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Abstract Steiner tree and TSP problems [13]. Concerning approx-

imation schemes, in addition to the work of Arora and
We give a randomized(n polylogn)-time approxima- Mitchell, others have built on similar ideas (e.g. [4, 11]).
tion scheme for the Steiner forest problem in the EU-The Steiner forest pr0b|em’ a genera”zation of the
clidean plane. For every fixed> 0 and givem terminals - Steiner tree problem, is NP-hard [9] and max-SNP com-
in the plane with connection requests between some pgjiste [6, 14] in general graphs and high-dimensional
of terminals, our scheme findg &+ ¢)-approximationto Euclidean space [15]. Therefore, no PTAS exists for
the minimum-length forest that connects every requestg@se problems. The 2-approximation algorithm due to
pair of terminals. Agrawal, Klein and Ravi [1] can be adapted to Euclidean
problems by restricting the Steiner points to lie on a suffi-
ciently fine grid and converting the problem into a graph
problem. Prior to this work, no Steiner forest algorithm
was known that took advantage of the Euclidean plane to
get a better approximation ratio.

1 Introduction

1.1 Result and background

In the Steiner forest problem, we are givepairs ofter-

minals(s;, ;). The goalis to find a minimum-costfores 2 Recursive dissection

F such that every pair of terminals is connected by a path

in F. We consider the problem where the terminals arelim Arora’s paradigm, the feasible space is recursively de-

the Euclidean plane. The solution may use points (calledmposed bylissection squaressing a randomized vari-

Steiner pointsin the plane that are not in the termina&nt of the quadtree (Figure 1). The dissection is a 4-ary

set. The cost of a forest (path or graph) is given by tti@e whose root is a square box enclosing the input ter-

sum of its edge lengths in tite metric and is denoted byminals, whose width. is twice the width of the smallest

length(-). Our main result is: square box enclosing the terminals, and whose lower left-
] ] hand corner of the root box is translated from the lower

Theorem 1.1. There is a randomized(n polylogn)- |eft-hand corner of the bounding box y-a, —b), where

time approximation scheme for the Steiner forest probleynq, are chosen uniformly at random from the range

in the Euclidean plane. [0, L/2). Each node in the tree corresponds thssection

There is a vast literature on algorithms for problems fffluare Each square is dissected into four child squares of
the Euclidean plane. This work builds on the approﬁ-qual area by one vertical and one horizowligbection _
mation scheme for geometric problems, such as Travelfffiff €ch spanning the breadth of the parent square. This
Salesman and Steiner tree, due to Arora [2]. (See [RPCESS continues until each square contains at most one
for a digest) Similar techniques were suggested Ba;ymlnal (or multiple terminals having the same coordi-

Mitchell [12] and improved by Rao and Smith for th&t€s). _ _ _
Feasible solutions are restricted to using a small num-
*This version is more recent than that appearing in the FOGS pber Ofportals on the boundary Of each d|Ssect|On Square

ceedings. The partition step has been corrected and inmghrove . . .
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Figure 1: The shifted quad-tree dissection. The shaded
box is the bounding box of the terminals.

decomposition.

In the problems considered by Arora, the solutions are
connected. However, the solution to a Steiner forest prob- (b)
lem is in general disconnected, since only paired termi-
nals are required to be connected. It is not knanpri-
ori how the connected components partition the terminal
pairs. For that reason, maintaining feasibility in the dY—‘igure 2: Why maintaining feasibility is not trivially
namic program requires a table that is is exponential in tBSIynomial-sized.
number of terminal pairs. In fact, Arora states [3] that his

approach yields an approximation scheme whose running, cjrcumvent the problem in this example, the idea is

time is exponential in the number of sets of terminals. to decompos®y; and R into two zonesone for each of
Nevertheless, here we use Arora’s approach to get{ g portals. All terminals in a common zone use the
approximation scheme whose running time is polynomiadgigned portal. Thus, instead of keeping track of each
in the number of sets of terminals. How s0? We requiggminal's choice of portal individually, the dynamic pro-
further structural restrictions on the set of feasible 5°|bjram can simply memorize the decompositiore# and
tions in order to limit the size of the dynamic progranks i into zones: this will be sufficient to check feasibil-
ming table (see Section 2.6). ity when combining solutions of the subproblems fo
and forRr. We encode a zone by its boundary. In order

