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Abstract. We define and study two versions of the bipartite match-
ing problem in the framework of two-stage stochastic optimization with
recourse. In one version the uncertainty is in the second stage costs of
the edges, in the other version the uncertainty is in the set of vertices
that needs to be matched. We prove lower bounds, and analyze efficient
strategies for both cases. These problems model real-life stochastic inte-
gral planning problems such as commodity trading, reservation systems
and scheduling under uncertainty.

1 Introduction

Two-stage stochastic optimization with recourse is a popular model for hedging
against uncertainty. Typically, part of the input to the problem is only known
probabilistically in the first stage, when decisions have a low cost. In the second
stage, the actual input is known but the costs of the decisions are higher. We
then face a delicate tradeoff between speculating at a low cost vs. waiting for
the uncertainty to be resolved.

This model has been studied extensively for problems that can be modeled by
linear programming (sometimes using techniques such as Sample Average Ap-
proximation (SAA) when the linear program (LP) is too large.) Recently there
has been a growing interest in 2-stage stochastic combinatorial optimization
problems [TI2IGT2ITI202T22I24]. Since an LP relaxation does not guarantee an
integer solution in general, one can either try to find an efficient rounding tech-
nique [II] or develop a purely combinatorial approach [BI8]. In order to develop
successful algorithmic paradigms in this setting, there is an ongoing research pro-
gram focusing on classical combinatorial optimization problems [23]: set cover,
minimum spanning tree, Steiner tree, maximum weight matching, facility lo-
cation, bin packing, multicommodity flow, minimum multicut, knapsack, and
others. In this paper, we aim to enrich this research program by adding a basic
combinatorial optimization problem to the list: the minimum cost maximum bi-
partite matching problem. The task is to buy edges of a bipartite graph which
together contain a maximum-cardinality matching in the graph. We examine
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two variants of this problem. In the first, the uncertainty is in the second stage
edge-costs, that is, the cost of an edge can either grow or shrink in the second
stage. In the second variant, all edges become more expensive in the second
stage, but the set of nodes that need to be matched is not known.

Here are some features of minimum cost maximum bipartite matching that
make this problem particularly interesting. First, it is not subadditive: the union
of two feasible solutions is not necessarily a solution for the union of the two
instances. In contrast, most previous work focused on subadditive structures,
with the notable exception of Gupta and Pal’s work on stochastic Steiner Tree [9].
Second, the solutions to two partial instances may interfere with one another in
a way that seems to preclude the possibility of applying cost-sharing techniques
associated with the scenario-sampling based algorithms [OI0]. This intuitively
makes the problem resistant to routine attempts, and indeed, we confirm this
intuition by proving a lower bound which is stronger than what is knowfl] for
the sub-additive problems: in Theorem [l we prove a hardness of approximation
result in the setting where the second-stage scenarios are generated by choosing
vertices independently. It is therefore natural that our algorithms yield upper
bounds which are either rather weak (Theorem [ Part 1) or quite specialized
(Theorem [7). To address this issue, we relax the constraint that the output be
a maximum matching, and consider bicriteria results, where there is a tradeoff
between the cost of the edges bought and the size of the resulting matching
(Theorem[2] Part 2, and Theorem[])). This approach may be a way to circumvent
hardness for other stochastic optimization problems as well.

Although the primary focus of this work is stochastic optimization, another
popular objective for the prudent investor is to minimize, not just the expected
future cost, but the maximum future cost, over all possible future scenarios:
that is the goal of robust optimization. We also prove a bicriteria result for ro-
bust optimization (Theorem [Bl) Guarding oneself against the worst case is more
delicate than just working with expectations. The solution requires a different
idea: preventing undesirable high-variance events by explicitly deciding, against
the advice of the LP solution, to not buy expensive edges (To analyze this, the
proof of Theorem [3 involves some careful rounding.) This general idea might be
applicable to other problems as well.

We note that within two-stage stochastic optimization with recourse, match-
ing has been studied before [I5]. However, the problem studied here is very
different: there, the goal was to construct a maximum weight matching instead
of the competing objective of large size and small cost; moreover the set of edges
bought by the algorithm had to form exactly a matching instead of just contain
a matching. In Figure [, we give an example illustrating the difference between
requiring equality with a matching or containment of a matching.

