Proof. The proof follows by standard arguments and is very similar to the proof
in [I8]. It can be found in the full version of this paper

For a graph G induced by a fractional solution, say that a bidder is active if it
has at least one neighbor of degree 2 or more in G, and is inactive otherwise. In
our charging argument for the 3/2-algorithm, we charge to the weight allocated
to bidders when they move from being active to inactive. (Since this happens at
most once for each bidder, each unit of profit in the optimal fractional solution
is charged at most once.)

We call the process of transforming a subgraph to reduce the degrees of the
keywords rounding the subgraph. In general, this process will remove some of the
edges and transfer some of the weight removed to the edges that remain, while
respecting the constraints of the LP. For example, suppose that two keywords
j1 and jo are allocated fractionally to bidder ¢ and fractionally to some other
bidders i1 and is, as shown in Fig. [l One way to round this part of the graph
would be to remove the edges {4, j1} and {iz,j2}. Once this is done, i has some
unused budget that can be used to transfer an additional fraction of j from i
to i. In general, transferring weight in this manner will be essential to obtaining
our approximation ratio.

The main idea of our proof is that in every tree with active bidders, there
is a small local structure involving only a constant number of nodes, such that
if we round that structure so as to minimize the resulting loss in the objective
function, the loss is at most 1/3 of the budget spent by the bidders that become
inactive.

2.2 The Algorithm

Our 3/2-approximation algorithm is given below by Algorithm [At each it-
eration of the while loop, our algorithm looks for one of the interesting nodes
(Definition M) and rounds keywords in the associated structure. For each of the
four types of interesting nodes, we describe a rounding subroutine used by the

2 The full version of this paper is available at
http://www.cs.washington.edu/homes/birnbaum/budgetedallocation.pdfl

http://www.cs.washington.edu/homes/birnbaum/budgetedallocation.pdf

190 Y. Azar et al.

o

J2

Ji

Fig.1. One way to round a path that has three bidders. When edge {i, j1} is removed,
this frees up some budget in ¢ to accommodate some of the weight of j» that was
originally allocated to 2.

algorithm. We will show that the loss of these subroutines can be charged to the
nodes that become inactive, which we will use to prove that Algorithm [is a
3/2-approximation.

Theorem 2. Algorithm[l is a polynomial-time 3/2-approzimation for the Bud-
geted Allocation problem.

Algorithm 1. 3/2-approximation algorithm for Budgeted Allocation
Input: Set of bidders U, set of keywords V; for each 4, j, bid b;; of bidder ¢ for
keyword j; and for each bidder i, budget B;.
Output: Allocation of keywords to bidders.
solve the following LP to get an optimal solution x with induced graph G:

;) o ZieUxijglvjev
maXIEZUmm(BaH Ezvb”x”) s.t. {O s VieUjev
i J

transform G into a forest with < 1 unsaturated bidder per tree (Lemma [I]).
while G contains active bidders do
Round the subgraph associated to an interesting node according to its type;
Transform G into a forest with < 1 unsaturated bidder per tree (Lemma/[Il);
end
allocate each keyword to its unique adjacent bidder in G.

Root each tree of G at the unsaturated bidder if there is one, or at an arbitrary
bidder if there is not.

Definition 3. Consider a path i1, j1,42,J2, -, 0k—1,jk—1, 1 consisting of 2k—1
nodes, starting and ending with a bidder, such that

— the k — 1 keywords ji,j2,-..,Jk—1 all have degree exactly 2,

Improved Approximation Algorithms for Budgeted Allocations 191

— bidder i1 is the highest node on the path, called “root” of the path,
— for all other bidders is, i3, ..., i, any keyword not on the path that is adjacent
to the bidder has degree exactly 1.

We call the graph formed by this path and all the degree-1 keywords that are
neighbors of i1,12,...,1 a k-chain.

Definition 4. In a tree of G, we say that a node is interesting if it has one of
the following four types.

1. The root of the tree, if the tree consists of a 2-chain (Fig. .
2. A bidder v whose subtree contains at least one 3-chain rooted at v (Fig. ,
3. A bidder v who is the root of more than one 2-chain and who is not the root

of a k-chain, for k > 2 (Fig. ,

4. A keyword with at least 2 children, such that each child is a root of a 1-chain
or a 2-chain (Fig. [2(d)).

Before we describe the rounding subroutines, we establish the correctness of
Algorithm [l

Lemma 5. A tree that has a keyword of degree more than 1 must have at least
one interesting node.

Proof. A straightforward proof can be found in the full version of this paper.

Hence, in the forest produced by Algorithm [every keyword has degree 1, and
the output is an integer allocation.

This lemma, along with the analysis of the rounding subroutines described be-
low, will give us all of the ingredients we need to prove that Algorithm[lis a 3/2-
approximation.

