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ABSTRACT
How should players bid in keyword auctions such as those
used by Google, Yahoo! and MSN? We consider greedy bid-
ding strategies for a repeated auction on a single keyword,
where in each round, each player chooses some optimal bid
for the next round, assuming that the other players merely
repeat their previous bid. We study the revenue, conver-
gence and robustness properties of such strategies. Most
interesting among these is a strategy we call the balanced
bidding strategy (bb): it is known that bb has a unique fixed
point with payments identical to those of the VCG mecha-
nism. We show that if all players use the bb strategy and
update each round, bb converges when the number of slots
is at most 2, but does not always converge for 3 or more
slots. On the other hand, we present a simple variant which
is guaranteed to converge to the same fixed point for any
number of slots. In a model in which only one randomly
chosen player updates each round according to the bb strat-
egy, we prove that convergence occurs with probability 1.
We complement our theoretical results with empirical stud-
ies.

1. INTRODUCTION
Online search engine advertising is an appealing approach

to highly targeted advertising, and is estimated to be the
major source of revenue for modern web search engines such
as Google and Yahoo! The basic setup is the following:
When an individual does a query in a search engine, he gets
back a page of results that contains the links the search
engine has deemed relevant to the search, together with a
small number of sponsored links, i.e., paid advertisements.
The beauty of this from the advertiser’s perspective is that
they can precisely target their ads based on the search words
used. For example, if a travel agent “buys” the search term
“Tahiti” when a user searches on the word “Tahiti”, a link
to the web page for that travel agent offering, say, cheap
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fares to Tahiti, might appear as one of the sponsored links
on the search results page. If the user actually clicks on
this link, he will be transferred to the aforementioned web
page. For each such click, in which the advertiser “receives”
a potential customer, the advertiser pays the search engine.

The process of determining which ads get assigned to
which keywords (search terms) and how much each adver-
tiser pays is resolved via keyword auctions. Advertisers
choose which keywords they want to bid on and participate
in auctions for those keywords. For each keyword of interest,
the advertiser submits a bid stating the maximum amount
they are willing to pay for a click. When a user submits a
query on that keyword, an instantaneous auction is run to
determine which of the advertisers currently bidding on that
keyword is allocated an advertising slot.

In the absence of budget constraints, there is one and
only one truthful auction that can in principle be used: the
Vickrey-Clarke-Groves or VCG mechanism [12, 3, 7]. This
mechanism has the property that it is in the best interest of
the participating advertisers to bid their true valuation of
a click. Despite this appealing property of the VCG mech-
anism, for a number of reasons, no search engine uses the
VCG mechanism. Rather, the most widely used auction
mechanism is the non-truthful Generalized Second Price or
GSP auction (described in Section 2).

The fact that the GSP mechanism is not truthful means
that the participating advertisers are forced to undertake
the complicated task of choosing a bidding strategy. As-
demir [1] and Edelman et al.[4] observe that instability and
bidding wars can result from the use of the GSP mechanism.
To make matters worse, on a typical search page, there is
room for multiple sponsored links. The positioning of these
sponsored links affects the chances that a sponsored link will
be clicked on and thus these advertising slots have varying
desirability from the perspective of advertisers. This makes
the advertisers’ utilities a discontinuous function of their
bids. Overall, the resulting bidding is sufficiently complex
that many advertisers hire consultants or intermediaries to
do their bidding for them, often at significant cost.

In a typical day, an advertiser will choose one or more
search terms to target and compete in a potentially very
large number of keyword auctions for those terms. In be-
tween auctions for a particular keyword, the bidders have
the opportunity to update their bids. This is typically done
automatically via software robots [9].

In this paper, we undertake a systematic exploration of
a very natural class of greedy bidding strategies a software
robot might use in a repeated keyword auction for a partic-



ular search term(s). The main theme is the following: If a
particular advertiser A knew how the other bidders were go-
ing to bid in the next round, A would bid so as to maximize
his utility. The greedy bidding strategies we study assume
that the recent past is the best prediction for the future: A
assumes that the other bidders will bid in the next round
exactly what they bid in the current round. Given this as-
sumption, A chooses his bid for the next round to maximize
his utility relative to this postulated set of bids by the other
bidders.