Our main goal in this paper is to further fundamental understanding of the
theory of stochastic optimization; however, we note that a conceivable

! To the best of our knowledge, all previous hardness results hold only when the second
stage scenarios are given explicitly, i.e., when only certain combinations of parameter
settings are possible.
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Fig. 1. An example in which buying edges speculatively can help

application of this problem is commodity transactions, which can be viewed
as a matching between supply and demand. When the commodity is indivisible,
the set of possible transactions can be modeled as a weighted bipartite graph
matching problem, where the weight of an edge represents the cost or profit of
that transaction (including transportation cost when applicable). A trader tries
to maximize profits or minimize total costs depending on her position in the
transaction. A further tool that a commodity trader may employ to improve
her income is timing the transaction. We model timing as a two-stage stochastic
optimization problem with recourse: The trader can limit her risk by buying an
option for a transaction at current information, or she can assume the risk and
defer decisions to the second stage. Two common uncertainties in commodity
transactions, price uncertainty and supply and demand uncertainty, correspond
to the two stochastic two-stage matching problems mentioned above: finding
minimum weight maximum matching with uncertain edge costs, and finding
maximum matching with uncertain matching vertices. Similar decision scenar-
ios involving matchings also show up in a variety of other applications such as
scheduling and reservation systems.

Our results are summarized in the following table. We first prove (Theo-
rem [I) that, with explicit scenarios, the uncertain matching vertices case is
in fact a special case of the uncertain edge costs case. Then, it suffices to
prove upper bounds for the more general variant and lower bounds for the
restricted one. For the problem of minimizing the expected cost of the solu-
tion, we show an approximability lower bound of (2(logn). We then describe
an algorithm that finds a maximum matching in the graph at a cost which
is an n2-approximation for the optimum. We then show that by relaxing the
demand that the algorithm constructs a maximum matching, we can “beat”
the lower bound: At a cost of at most 1/8 times the optimum, we can match
at least n(1 — 3) vertices. Furthermore, we show that a similar bicriteria re-
sult holds also for the robust version of the problem, i.e., when we wish to
minimize the worst-case cost.

With independent choices in the second-stage scenarios, our main contribution
is the lower bound. The reduction of Theorem [Il does not apply, but we prove,
for for both types of uncertainty, that it is NP-hard to approximate the problem
within better than a certain constant factor. We also prove an upper bound for
a special case of the uncertain matching vertices variant.
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Input:  Explicit Scenarios Independent Choices
Criteria: Expected Cost Worst-Case Cost Expected Cost
Uncertain e n2-approximation of the cost
edge to get a maximum matching factor 1/ NP-hard to
costs [Theorem 2] part 1] approximation approximate
e 1/B-approximation of the cost of the cost within a
to match at least n(1 — 3)  to match at least certain
vertices [Theorem 2] part 2] n(1 — 3) vertices constant
e Same hardness results as [Theorem [3] [Theorem

below [Theorem [I]
Uncertain e {2(logn) approximability

matching lower bound As above e As above
vertices [Theorem ] Part 1] [Theorem [I] [Theorem
e NP-hard already for e approximation for
two scenarios a special case
[Theorem ] Part 2] [Theorem [7]

e Same upper bounds as
above [Theorem [I]

2 Explicit Scenarios

In this section, we assume that we have an explicit list of possible scenarios for
the second stage.

Uncertain edge costs. Given a bipartite graph G = (A, B, E), we can buy edge
e in the first stage at cost C. > 0, or we can buy it in the second stage at cost
C? > 0 determined by the scenario s. The input has an explicit list of scenarios,
and known edge costs (c£) in scenario s. For uncertain edge costs, without loss of
generality we can assume that |A| = |B| = n and that G has a perfect matching
(PM). Indeed, there is an easy reduction from the case where the maximum
matching has size k: just create a new graph by adding a set A’ of n — k vertices
on the left side, a set B’ of n — k vertices on the right side, and edges between
all vertex pairs in A’ x B and in A x B’, with cost 0.