1.3 Small dynamic programming table to obtain a polynomial-size dynamic program, we prove

) ~that we may restrict ourselves to zones whose boundaries
We will use Arora’s approach of a random recursive difaye a compact description (Figure 2(b), shaded regions):
section. Arora shows (ie. for Steiner tree) that the opfin encoding by a constant-size string over a 3-letter al-
mal solution can be perturbed (while increasing the lentRapet. The zones are described more accurately in Sec-

only slightly) so that, for each box of the recursive dissegon 2.6, and the necessary property is formalized in The-
tion, the solution within the box interacts weakly and igrem 3.2.

a controlled way with the solution outside the box. In

particular, the perturbed solution crosses the boundary of

the box only a constant number of times, and only at &h The al gor ithm

O(1)-sized subset aP(log ) selected points, callgubr-

tals. The optimal solution that has this property can behe input to the algorithm is a sé€tof terminal pairs. Let

found using dynamic programming. n be the number of terminals in all pairs @. Letd be
Unfortunately, for Steiner forest those restrictions atee maximum distance between a terminal pair.

not sufficient: maintaining feasibility constraints cahno

be done with a polynomially-sized dynamic program. T . L.

see why, suppose the solution uses only 2 portals betw J‘n Step 1: Partition

adjacent dissection squarBg andRyy . In order to com- e start by finding a partition of the terminals according

bine the solutions iRy, and R in the dynamic program g the following lemma.

into a feasible solution ilky, U Rg, we need to know, for

each pair(s, t) of terminals withs € Ry, andt € Rg, Lemma 2.1. There exists a partition of) into indepen-

which portal connects and¢ (Figure 2(a)). This requiresdent instanceg):, @, . . ., such that the optimal solution




is the disjoint union of optimal solutions for eagh, and 2.3 Step 3: Scale

such that in eaclf); the maximum distance between tw . . 4 .
terminals is at mosh2d. 8cale all coordinates of terminals &f by 5. The grid

used in the previous step is now the grid of lines of equa-

Proof. Consider a minimal set of terminal pair requireion * = 4j ory = 4;, andOPT is scaled by;. Call
ments, such that satisfying them implies (by transitivity)é Néw instance thecaledinstance. In the shifted and
that all requirements if)) are satisfied. There are at moscaled instance the terminals have integer coordinates of
n such requirements, and each can be satisfied at codP&form4;j + 2. For a set of line segments and a grid
mostd. soOPT < nd. Thus. if two terminala; andv IN€ ¢, let¢(F, £) denote the number of timds crosseg.

are at distance greater thad, they must be in different |_emma 2.3. There is a solution to the shifted and scaled
connected components &P T. Define a graph that hasinstance of lengtiil + £)OPT that satisfies

an edge between terminalsandv if and only if their

distance is less thamd, and partition the: terminals ac- 2 t(F ) < 20PT )
cording to the connected components of that graph. Rgiere the sum is over all grid lines.

any terminal paifu, v), v andv must be in the same con- ] ] ]

nected component, and the optimal solution must be fREOf- Let £ be the optimal solution to the shifted (but

disjoint union of the optimal solutions of the subproblenf¥t scaled) instance. There are at most- 1 Steiner

induced by the pairs in each part of the partition: we haP@ints. Move each Steiner point to the nearest center of
As in Lemma 2.2, this adds length at most

reduced the problem to independentinstances correspd}@-rid cell. As _ ,
ing to the connected components, as desired. By constrg’T- Combined with the error given by Lemma 2.2,

tion, two terminals in the same connected component &S results in; OPT additional length. o _
at distance at most2d. Now scale the shifted solution t%/ The minimum dis-

tance between Steiner points and terminals is 4. An edge
of lengths contributes at most/2s + 2 to the left-hand
2.2 Step 2: Perturb side. Sinces > 4, v/2s + 2 < 2s. Summing over all the