There is still quite a lot of flexibility within this defini-
tion. Suppose that, given the presumed bids by the other
bidders, the optimal advertising slot for A to target is slot s
at price ps, and that the price of the (higher click-through
rate) slot s− 1 is ps−1. The GSP mechanism allows a range
of bid values that will result in the same outcome from A’s
perspective (any bid between ps and ps−1). We focus the
bulk of our study on one particular choice in this range: Bal-
anced bidding (bb), in which the advertiser chooses his next
bid b so as to be indifferent between successfully winning
the targeted slot s at price ps, or winning a more desir-
able slot at price b. bb is a particularly interesting strategy,
since a system in which all players bid according to bb has a
unique fixed point in which players are bidding according to
a Nash equilibrium of GSP and the payments to the search
engine are identical to those of the VCG mechanism (see
Theorem 5).

Our main results about bb are the following:

• For two slots, bb always converges to its unique fixed
point (Theorem 6 part 1).

• For three or more slots, bb need not ever converge, as-
suming that in each round, all players simultaneously
update their bids according to the bb greedy strategy
(Theorem 6 part 2).

• In an asynchronous model, where exactly one ran-
domly chosen player updates his bid each round ac-
cording to the bb strategy, bb bidding always con-
verges eventually (Theorem 6 part 4). This is not true
if the bidders are not chosen randomly.

• We present a simple variation on bb with the same
unique fixed point and prove that it converges to its
fixed point even in the synchronous model in which all
players update their bids according to bb at each step
(Theorem 10).

An important perspective on these results is the following:
The Nash equilibria of GSP are fairly straightforward to
characterize and have been understood for some time [5,
11, 10]. What was not known was if there was a natural
bidding strategy that would lead to these Nash equilibria.
Here we show how players can get to the most natural of
the GSP equilibria using a greedy strategy.

Given that the revenue of bb converges to that of VCG,
one might ask: if bidders do not run bb how much revenue
do the search engines obtain compared to the revenue they
would get using VCG. In Section 5, we explore this question,
assuming that bidders eventually end up in some Nash equi-
librium of GSP (which of course is not necessarily the case).
We present an empirical comparison of the VCG revenue
with that of the minimum revenue GSP equilibrium and the

maximum revenue GSP equilibrium. We complement these
experiments with some theoretical bounds (Theorem 16).

We also compare the VCG revenue to that that would be
obtained if the bidders used other natural greedy strategies:
competitor busting (cb), in which the advertiser chooses the
highest bid value consistent with the target slot, and altru-
istic bidding (ab), in which the advertiser chooses the lowest
bid value consistent with the target slot. It is easy to see
that except for degenerate circumstances, neither cb nor ab

bidding has a fixed point. Thus, we empirically evaluate
their average revenue over a long sequence of keyword auc-
tions.

2. MODEL AND DEFINITIONS

Definition 1. A keyword auction is defined by:

• A set of k slots with click-through rates (CTRs) θ1 >
. . . > θk, where θi is the probability that the user will
click on the advertisement in slot i.

• A set of n players (advertisers) participating in the
auction, each one having a private valuation vi for a
click, v1 > . . . > vn.

• Based on knowledge of the auction mechanism and
their own private valuations, each player submits a bid
to the auction. We denote by bi the bid submitted by
player i.

• The auction mechanism:

– computes an allocation π of the slots to k different
players: πs is the identity of the player that is
allocated slot s.

– charges a price ps to the player πs for each click
on his advertisement.

• If player i is allocated slot s at price ps, player i’s
expected utility is θs(vi − ps).

The generalized second price mechanism is the most com-
mon auction mechanism in use.

Definition 2. The generalized second price mechanism
(GSP) for keyword auctions uses the following allocation and
payment rules:

• Players are allocated slots in decreasing order of bids.1

• For each slot s, the payment ps of player πs is bπs+1
.

Players who do not win a slot make no payment and gain
no utility.