In the stochastic optimization setting, the algorithm also has a known second
stage distribution: scenario s occurs with probability Pr(s). The goal is, in time
polynomial in both the size of the graph and the number of scenarios, to minimize
the expected cost; if F1 denotes the set of edges bought in the first stage and E3
the set of edges bought in the second stage under scenario s, then:

OPTy = min ¢ Y Pr(s) [ > Ce+ Y C:|:Vs,EyUE;hasa PM ) (1)

Eq,E3 .
seS ecEq ecE;

Stochastic optimization with uncertain edge costs has been studied for many
problems, see for example [TO/T7].

In the robust optimization setting, the goal is to minimize the maximum cost
(instead of the expected cost):
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OPTy = }?1111?; max EZE; Ce + ;5:5 C:. | :Vs, By UE; has a PM (2)
e 1 € 2

Robust optimization with uncertain edge costs has also been studied for many
problems, see for example [4].

Uncertain activated vertices. In this variant of the problem, there is a known
distribution over scenarios s, each being defined by a set B; C B of active vertices
that are allowed to be matched in that scenario. Each edge costs ¢, today (before
By is known) and 7c. tomorrow, where 7 > 1 is the inflation parameter. As in
Expression [I], the goal is to minimize the expected cost, i.e.,

OPTs ={ C(E\)+7» Pr(s)C(E3): (3)
seS
Vs, E1 U E5 contains max matching of (A, Bs, EN (A x Bs))}

Stochastic optimization with uncertain activated vertices has also been previ-
ously studied for many problems, see for example [9]. There is a similar expres-
sion for robust optimization with uncertain activated vertices.

Theorem 1 (Reduction). The two-stage stochastic matching problem with un-
certain activated vertices and explicit second-stage scenarios (OPT3) reduces to
the case of uncertain edge costs and explicit second-stage scenarios (OPTy ).

Proof. We give an approximation preserving reduction.Given an instance with
stochastic matching vertices, we transform it to an instance of the problem
with stochastic edge-costs, as follows. Assume that our input graph is G =
(A, B, E) where A = {a1,...a4)} and B = {by,...bp }. We first add a set A" =
ay, ..., aiBl of |B| new vertices to A, and connect each a} with b; by an edge. In
other words, we generate the graph G' = (AUA’, B, EU{(a},b;) : 1 <i < |B|}).

For the edges between A and B, edge costs are the same as in the original
instance, in the first stage as well as the second stage. The costs on the edges
between A’ and B create the effect of selecting the activated vertices: For each
(a},b;), the first-stage cost is n?W, and the second-stage cost is n?W if b is active
and 0 otherwise. Here, W is the maximum cost of an edge, nW is an upper bound
on the cost of the optimal solution, and n?W is large enough that any solution
containing this edge cannot be an optimal, or even an n-approximate solution.
Hence, a second-stage cost of 0 for (al,b;) allows b; to be matched with a for
free, while a cost of nW forces b; to be matched with a vertex from A. This
concludes the reduction. O

From Theorem [ it follows that our algorithms for uncertain edges costs (The-
orems 2] and B] below) imply corresponding algorithms for uncertain activated
vertices, and that our lower bounds for uncertain activated vertices (Theorem @l
below) imply corresponding lower bounds for uncertain edge costs.

Theorem 2 (Stochastic optimization upper bound)
(1) There is a polynomial-time deterministic algorithm for stochastic matching
(OPTy ) that constructs a perfect matching at expected cost is at most 2n%- OPT) .
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(2) Given € (0,1), there is a polynomial-time randomized algorithm for
stochastic matching (OPTy) that returns a matching whose cardinality, with
probability 1—e™™ (over the random choices of the algorithm), is at least (1—0)n,
and whose overall expected cost is O(OPTy /().

In particular, for any € > 0 we get a matching of size (1 —e€)n and cost O(OPT/e)
in expectation. Note that by Theorem ] we have to relax the constraint on the
size anyway if we wish to obtain a better-than-log n approximation on the cost,
so Part 2 of the Theorem is, in a sense, our best option.