. ) edges proves the lemma. O
As in Arora’s scheme, we now perturb the terminals to

lie on a grid. The grid is chosen to be fine enough so the L
perturbation does not affect the length of the solution 4 Step 4: Dissect

much. Let D; be the size of the smallest square box bounding
We define the granularity of the grid (distance betwee@ose points, in the shifted and scaled instance obtained

consecutive vertical or consecutive horizontal lines) as:from @, that correspond to points @j,. Let L; be the

smallest power of 2 greater than or equalfo,. As de-
§= ﬁ 1) scribed in section 1.2, we perform a randomized dissec-
8n tion of the bounding box such that the root square has size
Move each terminal to the nearest point that is the ceLni- x L;. This can be done i)(n 1Og2n) time [5] 3

. . e By Lemma 2.1, we hav®; < n4d(4/6) = 32n°/e.

ter of a grid cell. Call the new instance tistiftedin- 3 . N )

stance ThusL; = O(n’/e). Since the recursive dissection stops,

at worst, when the dissection square has width 4, the quad-

Lemma 2.2. A solution for the unshifted instance can bf€€ must have depti(logn).
perturbed to one for the shifted instance, and vice versa,F0M NOW on we focus on just one subproblem asso-

while increasing length by at most4 times the optimum ciated toQ; for somei. In order to avoid carrying over
for the unshifted instance. subscripts);, L;, n; throughout the paper, from now on

we will drop the subscript and consider an instance given
Proof. Let F' be the optimal solution to the unshifted inby @, L, andn.
stance. For a single terminal, the shift (and therefore, the
additional length required) is at mo2é. The total in- 2.5 Step 5: Portals
crease in length is therefore at meét,; for @);, summing

to 26n which is at moste/4)OPT by definition ofs and FOr €ach dissection squafk for each side5' of R desig-
sinced < OPT. natem + 1 equally spaced points alorfgj(including the

Of course, the converse construction also increases $RENErs) aportalsof i where
length by at mosein. O mis smallest power of 2 greater thaa 'log L. (3)



so R has4m portals. Claim 2.5. Single-point connected componentsfof

A portal of ani-square is called aftportal, and a cor- ¢ added by SATISFYBOUNDARYCOMPONENTS are
ner of such a square is called anorner. depth¢)-portals.

For a set of geometric pointX], | X| denotes the num-
ber of connected components k. When we refer to a
component ofX', we mean a connected componenfaf
For a subsef of a line, letclosure(.S) denote the mini-
mum connected subset of the line spannthg

The first part of the following lemma uses a techniq

We analyze the expected increase in length resulting
from SATISFYBOUNDARYCOMPONENTS Within an it-
eration/ of the outer loop, and an iteratighnof the sec-
ond loop, letc,; denote the number of executions of
%e last stepadd closure(F' N S) to F: lengthS) =

: » J i i
of Arora. We require an additional property not used /27, Since each such execution reduces the number

Arora. We use a parametgrwhose value is selected in f connected components df N £ by Qt_lleastp, and
Equation (5). the number of connected components initially (8o, £),

t(Fo,0) ; ;
we have} .. ooy Cej < —,—. The increase in

Lemma2.4. There is a solutiorf” having expected lengthlength due to one iteration of the outer loop is at most
at most(1 + %e)OPT such that each dissection squdge Zj>depm) Cf,j%- Since Profdepth(¢) = i| = 2'/L,

satisfies the following two properties: the expected increase in length due to one iteration of the
. 27, L Cpj .
Boundary Components Property For each sides of R, OUter l0op is3_, ] 2> CLia < 2 5 Zig_j 2 =
F N S has at mosp non-corner components. 2.2 cey < 2p7 't(Fp, £) Summing over all dissection

lines, and using Equation (2), we infer that the total in-

Portal Property Each component o' N 0R contains a crease is at mostp~!OPT which is at mostieOPT
portal of R. when

_ —1
Moreover, there is a finite s&t C F' N {dissection linek p= 16" ®)

of points and a functiom(-) such that for eacty € Y, we further augmen¥ to achieve the Portal Property:
¢(y) is a dissection line intersecting
SATISFYPORTAL:

YFN\{yeY : ¢(y) # ¢} <20PT (4) Foreach dissection ling
for each portal-free componeht of F' N ¢,

and, for any dissection squa®® whose boundary con- extendK to the nearest non-corner deffthportal.

tains a pointy € Y, ¢(y) is a line boundingR.