The GSP mechanism is not truthful, but has a continuum
of Nash equilibria that are well understood [5, 11, 10]. One
of these equilibria results in player payments identical to
those that would be made if the mechanism being employed
was VCG. We call this Nash equilibrium of GSP the VCG

1Technically, there is also a “relevance” or per-advertiser
click-through rate ri associated with each advertiser i, and
bidders are actually ranked (assigned slots) in decreasing
order of ranking score, where the ranking score of bidder i
is biri. In this paper we assume ri = 1 for all i. All results
in the paper extend easily to the case where the ri values
are arbitrary.



equilibrium of GSP. GSP also has Nash equilibria in which
the revenue to the search engine is either higher or lower
than that in the VCG equilibrium (see, for example, Var-
ian [11] or Theorem 16 in this paper). It is not clear whether
any of these equilibria are actually reached in real keyword
auctions. It is also not clear what bidding strategy players
might employ to reach a particular equilibrium. One of the
goals of this paper is to gain some insight into these issues.

We consider a repeated keyword auction, with a fixed set of
n players and k slots. The participants in the repeated auc-
tion have the opportunity to update their bids in between
successive rounds. How should players bid? Naturally, a
player’s main objective is to maximize his own expected util-
ity over multiple rounds of the auction. However, without
any real insight into the bidding strategies followed by the
rest of the players, it is difficult for one player to make pre-
dictions about the future bids of other players and hence
choose an optimal bidding strategy. Thus, a very natural
approach is to assume that the immediate past is the best
predictor of the future. This leads to a natural greedy-like
bidding scheme where a player assumes that all the other
bids will remain fixed in the next round. Under this as-
sumption, the rational choice for a player j is to bid so as
to win a slot s that maximizes his utility uj = θs(vj − ps).
This leads to the following definition.

Definition 3. Greedy Bidding Strategies

A greedy bidding strategy for a player j is to choose a bid
for the next round of a repeated keyword auction round so
as to maximize his utility uj, assuming the bids of all other
players b−j in the next round will remain fixed to their values
in the previous round.

Given b−j , denote by p−j(s) the payment player j would
make if he bids so as to win slot s. Let s∗ be the slot the
greedy bidder j will target. Then if player j is greedy, he will
bid b′ ∈ (p−j(s

∗ − 1), p−j(s
∗)). As b′ is not fully specified,

this defines a class of strategies that are distinguished by
the choice of b′ within the allowed range.

Since the advertisers participating in a keyword auction
are often business competitors, one of the most common sec-
ondary objectives besides gaining the optimal slot observed
in practice is the desire to “push” the prices paid by other
advertisers higher. This is naturally done by bidding in the
high end of the range mentioned earlier. However, this has
an inherent risk as a change in other players’ bids could re-
sult in paying a higher price than expected. This naturally
leads to the following bidding strategy.

Definition 4. Balanced Bidding

The Balanced greedy strategy bb is the strategy for a player
j that, given b−j

• next targets the slot s∗j which maximizes his utility
(greedy bidding choice), that is,

s∗j = argmaxs{θs(vj − p−j(s))}.

• chooses its bid b′ for the next round so as to satisfy the
following equation:

θs∗
j

`

vj − p−j(s
∗
j )

´

= θs∗
j
−1

`

vj − b′
´

.

If s∗j is the top slot, we (arbitrarily) choose b′ = (vj +
p−j(1))/2. We can thus deal with all slots uniformly by
defining θ0 = 2θ1.

The intuition behind the bid selection is that the player
bids high enough to force the prices paid by his competitors
to rise, but not so high that if one of his competitors were
to just undercut him, he would mind getting a higher slot
at a price just below his own bid of b′. The bb strategy is
an appealing strategy for the following reason.

Theorem 5. [5] If all the players are following the bb

strategy in an auction with all distinct θs, then the system
has a unique fixed point. In this fixed point, the revenue of
the auctioneer (and payments of each player) is equal to that
of the VCG equilibrium. The equilibrium bids b∗j of the play-
ers in the fixed point of bb satisfy the following equations:

b∗j =



vj if j ≥ k + 1 and
γjb

∗
j+1 + (1 − γj)vj if 2 ≤ j ≤ k.