Proof. The proof follows the general paradigm applied to stochastic optimization
in recent papers such as [I1]: formulate the problem as an integer linear program;
solve the linear relaxation and use it to guide the algorithm; and use LP duality
(Konig’s theorem, for our problem) for the analysis.

To define the integer program, let X, indicate whether edge e is bought in the
first stage, and for each scenario s, let Z¢ (resp. Y?) indicate whether edge e is
bought in the first stage (resp. in the second stage) and ends up in the perfect
matching when scenario s materializes. We obtain:

Dewee(Ze+Y)=1YVve AUB,s€ S

min Y " Pr(s)()_ CeXe+ Y CIYY) sit. 78 < X. Vee E,se€ S
ses e e X, Y, Z; €{0,1} Vee E,se S.

The algorithm solves the standard LP relaxation, in which the last set of con-
straints is replaced by 0 < X, Y?, Z5 < 1. Let (X, Z2,Y?) denote the optimal
solution of the LP. Now the proof of the two parts of the theorem diverges:

Proof of part 1. In the first stage, buy every edge e such that X, > 1/(2n?). In
the second stage, under scenario s, buy every edge e such that Y,* > 1/(2n?).
Finally, output a maximum matching of the set of edges bought. The analysis,
which relies on Hall’s theorem, is in [I3].

Proof of part 2. In the first stage, buy each edge e with probability 1 —e~X¢®. In
the second stage under scenario s, buy each edge e with probability 1 — e~ Ye @,
where o = 81n(2)/4. Finally, output a maximum matching of the set of edges
bought. The analysis, which relies on Konig’s theorem, is in [I3]. a

Theorem 3 (Robust optimization). Given 8 € (0,1), there is a polynomial-
time randomized algorithm for robust matching (OPTy) with t scenarios that
returns a matching s.t. with probability at least 1 —2/n (over the random choices
of the algorithm), the following holds: In every scenario, the algorithm incurs
cost O(OPT2(1+1n(t)/In(n))/B) and outputs a matching of cardinality at least

(1-B)n.

Proof. We detail this proof, which is the most interesting one in this section. The
integer programming formulation is similar to the one used to prove Theorem [2
More specifically, let X, indicate whether edge e is bought in the first stage, and
for each scenario s, let Z5 (resp. Y.°) indicate whether edge e is bought in the
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first stage (resp. in the second stage) and ends up in the perfect matching when
scenario s materializes. We obtain:

YoeweeZEFYS)=1 Yve AUB and Vs € S
Z8 < X Vee Fand s€ S
YoolCeXe+CEY ] <WVseS
X., Y5 Z5€{0,1} VYeec FEandsecS.

min W s.t.

The algorithm solves the standard LP relaxation, in which the last set of con-
straints is replaced by 0 < X, Y7 Z% < 1. Let w, (z.), (y3), (25) denote the
optimal solution of the LP. Let o = 81n(2) /5 again, and let T' = 3Inn.

— In the first stage, relabel the edges so that ¢; > ¢o > -+ -. Let ¢; be maximum
such that x1+xo+4- - -+x, < T. Forevery j > t1, buy edge j with probability
1—e %% (Do not buy any edge j < ¢1.)

— In the second stage, relabel the remaining edges so that ¢j > ¢§ > ---. Let
t2 be maximum such that yi +y5+---+y;, <T. For every j > {3, buy edge
j with probability 1 — e~%®. (Do not buy any edge j < t5.)

Finally, the algorithm computes and returns a maximum matching of the set of
edges bought.

We note that this construction and the rounding used in the analysis are
almost identical to the construction used in strip-packing [I4]. The analysis of
the cost of the edges bought is the difficult part. We first do a slight change of
notations. The cost can be expressed as the sum of at most 2m random variables
(at most m in each stage). Let a; > ag > - - be the multiset {c.} U {ci}, along
with the corresponding probabilities p; (p; = 1 — e %< if a; = ¢, is a first-
stage cost, and p; = 1 — e Y@ if q; = ¢ is a second-stage cost.) Let X; be the
binary variable with expectation p;. Clearly, the cost incurred by the algorithm
can be bounded above by X = Zi>t* a; X;, where t* is maximum such that
p1+-+pe <T.