(0 () (c) (@

Fig. 2. Examples of the four types of interesting nodes with their associated subgraphs,
as defined in Definition Fl For each type, the interesting node is shown with an extra
circle.

192 Y. Azar et al.

Proof of Theorem[2. Lemma [proves that when Algorithm [terminates, it re-
turns a graph in which each keyword has degree 1. Each rounding step described
below clearly takes polynomial time and makes at least one new bidder become
inactive. Hence, the running time of the algorithm is polynomial.

For each rounding, we will associate each unit lost to 1/3 of the weight spent
by a bidder that becomes inactive. Since each bidder becomes inactive only once,
the total weight lost must be no larger than 1/3 of the weight of the optimal
fractional solution. Therefore, the algorithm returns a solution with weight at
least 2/3 of the optimal fractional solution and hence with weight at least two
thirds of the optimal integral solution. a

2.3 The Rounding Subroutines

To simplify the exposition, we assume, without loss of generality, that all of the
bids and budgets have been scaled so that the maximum bid is 1 (and hence the
minimum budget is at least 1).

Type 1 Rounding

Rounding. Let i be the interesting node, j be its child of degree 2, and k be its
grandchild. By Lemma [I bidder k is saturated, while bidder i may have some
unused budget s > 0.

Consider two ways to round the 2-chain rooted at i. In the first way, we remove
the edge {i, j}. In the second way, we remove the edge {k, j} and transfer as much
as possible of the removed weight to the edge {4, j} while maintaining feasibility.
Of those two ways, we choose the one that incurs the smaller loss in the objective
function.

Analysis. Since this rounding makes both i and k inactive, we can charge their
total value, which is at least max(1,2 — s). The following lemma states the
performance of this rounding.

Lemma 6. Let L be the total weight lost by the rounding. Then L < imax(l,
2—s).

Proof. The proof is technical and can be found in the full version of this paper.

Type 2 and Type 3 Roundings

Rounding. In type 2 rounding, we have a path with two keywords of degree
2; we consider all four possible ways of allocating each of those two keywords
integrally to one of its two neighbors, transferring as much weight as possible in
each allocation while respecting the LP constraints.

In type 3 rounding, we take a partial subtree rooted at the interesting node
consisting of two of the paths below it. Together, these two paths define a path
with two keywords of degree 2. We then proceed as in type 2 to define an integer
allocation of those two keywords.

Improved Approximation Algorithms for Budgeted Allocations 193

Analysis. In all cases, two saturated bidders become inactive. We show that the
loss in the objective function is no more than 2/3 (Lemma[7), and charge it to
the total value of the two bidders that become inactive, which is at least 2.

More precisely, consider a path i1, j1, %2, j2, %3 where j; and jo are keywords.
We show four ways to round this path so that one of the edges {i1, j1}, {i2, j1}
and one of the edges {is,j2}, {i3,j2} is removed in a way that loses no more
than 2/3 (Lemma [7). If this path is a 3-chain rooted at i1, then this procedure
makes i and i3 inactive. Hence, we can charge the loss to the total value of i,
and 43, which is at least 2. On the other hand, if i5 is the highest node on this
path, 71 and jo are degree-2 keywords and ¢; and i3 do not have any degree-2
children, then this procedure makes i1 and i3 inactive. Hence, we can charge the
loss to the total value of 47 and i3, which is at least 2.

Let v = bizjl /bile? B = bizjz /bi3j2’ A = Tiy 5, bi1j17 b= Tisjy biljl’ c= xizjzbiwz
and d = $i3j2bi3j2' Then Wiy, = Ay Wiyj, = b’}/, Wiyjy = Cﬂ and Wiz, = d. This
situation is illustrated in Fig.

We consider four ways to round the path, illustrated in Figs. |3(b)H3(e)} In
the first way (Fig. [3(b)), we remove the edges {i1,j1} and {is, j2}, losing a + d.
In the second way (Fig. B(c)), we remove the edges {iz,j1} and {iz, j2}, losing
by + ¢B. In the third way (Fig. , we remove the edges {i1,j1} and {i2, j2}
and move part of the removed weight to {is, j1}. If the entire amount of j; that
was previously allocated to ¢; were allocated to iz, then w;,;, would increase by
Ziyj, bigj, = (a/bi,j,)bi,5, = avy. The budget freed up at is from the removal of
edge {iz,jo} is ¢f. Thus, w;,;, can be increased to at least by + min(av, ¢f3),
causing a loss of a + ¢8 — min(avy, ¢8) = a + max(0, ¢8 — a). In the fourth way
(Fig. 3(e)]), we remove the edges {is,j1} and {is,jo} and transfer as much as
possible of the removed weight to {is, j2}, causing a loss of d + max(0, by — df3).