_ Using the fact that ar/2-portal is also an-portal, we
Proof. Let Fy be the solution guaranteed by Lemma 2.3:tar that the Portal Property is satisfied.

To establish the first property, we augméhnt Fj using

) We analyze the increase in length due td SFYPOR-
the following procedure:

TAL. Consider a dissection liné By Claim 2.5, we

SATISFEYBOUNDARYCOMPONENTS only add non-zero length té' for non-corner compo-
For each dissection liné nents. The number of length additions is therefore at most
for j = log L down to deptk¥), t(Fp,?). The length per iteration of the inner loop is at
for each sideS of everyj-square withS C ¢, mostL /29eP!%)m, The total increase in length per outer-

if |{non-corner components &f N S}| > p, loop iteration is at most( Fy, £) L/29P" ),
addclosure(F N S) to F. Since Proldepth(¢) = i] = 2'/L, the expected in-

Thi q tablishes the Bound c crease in length due to this iteration of the first loop is
is procedure establishes the Boundary _omppnegt:i_ngL 2 4(Fy, )<= = Li(Fy,f)log L. Using Equa-

Property. Consider a dissection squ&rand a dissection :~* L 2im . m ; :

. L ) . L . tions (2) and (3), we infer that the total increase is at most

line ¢ containing a sideS' of R. The iteration involving/

1eOPT.
and;j = depth R) ensures that there are at mpstompo- 4 i
nents ofF'N.S not including the endpoints ¢f, which are Now we address the second part of the lemma and de

corners ofR. Note that an iteration involving a perpendic]ilne the set” and the functior(-). Consider a dissection

. ) . line ¢. Each addition of a segment 6to F' either joins
ular line ¢ could add a single-point componentkon S
. . .~ two components of' N/ or extends one component. Such
only if depth(¢) < depti{R), which means that the single_ .~ .
I additions therefore do not increase the number of compo-
point is at a corner of? (and hence does not count to- .
nents of FF N ¢. SetY will account for all other compo-
wards the Boundary Components Property). Such a paint

. i ) nents, giving Equation (4).
is a deptii()-portal (by Step 5), so we get As we have seen, we may add a segmgrdf some

La component that does not include a corneRof dissection line?’ perpendicular td that containg N ¢’.




If at the end of both procedurdg N ¢’} is a connected A subsolutiorfor R is a setF’ of points of R consisting
component o' N ¢, we add! N ¢’ to Y and assigrp(¢ N of a finite number of line segments, with the property that,
o)y =1r. for any terminat in R, F' connects to its mate or ta)R.

Refer to Figure 3 for an illustration of the following.Thelengthof F is the sum of lengths of the line segments
Let R be a dissection region whose boundary containgmprising it.

¢ N ¢ and suppose, for a contradiction to the definition For a configuratior® and a subsolutior, we sayF

of ¢(¢ N ¢'), that{" does not bound%l. Then? bOUIn.dS andcC arecompatiblef the following condition holds: for
R, so depth¥) < depth( /) < depth{’). Thent N ¢'is o501 connected componeht of F that intersects)R,
a deptiie’)-corner. S could be added by eithemSISFY- o ais a paitP, 7) € C such that

PORTAL or SATISFYBOUNDARYCOMPONENTS In both

cases,S must be a portion of the boundary of a square K spansP,

R’ contained byR. The point/ N ¢/ must be a corner e each connected componentfdR contains a portal
of R/, but neither 8TISFYPORTAL nor SATISFYBOUND- p € P,and

ARYCOMPONENTSadds a corner oR’ to the forest. [0 o for each terminat contained ink,  is in Z.

See Figure 4

3 '

.| - l ;

Figure 4: A compact configuration (round portals, grey
. zones) and compatible subsolution (square terminals,
: black forest).