To prove a high-probability bound on X, we will partition [1, 2m] into intervals
to define groups. The first group is just [1,¢*], and the subsequent groups are
defined in greedy fashion, with group [j, ¢] defined by choosing ¢ maximum so
that Zie[ﬂ} p; <T. Let G1,Ga,...,G, be the resulting groups. We have:

X<ZZa1X <ZZ maxalX <ZZ mmalX <Zm1nal Z X;.

0>2i€d, >2ieG, ¢ >24i€d, >1 ¢ i€Goiq

On the other hand, (using the inequality 1 —e~% < Z), the optimal value OPT*
of the LP relaxation satisfies:

aOPT* > Zazpl > Z Z mlnaZ )pi > Z mlnal —1).

£>11ieGy ¢ £>1

It remains, for each group Gy, to apply a standard Chernoff bound to bound the
sum of the X;’s in Gy, and use union bounds to put these results together and
yield the statement of the theorem [13]. |
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We note that the proof of Theorem [3] can also be extended to the setting of
Theorem ] to prove a high probability result: For scenario s, with probability
at least 1 — 2/n over the random choices of the algorithm, the algorithm incurs
cost O(OPT;/B) and outputs a matching of cardinality at least (1 — 5)n, where
OPT; =) p Ce+ ZE2 Cs.

Finally, we can show two hardness of approximation results for the explicit
scenario case.

Theorem 4 (Stochastic optimization lower bound)

1. There exists a constant ¢ > 0 such that Expression OPT5 (Eq (3)) is NP-
hard to approximate within a factor of clnn.

2. Expression OPTs (Eq (3)) is NP-hard to compute, even when there are only
two scenarios and T is bounded.

Proof. To prove Part 1, we show that when 7 > n?, Expression (@) is at least as
hard to approximate as Minimum Set Cover: Given a universe S = {s1,...,5,}
of elements and a collection C' = {ec1,...,cx} of subsets of S, find a minimum-
cardinality subset SC of C' such that for every 1 < i < n, s; € ¢; for some
cj € SC. It is known that there exists a constant ¢ > 0 such that approximating
Minimum Set-Cover to within a factor of clnn is NP-hard [18].

Given an instance (S = {s1,...,8,}; C = {c1, ..., ¢, }) of Minimum Set-Cover,
we construct an instance of the two-stage matching problem with stochastic
matching vertices as follows. The graph contains |S| + 3|C| vertices: for every
element s; € S there is a vertex u;; for every set ¢; € C, there are three vertices
xj, y;, and z; connected by a path (z;,y,), (y;,%;). For every set ¢; and element
s; which belongs to ¢;, we have the edge (z;, u;). It is easy to see that the graph
is bipartite. The first-stage edge costs are 1 for an (x;, y;) edge costs and 0 for the
other edges. The second-stage costs are equal to the first-stage costs, multiplied
by 7. There are n equally likely second-stage scenarios: In scenario i the vertices
in {y1,...,yr} U{u;} are active. In [I3] we show that the optimal solution to the
stochastic matchings instance buys, in the first stage, the edge (x;,y;) for each
set ¢; in some minimum set cover of the input.

The proof of Part 2 is by reduction from the Simultaneous Matchings [7]
problem and is also in [I3]. |

3 Implicit Scenarios

Instead of having an explicit list of scenarios for the second stage, it is common to
have instead an implicit description: in the case of uncertain activated vertices,
a natural stochastic model is the one in which each vertex is active in the second
stage with some probability p, independently of the status of the other nodes.
Due to independence, we get that although the total number of possible scenarios
can be exponentially large, there is a succinct description consisting of simply
specifying the activation probability of each node. In this case, we can no longer
be certain that the second-stage graph contains a perfect matching even if the
input graph does, so the requirement is, as stated above, to find the largest
possible matching. We first prove an interesting lower bound.
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3.1 Lower Bounds

Theorem 5. Stochastic optimization with uncertain vertex set is NP-hard to
approximate within a certain constant, even with independent vertex activation.