(1)

where γj = θj/θj−1.

3. CONVERGENCE PROPERTIES OF THE
BB STRATEGY

We study the convergence properties of the bb strategy
in a repeated keyword auction under two models. We refer
to our standard model, where all players simultaneously up-
date their bids on each round as the synchronous model. In
the asynchronous model, in each round, exactly one player
updates her bid, while the other players merely repeat their
previous bids. We consider both the case in which the player
performing the update is arbitrary and the case where the
player performing the update is chosen at random. This has
been studied, for example in Zhang [14]. The asynchronous
model is closer to realistic applications, although the syn-
chronous model does apply in on-line settings where bids
are updated in batches.

Theorem 6. Consider a repeated keyword auction where
all players are using the bb strategy starting with arbitrary
initial bids. We have:

1. A 2-slot auction system always converges to its fixed
point in both the synchronous and asynchronous mod-
els. The number of rounds until convergence in the
synchronous model is O(log((v2 − v3)/v3)), where the
constant depends on the click-through rates θ1 and θ2.

2. There exists a 3-slot auction system and set of initial
bids which does not converge in the synchronous model.

3. There exists a 3-slot auction system, a set of initial
bids, and an order in which the players update which
does not converge in the asynchronous model.

4. In the asynchronous model where players bid in ran-
dom order, no matter how many slots there are, the
system always converges to its fixed point.

Proof of Part 1:

Lemma 7. At every round t such that t > t1 = 2 +
logγ∗ ((1− γ∗)(v2 − v3)/v3), where γ∗ = max{θ1/θ0, θ2/θ1},
we have:

b1, b2 > v3,
bi = vi, ∀i ≥ 3.



Proof. Let b denote the third highest bid. By definition,
b can never be more than v3. Suppose for some round that b
is less than v3. Take a player i in {1, 2, 3}. In the next round,
i will bid her value or target some slot j ∈ {1, 2} and bid
b′i = (1−γj)vi+γjpj ≥ (1−γ∗)v3+γ∗b = b+(1−γ∗)(v3−b).
In either case,

(v3 − b′i) ≤ γ∗(v3 − b).

Initially v3 − b ≤ v3.
It takes at at most r = logγ∗((1− γ∗)(v2 − v3)/v3) before

v3 − b < (1− γ∗)(v2 − v3)? At most r = logγ∗((1− γ∗)(v2 −
v3)/v3). In round r + 1, bidders i ∈ {1, 2} will each bid
either vi > v3 or target a slot j ∈ {1, 2} and bid

b′i = (1 − γj)vi + γjpj ≥ (1 − γ∗)v2 + γ∗b

= b + (1 − γ∗)(v2 − b) > b + (1 − γ∗)(v2 − v3)

> v3,

hence in either case their bids are both above v3. In round
r + 2, player 3 will then bid v3 while players 1 and 2 keep
on bidding above v3; the other players can bid at most their
value, which is less than v3, and this concludes the proof of
the lemma.

From that point on, the price of slot 2 is fixed at p2 = v3.
Let T2 = b∗2 = (1 − θ2/θ1)v2 + (θ2/θ1)p2 and T1 = (1 −
θ2/θ1)v1 +(θ2/θ1)p2. If the last bids of players 1 and 2 were
b1 and b2 then, in the next round, their bids are:

b′1 =



T1 if b2 > T1,
(v1 + b2)/2 otherwise.

(2)

b′2 =



T2 if b1 > T2,
(v2 + b1)/2 otherwise.

Let bmin = min(b1, b2) be the minimum of the two bids.

Lemma 8. After at most t2 rounds, we have bmin ≥ T2,
where

t2 ≤ t1 + 2
θ1 − θ2

θ2
.

Proof. Assume that at time t > t1, we have bmin < T2.
Then it is easy to check that at the next round we have
b′min ≥ (v2 + bmin)/2. This implies

b′min − bmin ≥
v2 − bmin

2
≥

v2 − T2

2
=

θ2

θ1

v2 − p2

2
= δ.