Figure 3: lllustrating the proof of Lemma 2.4. In the dynamic program, we build a talffe [, indexed

by compact configurations, for each dissection square

The goal of is to populate these tables so fhglC] is the

26 Sten 6 D . minimum length of a subsolution fdt that is compatible
' & b. Dynamic program with C. We claim that, for eacl®, the number of compact

We use more parameters that are functions ohly: 7 configurations is small. Each zone can be specified by its

and~. Their exact values will be defined in Equations (gjoundary: a path following the edges of thex ~ grid.

and (13), respectively(is a power of two). his path is given by a start location and a string over the
Let R be a dissection square. Divideinto a regular three-letter alphabet{left, right, straight). Sincen and

~ x ~ grid of cells We say thatR is the ownerof its 7 are constants, the total length of all these strings is a

cells. Sincey and L are powers o2, eachcell of the grid constant. Since the number of portals in a configuration is

is either coincident with a dissection square or is smalféPnstant, the number of zones is constant. The number of

than the leaf dissection squares.zéneof R is a set of Ways of choosing a set8 of portals for a configuration

o) g _
cells of R whose union is simply connected. We equate’® Pounded bym ). Sincem = O(logn), the total

zone with the set of points in the cells comprising it. number of compact configurations is polylogarithmic.

A configuratiorfor R is a set of pair$ P, Z) whereP is Since the depth of the quad-tree(glog n), there are
a subset of portals a8 andZ is a zone ofR. The config- O(nlogn) dissection squares. The running time of the
uration iscompacif the number of portals, summed ovedynamic program is therefor®(nlog® n) where¢ de-
all pairs, is at most(p + 1) and the sum of the lengths ofpends ore. We omit further details of the dynamic pro-
the zone boundaries is at mdst+ 1)length OR). gram.



3 Structure Theorem

It remains to show that the dynamic program finds a solu 'lflff.
tion that is not too much longer th&mPT.

Theorem 3.1. For a random shifi(a, b), with probability @) ) ©

at least one half, there is a solutidf of length at most

(1+¢)OPT such that, for each dissection squdtethere Figure 5: The three cases (up to symmetry) of augmenting
is a compact configuratiofi of R that is compatible with p.

FNR.

To prove Theorem 3.1, we use Theorem 3.2, which a8ATISFYZONE:
serts the existence of a solutighwith properties that im- While there is an unhappy cell or a dissection square
ply the existence of compact compatible configurations. Violating the Zone Property,
The expected amount by which leng#) exceed©OPT 1 letR be a smallest such square.
is 3eOPT. By Markov's Inequality, the total increase i ~LetA = {sidesS of R : depth(S) > depth{R) or
at moste OPT with probability at least one-half. SNEF#0}.

The argument for the following is a straightforward exd Add Ato F.

tension of the argument used in [4] for Steiner tree, andAﬁding Ato F for a squareR is calledaugmentingR

analogous to Lemma 4 of [2]. . The choice ofA is illustrated in Figure 5. In cases (a)
For the next result, we use new techniques (though W&y (b), the augmentatiod is not all of 9R so is open

draw on the analysis technique of [2]). at the ends. In (a)F intersects neither of the sides Bf

. . . that have depth less than that®f so the augmentatios
Theorem 3.2. There is a solutiorf” with expected length consists only of the two sides having depth equal to that

(1+ %e)OPT that satisfies the Boundary Components an

: . . of R. In (b), one of the low-depth sides intersegtsso it
Por_ta! Properties a_nd such that each dissection squ%rebelongs t04. In (), both low-depth sides intersekt so
satisfies the following

Ais all of OR.