Proof. We detail this proof, which is the most interesting of our lower bounds. We
will use a reduction from Minimum 3-Set-Cover(2), the special case of Minimum
Set-Cover where each set has cardinality 3 and each element belongs to two
sets [16]. This variant is NP-hard to approximate to within a factor of 100/99 [3].
We will prove that approximating Expression ([B) to within a factor of 3 is at
least as hard as approximating 3-set-cover(2) to within a factor of v = G(1 +
(3p%(1 — p) + 2p3)7). The theorem follows by setting p to be a constant in the
interval [0,0.0033] and T = 1/p, because then 3p(1 — p) + 2p? < 1/99.

Given an instance (S = {s1,...,s,};C ={c1,...,ck}) of 3-set-cover(2), we
construct an instance of the two-stage matching problem with uncertain acti-
vated vertices as follows (see Figure ). The graph contains 2|S| + 3|C| vertices:
for every element s; € S there are two vertices u;, u} connected by an edge whose
first stage cost is 1; for every set ¢; € C, there are three vertices x;, y;, and z;
connected by a path (x;,y;), (v, z;). For every set ¢; and element s; which be-
longs to c;, we have the edge (z;,u;). It is easy to see that the graph is bipartite.
The first-stage edge costs are 1 for an (z;,y;) edge and 0 for the other edges.
The second-stage costs are equal to the first-stage costs, multiplied by 7. In the
second-stage scenarios, each vertex u; is active with probability p and each y; is
active with probability 1.

U,

X y z O O N
o— 72 O
X2 Y2 Z, uj u}
e—eo—oLo—0"
X; Y3 Zs 0“4 0“4
’3 y. Z. Ous Ou,s
3 3

o —o—eZX ,

o' Ou6

Fig. 2. The graph obtained from the 3-Set-Cover(2) instance {s1, s2,s3}, {s1, 53,4},
{s2, 85,56}, {54, 55,56}

If p > 1/7, then buying all (u;,u;) edges in the first stage at cost n is optimal.
To see why, assume that an algorithm spends n’ < n in the first stage. In the
second stage, the expected number of active vertices that cannot be matched is
at least (n—n')p and the expected cost of matching them is 7(n—n')p > (n—n').
We assume in the following that p < 1/7.

Consider a minimum set cover SC of the input instance. Assume that in the
first stage we buy (at cost 1) the edge (x;,y;) for every set ¢; € SC. In the
second stage, let I be the set of active vertices and find, in a way to be described
shortly, a matching My between a subset I’ of I and the vertex-set {z; : ¢; € SC},
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using (z;, u;)-edges from the graph. Buy the edges in M; (at cost 0). For every
i € I'\I', buy the edge (u;, u;) at cost 7. Now, all active u; vertices are matched,
and it remains to ensure that the y-vertices are matched as well. Assume that
y; is unmatched. If z; is matched with some u; node, this is because c; € SC, so
we bought the edge (x;,y;) in the first stage and can now use it at no additional
cost. Otherwise, we buy the edge (y;,2;) at cost 0. The second stage has cost
equal to 7 times the cardinality of I\ I’ and the first stage has cost equal to
the cardinality of the set cover. The matching M7 is found in a straightforward
manner: Given SC, each element chooses exactly one set among the sets covering
it, and, if it turns out to be active, will only try to be matched to that set. Each
set in the set cover will be matched with one element, chosen arbitrarily among
the active vertices who try to be matched with it.

To calculate the expected cost of matching the vertices of I — I’, consider
a set in SC. It has 3 elements, and is chosen by at most 3 of them. Assume
that it is chosen by all 3. With probability (1 — p)® + 3p(1 — p)?, at most one
of them is active and no cost is incurred in the second stage. With probability
3p?(1 — p), two of them are active and a cost of 7 is incurred. With probability
p3, all three of them are active and a cost of 27 is incurred, for an expected cost
of (3p%(1 — p) + 2p®)7. If the set is chosen by two elements, the expected cost
is at most p?7, and if it is chosen by fewer, the expected cost is 0. Thus in all
cases the expected cost of matching I\ I’ is bounded by |SC|(3p?(1 —p) + 2p®)7.
With a cost of |SC| for the first stage, we get that the total cost of the solution
is at most |SC|(1 + (3p%(1 — p) + 2p*)7).