Again, we choose the way that incurs the smallest loss. The following lemma
states that this loss is never greater than 2/3.

L J i J i i J oL J

a a a
e) I I O @)

by by by +

min(ay,cf3)

A J ip A J Y J Y)

B o KAV

min(by,

jz() Ja) 20 jzo

d d d
ij . ij . ij i} . ii .
(a) (b) (c) (d) (e)

Fig. 3. A path with three bidders (a) and four ways to round that path (b)-(e)

194 Y. Azar et al.

Lemma 7. Let
L = min (a+d, by + ¢f,a + max(0, c8 — avy),d + max(0,by — dj3)) .
Then L < g

Proof. The proof is technical and can be found in the full version of this paper.

Type 4 Rounding

Let v be the interesting node of type 4, and let uw be its parent. Let h and k
be the number of 1-chains and 2-chains rooted at children of v, respectively. We
consider three cases based on the value of h and k:

1. There are no 2-chains attached to v (k = 0). Then h > 1.

Rounding. Among the edges adjacent to v, retain the edge of largest weight
and delete all others.

Analysis. We lose at most h/(h+ 1) and make at least h saturated bidders
inactive. Therefore, we can charge the loss to these nodes.

2. There are no 1-chains attached to v (h = 0). Then k& > 1. Let p1,p2,...pk
be v’s children.

Rounding. We first round the path consisting of the edges {u,v}, {v,p1}
and the 2-chain rooted at p1, losing at most 2/3 by Lemmal[ll After this
step, either p; or u is disconnected from v. We repeat the above step
with the path containing the edge joining v and the other node (either
wor p1), {v,p2} and the 2-chain rooted at ps. We repeat this k times.

Analysis. We lose at most 2k/3 and make 2k saturated bidders inactive:
P1,P2, ... Pk and their grandchildren. Hence, we can charge the loss to
these nodes.

3. Both h >0 and k£ > 0.

Rounding. We choose one 1-chain rooted at, say, g, and one 2-chain rooted
at, say, p and round the path containing ¢,v,p and the 2-chain rooted
at p.

Analysis. We lose at most 2/3 by Lemmal[7l and make two saturated bidders
inactive: p’s grandchild and either g or p. Hence, we can charge the loss
to these nodes.

3 A V/2-Approximation Algorithm for the Uniform
Problem

In this section, we provide an algorithm that improves the approximation ratio
to v/2 for the uniform case of the problem. The main observation that leads to
this improvement is that in the proof of Theorem [there was some weight that
we could have charged to but that we did not use. For example, consider the
type 2 rounding shown in Figure We charged the loss of the rounding to the
weight allocated to bidders io and i3, which must be at least 2 since these bidders
are saturated. We can do better than this, however. In the rounding, a weight of

Improved Approximation Algorithms for Budgeted Allocations 195

a is deallocated from ;. Because we rebalance according to Lemma [I] between
every rounding, this is weight that will never be charged to again. Therefore,
instead of charging to 2, we can actually charge to 2 + a.

To make this more precise, we define an active edge to be an edge that is
adjacent to an active bidder. During each rounding, the sum of the weights on
active edges will decrease, both from active edges becoming inactive and from
active edges being deleted or losing weight. Define the accountable amount of
a rounding to be the amount by which this quantity decreases. We will show
that the loss of each rounding can be charged to (1 — 1/4/2) of the accountable
amount of that rounding. Since each unit of accountable amount is charged at
most once, this suffices to prove the approximation ratio.

The structure of Algorithm 2, our y/2-approximation, is the same as that
of Algorithm [Ml The only difference is in the rounding subroutines and their
analysis. Instead of choosing the rounding that minimizes the loss at each step,
we choose the one that minimizes the ratio between the loss and the accountable
amount. In the remainder of this section we prove the following.

Theorem 8. Algorithm 2 is a polynomial-time \/2-approzimation for the uni-
form wversion of the Budgeted Allocation problem.

Proof. As in Theorem] the algorithm terminates in polynomial time and out-
puts an integral solution. For each rounding subroutine, we show that we can
charge the loss to 1 — 1/4/2 of the accountable amount. This implies that Algo-
rithm 2 returns a solution of value at least 1/ V2 of optimal. O

We believe that Theorem [l applies to the non-uniform version of the problem,
but we have not been able to prove this, since it seems to involve calculations
that are significantly more complicated than those in the proof of Lemma [7

3.1 The Rounding Subroutines

For convenience, we define z to be 2 — /2. For each rounding subroutine, we
show that the ratio of the loss to the accountable amount is no greater than

r/2=1-1/V2.
Type 1 Rounding

The rounding and analysis for type 1 is the same as for Algorithm[Il By LemmalG]
the ratio of the loss to the accountable amount is no greater than 1/4 < x/2.