ZoneProperty There is a setZy of openly disjoit  [tiS easy to prove the following.

zones of? such that: Lemma 3.3. Suppose that, at some time in the execu-

tion of SATISFYZONE, dissection squar® is augmented.
1. > zcz, length0Z \ OR) <1 lengthOR); Then for the remainder of the procedufehas the

2. for everyZ € Zg, for any two terminals,, t2 € Z Augmentation Property F' N dR is connected.

that are connected by’ to OR, t; andt, are con- . . .
nected inF" Supposer is a dissection square such tlan oR has

at most one connected component. It is easy to see that
3. for every terminat € F that is connected t¢ R, R cannot be an unhappy cell. Furthermore, the singleton
teZe Zp. set{{all cells of R}} satisfies parts 1 and 2 of the Zone
Property. It follows that 8T1ISFYZONE terminates, and
To prove Theorem 3.2, we start with a solutisrthat that, when it terminates, the Zone Property holds for every
satisfies the properties of Lemma 2.4. Recall that a zd#gsection square.
is the union of a set of simply connected cells. ~ Nextwe show that 8TISFYZONE preserves the proper-
Let C be a cell ofR. We sayC is happywith respect to t€S of Lemma 2.4. Consider an iteration in Wh|c_h asquare
F if there is at most one connected componenfdhat % 1S augmented. LefR?’ be a square that _satlsﬂes the_
touches bott®R andC. We use the following proceduresoun_dary Components and Portal Properties befor_e this
to make every cell happy and every dissection square digration. Letl = dRNOR'. If L consists at most of a sin-
isfy the Zone Property. The depth of a square (ie. a (Hell)glfe point then this point is a corner of bothand R’ and
that is smaller than the leaf dissection squares is the defithcontinues to satisfy these properties. Otherwise, let
should the dissection be continued beyand 1 squares. > P€ @ side of’ thatintersect® 1z at more than a single

We likewise define the depths of the sides of such cellsPint. If FNS’NOR had at least one connected component
before Step 2 theA' NS’ NIR has at most one connected

2sharing only boundary points. component afterwards. Suppose thereforeHras’'NoR




was empty before the iteration. If depRf) > depti R) It remains to show that Equation (6) holds.

then after the step eithdr N .S’ N OR is still empty or  Let K, ..., K, be the connected componentsifn

S’ C F. Ifdepth(R’) < dept{R) then, as illustrated in (R; \ dR;) that touchdR. Fork =1,...,q, letCy be the

Figure 5, we ensures that avoidsS’, soF' NS’ N IR set of cells ofR; that intersect. Let Z, be the points

remains empty. In all cases, the Boundary Componeirtshe union of the cells i, together with the points that

Property and the Portal Property continue to hold$tr are surrounded by cells @, (ie. the points in the “holes”
The remainder of the paper is devoted to bounding tb&C,,). It follows thatZ, is a simply connected union of

increase in the length of’ due to \TISFYZONE. Let cells: Z; is a zone. LeZg, = {Z1,...,2Z,}. We will

F; be the forest at the start of thé iteration and let?; argue thaiZp, satisfies the second and third parts of the

denote the dissection square selected inthéeration.  Zone Property with respect to the fordst

Lemma 3.4. For anyi < j, R; is not contained ir;. .Cons_ider the seR of dissection squares that are con-

o ) tained in R and that were augmented due to a Zone-
Proof. We sketch the proof by contradiction:if; is con-  property violation before iteration Let R be a maximal
tained inR;, theniz; must have been an unhappy cell agpset ofR such that every? € R is strictly contained

a Zone-Property-violating dissection square at the startb(g/ no square irR. By the definition off}, we get:
the it iteration. This contradicts tha®; is the smallest

such square. [0 Claim3.6. ForeveryR € R, OR C F.

Lemma 3.5. The increase in length df due to iterations ~ For someR € R, letx be a point inR that is connected
of SATISFYZONE where R violates the Zone Property isto OR; by F;. Let P be anxz-to-0R; path inF;. Since this
at mostie OPT. path must interse@R, we have:

Proof. We inductively definef’;. For the basef} = Fi. Claim3.7. If z € R € R is connected td R; by F}, then
If R; violates the Zone Property if; thenF; 1 = (F; \ zis connected tdR byE_

R;) UOR;, otherwiseﬁiﬂ = F;. In the former case, we o .
will show that Let « be a point inR; that is connected tOR; by F;.

. If z € K} for somek, thenz is in some zone irZg,.
lengthOR;) < grrolength(£i N (R; — 9R:))  (6)  Otherwiser must be a point inR for someR € R. By
demma 3.7z is connected t@ R for someR € R. By
Lemma3.690R C F; andoR is connected tdR;: x isin
some zone irZg,. It follows that Zg, satisfies the third
art of the Zone Property.