On the other hand, let M; be the set of cost-1 edges bought in the first stage.
Let an (x;,y;) edge represent the set ¢; and let a (u;,u;) edge represent the
singleton set {s;}. Now, assume that M; does not correspond to a set cover of
the input instance. Let x be the number of elements which are not covered by
the sets corresponding to M; and let X be the number of active elements among
those . In the second stage, the algorithm will have to match each uncovered
element vertex wu;, either by its (u;,u}) edge (at cost n) or by a (z;,u;) edge
for some set ¢; where s; € ¢;. In the latter case, if would have to buy the edge
(4, i), again at cost n. The second stage cost, therefore, is at least Xn. But the
expected value of X is x/n, thus the total expected cost is at least | M| + .
Since we could complete M; into a set cover by adding at most one set per
uncovered element, we have x + | M| > |SC].

In summary, we get that Expression (B]) satisfies

|SC| < OPT < |SC|(1 + (3p*(1 — p) + 2p?)7).

This means that if we can approximate our problem within a factor of 3, then we
can approximate Minimum 3-Set-Cover(2) within a factor of v = 3(1 + (3p?(1 —
p) + 2p*)7), and the theorem follows. |

Using similar ideas, we prove the following related result in [13].

Theorem 6. The case of uncertain, independent, edge costs is NP-hard to ap-
proximate within a certain constant.



Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems 181

3.2 Upper Bound in a Special Case

We can show that when ¢, = 1 for all e € F, it is possible to construct a perfect
matching cheaply when the graph has certain properties. We study the case in
which B is significantly larger than A.

Theorem 7. Assume that the graph contains n vertex-disjoint stars si,..., Sy
such that star s; contains d = max{1,In(rp)}/In(1/(1 — p)) + 1 vertices from B
and is centered at some vertex of A. Then there is an algorithm whose running
time is polynomial in n and which returns a mazximum-cardinality matching of
the second stage graph, whose expected cost is O(OPTs - min{1,In(rp)}).

To prove this, let A = {ay,...,a,} and B = {by,...,by}. Let E; be the edges
in the stars. Let By be the vertices which are active in the second stage. Here is
the algorithm. In the first stage, if 7p < e then the algorithm buys nothing; else,
the algorithm buys all edges of F1, paying nd. In the second stage, the algorithm
completes its set of edges into a perfect matching in the cheapest way possible. It
remains to show that the expected cost of the second stage is low, compared to the
optimal cost. We do this by showing that the number of edges bought in the second
stage is proportional to the number of nodes of A that have at most one active node
in their stars, and that there are few such nodes. The details are in [I3].

3.3 Generalization: The Black Box Model

With independently activated vertices, the number of scenarios is extremely
large, and so solving an LP of the kind described in previous sections is pro-
hibitively time-consuming. However, in such a situation there is often a black
box sampling procedure that provides, in polynomial time, an unbiased sample
of scenarios; then one can use the SAA method to simulate the explicit scenarios
case, and, if the edge cost distributions have bounded second moment, one can
extend the analysis so as to obtain a similar approximation guarantee. The main
observation is that the value of the LP defined by taking a polynomial number
of samples of scenarios tightly approximates the the value of the LP defined by
taking all possible scenarios. An analysis similar to [5] gives:

Theorem 8. Consider a two-stage edge stochastic matching problem with (1) a
polynomial time unbiased sampling procedure and (2) edge cost distributions have
bounded second moment. For any constants ¢ > 0 and 6,5 € (0,1), there is a
polynomial-time randomized algorithm that outputs a matching whose cardinality
is at least (1—(B)n and, with probability at least 1—6 (over the choices of the black
box and of the algorithm), incurs expected cost O(OPT/3) (where the expectation
is over the space of scenarios).
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