Type 2 Rounding

Rounding. Let i1 be the interesting node and i1, j1, 2, j2, %3 be the 3-chain as-
sociated with i1, and let @ = w;, j,, b = Wiyj,, ¢ = Wiyj, and d = wj,,. Of the
four ways to round this chain described in Fig. Bl we choose the rounding that
minimizes the ratio of the loss over the accountable amount.

196 Y. Azar et al.

Analysis. The four ways to round the chain incur losses of a +d, b+ ¢, max(a, ¢),
and max(b, d), respectively. (Recall that in the uniform version § =~ = 1.) To
derive the accountable amounts of the roundings, note that the first rounding
makes 75 and i3 inactive, and thus makes all edges adjacent to these nodes
inactive; the sum of these edges is at least 2, since these bidders are saturated.
Furthermore, it also removes the active edge {i1,71}. Thus, the accountable
amount of the first rounding is 2 + a. Similarly, the accountable amount of the
second, third and fourth roundings are 2,2 + a and 2, respectively. Hence, the
following lemma shows that the we can always choose a rounding such that the
ratio of the loss to the accountable amount is no greater than x/2.

Lemma 9. Let

R — min a—|—d7b—|—c’ max(a,c)7max(b,d)
24a" 2 2+4a 2

Then R < x/2.

Proof. The proof is technical and can be found in the full version of this paper.

Type 3 and Type 4 Roundings

The rounding subroutine and analysis for type 3 interesting nodes is similar
to the rounding and analysis for type 2 interesting nodes. The rounding and
analysis for type 4 interesting nodes is quite involved, though the main ideas
are similar. The details of type 3 and type 4 rounding can be found in the full
version of this paper.

4 APX-Hardness

In this section, we show the following result.

Theorem 10. Budgeted Allocation is APX-hard, even in the uniform version.

Proof. The proof is a simple reduction from 3D-Matching, and can be found in
the full version of this paper.

References

1. Andelman, N., Mansour, Y.: Auctions with Budget Constraints. In: Hagerup, T.,
Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111. Springer, Heidelberg (2004)

2. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improv-
ing the factor of 1 - 1/e. In: FOCS 2006, pp. 667-676 (2006)

3. Lahaie, S., Pennock, D., Saberi, A., Vohra, R.: Sponsored search auctions. In:
Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game
Theory, pp. 699-716. Cambridge University Press, Cambridge (2007)

4. Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253-264. Springer, Heidelberg (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Improved Approximation Algorithms for Budgeted Allocations 197

. Goel, G., Mehta, A.: Online budgeted matching in random input models with

applications to adwords. In: SODA 2008, pp. 982-991 (2008)

. Mahdian, M., Nazerzadeh, H., Saberi, A.: Allocating online advertisement space

with unreliable estimates. In: EC 2007, pp. 288-294 (2007)

. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online

matching. J. ACM 54(5), 22 (2007)

. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing

marginal utilities. Games and Economic Behavior 55(2), 270-296 (2006)

. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and im-

proved lower bounds for submodular welfare maximization and GAP (manuscript,
2008)

Srinivasan, A.: Budgeted allocations in the full-information setting (manuscript,
2008)

Dobzinski, S., Schapira, M.: An improved approximation algorithm for combina-
torial auctions with submodular bidders. In: SODA 2006, pp. 1064-1073 (2006)
Khot, S., Lipton, R., Markakis, E., Mehta, A.: Inapproximability Results for Com-
binatorial Auctions with Submodular Utility Functions. In: Deng, X., Ye, Y. (eds.)
WINE 2005. LNCS, vol. 3828, pp. 92-101. Springer, Heidelberg (2005)

Mirrokni, V., Schapira, M., Vondrak, J.: Tight information-theoretic lower bounds
for welfare maximization in combinatorial auctions (manuscript, 2007)

Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: STOC 2008 (to appear, 2008)

Fleischer, L., Goemans, M., Mirrokni, V., Sviridenko, M.: Tight approximation
algorithms for maximum general assignment problems. In: SODA 2006, pp. 611—
620 (2006)

Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: SODA
2000, pp. 213-222 (2000)

Shmoys, D., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming 62, 461-474 (1993)

Andelman, N.: Online and strategic aspects of network resource management al-
gorithms. PhD thesis, Tel Aviv University (2006)

	Improved Approximation Algorithms for Budgeted Allocations
	Introduction
	Our Results
	Related Work

	The 3/2-Approximation Algorithm
	High-Level Idea
	The Algorithm
	The Rounding Subroutines

	A $\sqrt{2}$-Approximation Algorithm for the Uniform Problem
	The Rounding Subroutines

	APX-Hardness

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