Note thatA C OR;, so we are over-accounting for th
length added during the augmentation/f We charge
this length to the portion of-; strictly enclosed byR;
and will not charge to this length again (since this pa‘? X
is removed inF,,,). See Figure 6:F;,, is made of _SUPPOS&r € Zj Is connected t@R; by Fi. If z €

the boundary of?; and the thick parts of;. So we get ]L%efnﬁétgefsnﬁ%/ Ie_e};nmsauifgslz C{;]Zr;e‘;:]ea:é@}? aLnedt gy
4(1+z¢) (length ) — lengtt(Fi.1)) > lengti(o ). be the cell that contains Since every cell oR; is happy,

C is happy and there is at most one connected component
that intersects botf' andoR. This connected component
must includer sincer € F;, x € K. We get:

Claim 3.8. For anyk and for a pointx € Zy, if F; con-
nectsr to 9R;, thenF; connectse to K.

It follows that Zg, satisfies the second part of the Zone
Property.

Let B be the boundary of the zones not including; .
Thatis,B = UZezRilengtrwz — JR;) (and if a point
belongs to the boundary of two zones it is counted twice).
Since R; violates the Zone Property with respectip,

Figure 6: Charging for Zone Property violations. andZg, is a set of zones that satisfies the second and third
. parts of the Zone Property with respectiy Zr, must

Since lengthFy) < length(F1) < (1 + $¢)OPT, we violate part one of the Zone Property:
infer that the total increase in length due to iterations
whereR violates the Zone Property is at mcﬁOPT. length(B) > n - length OR;) @)



We give an upper bound for lendth). Consider all the are defined as follows:
cellsC that contribute ta3. Say that a celC is traversed Ke=Fine\{yeY : é(y)+}

by F; if any pair of opposite sides af are connected by £, — {endpoints of components ii;}

E; N (C\ OR). PartitionC into three sets: the s€t- of e i . :
cells that are traversed; the $&¢ 5 of cells that are not ‘;g_:{{sél?islg R : Radissection squay§ C £N F1}

tCraversed and are adjacentd® and the remaining cells Yo = {6} % & x {—,+} x {2,3,4}
NI Zy={0} xS x {—,+} x {2,3,4
At most three sides of each cell contributes to {0 e bt }

Uzezy, 0Z \ OR;. It follows that the contribution to  Before describing the charging scheme, we show that

length( B) by Cr is at most3lengtl”(13“i N (R; \ OR)) it lets us bound the expec_ted increa_se in length. There
and the contribution to lengtl®) by Cy 5 is at most &€ two method_s of charging. The first uses the obser-
3length(OR;). Now consider a celC’ € Cy ;. There Vation that making a cell happy reduces the number of
is a pointz € C that is connected tOR; by F;. Let P components in the forest. This will ac_cqgnt fori charges
be anz-to-OR; path. Consider the s&® of eight cells to elements in setX, andY,. The definition relies on

surroundingC'. P must enter and leave this set of eighq1e Setk, whose size is bounded by Equation (4). The

cells in order to reaclWR; thereby travelling a distanceSeCOhOI method compares the length added to some length

equal to the width of the cell. Led be the portion of path already in the forest, and in particular a side/f This
P that is used to travel this distance and chargethe Will account f(()jr char:ges 2 J
sides ofC that contribute taB to Q. Q is charged to at 'St consider charges to sefs, andY;. Let c;;

most 8 times. So the contribution lengB) by Cy 1 is at ?e thde ”‘%mber ochhangingi(;nV(;;vin? tald_issection _Iine
most24 length F; N (R; \ OR)). We get and aj-squares. By (10), the tota mcreafLe n
length charged to liné is at most)_ ~ qene) Cr.i 575

> Since Profdepti{¢) = i] = 2¢/L (since we only con-
length(B) < 27length(F; N (R; \ OR 3length(OR; s . ; .
gt B) < gth{F; N (R; \ OR)) + 3length (8)) sider owners of cells which are dissection squares), the
We choose expected increase in length Ei%zjzicl-,j% <
Y e 2 < 530, coj. We will show that each
n=3+27-4e (14 16)' (9) element ofX, U Yy is charged at most once, giving an ex-
2 pected increase in length of at m%@e | Xo| + Ye| <

8 8 H T
Equation (6) is obtained by combining Equations (7), (@Zf Kol +6]&0| < Y 2_¢13|K|. Using Equation (4),

: is is at most
and (9), completing the proof of Lemma 3.5. O IS1sa 208
= OPT. (11)
) . When charging the addition ofC to F' to a 4-
Lemma 3.9. The expected increase in lengthiotue to tuple (¢, S, H, A) of Z, we will show thatS is a side
iterations of SATISFYZONE whereR; is an unhappy cell ot B the length added is at mostlength(S). We
!

H 1
is at mostze OPT. will also show that the charging guarantees that, for

) ) ) ) any dissection line¢ and any pair(H, A), if there are
Proof. Throughout this proof, we consider iterations O(fharges to(¢, S1, H,A), (£, Sa, H,A), ..., (£, Sy, H, A)

the procedure £TISFYZONE that make a cell! = R; then g, S, ..., S, are openly disjoint. Consequently,
happy. We will show that the expected length of the UI’]ICE; length(L;) < length(F; N ). Summing over all dis-
of the boundanes_of aII_ su(_:h cells is at mgg=bPT. The gaction lines’ and all six pairs(H, D), the total length
length added per iteration is at most added taF" by all such charges is at most

24 24
length 9C) = l|engtr(aB) = 4—L,, (10) = length(Fy N £) < —(1+ €)OPT. (12)
ol v¥27 75 Y
where the owner of is aj-squareB. Combining Equations (11) and (12) and choosing
For the accounting we define three sé&ts Y,, andZ, y = 9286*1(1 te), (13)

for each dissection liné When augmenting’, we chose

a dissection line bounding (C's owner) and charge thewe bound the expected increase in Iengti‘%prT.
additional length to an element&f, UY,; U Z,insucha  Now we give details for the charging scheme. We main-
way that each element is charged at most once. The sais labels of the connected componentgof ¢, for all



dissection lineg. We maintain the invariant that two comthat intersects one af and/,: this is an opportunity to
ponents have the same label if and onlyFifconnects charge according to Case 1, a contradiction.

them. Initially the label of a component is the compo- Supposel; # ¢;. Since the lines are parallel, the
nent itself. These labels are used for charging to elemeadsint A is the same, and, containsB;, depth¢;) >

of X,. depth{¢z). By the choice of, depth{¢) > depth¢;), so’
Let K1, ..., K, be the connected components Bf cannot bound3;, a contradiction. O

that touch botl® B andC. Because” is unhappyg > 1.

Forj =1,...,q, we choose a paif;, Kj) where(; is a

line boundingB andK; = K N ¢; and prefer to use the4 Open problems
same dissection line twice, if at all possible. (We avoid a

choice such thak’; = {y} fory € Y and¢(y) # ¢;.) As in [2], it seems likely that this technique will extend to
We use case analysis. any constant-dimension Euclidean space and can be de-

Case 1. ¢;, = (;, for somej; # jo. Letl = ¢;,. randomized (while increasing the running time). Recently
In this case we will charge to an element§. By the polynomial-time approximatioq schemes have peen given
invariant, K;, and K, have different labels. We chargdor subset-TSP [10] and Steiner tree [7, 8] in planar

to (¢, K;,) and change the labelling by replacing even?/raphf' l:tsing iltéess_ir:spireiq frf[)m thg;rsgtepme:ric Cfun'
occurrence of the label dt ;, with the label of&,. This erparts. ftwould be ieresting to see If Steinerforest ca

ensures that each elementXf is charged only once. also be approximated in planar graphs.
Case 20 /y,...,4, are all distinct. Choose two dis-

tinct lines¢;, and¢;, with depth(¢;,) > depth¢,,). Let

¢ = ¢;,. Count sides going counterclockwise aroud References
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