Since at time t1 we have bmin ≥ v3, we will reach b′min ≥
T2 after an additional number of rounds bounded by (T2 −
v3)/δ.

Finally, since at round t2 we have bmin ≥ T2, at time t2 + 1
we will have b′2 = T2 < T1, and therefore at time t2 + 2 we
will have b′′2 = T2 = b∗2 and b′′1 = (v1 + T2)/2 = b∗1; we have
reached equilibrium. This proves Part 1 of the Theorem in
the synchronous model.

To prove convergence in the asynchronous model, we will
follow along the lines of the previous proof. Indeed, by focus-
ing on the rounds where specific players get to bid, lemma 7
still holds but this time we need r bid alternations between
players {1, 2, 3} and two additional alternations of players
{1, 2}. Lemma 8 is easier to check as in this case only the
top two players alter their bids, therefore after t2 bid alter-
nations we reach the same outcome.

Proof of Part 2: Unfortunately, an auction system where
all the players follow the bb strategy is not guaranteed to
converge when there are more than 2 slots. We will show
this by the following counterexample. Let there be three
slots with θ1 = 1, θ2 = 2/3, θ3 = 1/3 and four players with
values 161, 160, 159 and 100. Let the initial bids of 130.5,
130, 129.5 and 100, respectively. Then the bidding evolves
as below; in particular it is not convergent.

Round
Bidder Value 1 2 3

161 130.5 145.5 130.5
160 130 145.25 130
159 129.5 144.75 129.5
100 100 100 100

There is one inactive bidder, with the lowest value, who
will never be able to bid for a slot as the prices are all above
his utility. It the first round, the remaining bidders all target
the lowest slot. The bid from the highest-valued player is
low enough so that for the next round, all three top bidders
target the first slot. With these high bids, the price for any
player for the top slot is too high when compared with the
price of the last slot. Thus for the third round all three top
players target the last slot, and the cycle continues.

In this example the click-through rates follow a simple ge-
ometric sequence, similar to those observed in practice [6].
Note that in this example the bids are well-behaved, in the
sense that the bids are in the same order as the players’ val-
ues. Hence such regularity is not sufficient for convergence.
Finally, even though we used our convention of θ0 = 2, a
similar example can be constructed where the players are
cycling while targeting intermediate slots. This concludes
the proof of part 2.

Proof of Part 3: Consider the following three slot example
with θ1 = 1, θ2 = 0.1 and θ3 = 0.09 and the top three
bidders alternating in sequence.

Round
Value 1 2 3 4 5 6 7
102 19.2 80.8 80.8 80.8 19.2 19.2 19.2
101 19.1 19.1 90.9 90.9 90.9 19.1 19.1
100 59.6 59.6 59.6 95.45 95.45 95.45 59.6
10 10 10 10 10 10 10 10

Proof of Part 4: We will argue that there exists an asyn-
chronous bidding sequence for the players that converges to
the fixed point. A proof sketch is given in Appendix 5.5.

Notes
• The example above showing that for 3 slots, bb doesn’t

converge in the synchronous model is not anomalous.
In Section 5, we show experimentally that in a signifi-
cant fraction of instances, bb does not converge in the
synchronous model.

• The bound we give on the time to convergence of bb

in the random asynchronous model is extremely loose.
We have run simulations to study the speed of conver-
gence in this setting and have found experimentally
that convergence is actually quite fast, certainly no
more than a polynomial in n, the number of bidders.



4. CONVERGENCE PROPERTIES OF THE
RESTRICTED-BB STRATEGY

We will now examine a variant of the bb strategy, called
rbb, where the players can only aim for their current slot or
a slot of lower click-through rate than the one they currently
have. The rbb strategy is designed so that it has the same
unique fixed point as bb. However, by restricting the degree
to which a player can be greedy, we will be able to show
that even in the synchronous model, rbb always converges
to the VCG equilibrium.

Definition 9. The Restricted Balanced Bidding (rbb)
bidding strategy is the strategy where given b−j from the pre-
vious round, player j

• targets the slot s∗j which maximizes his utility among
the slots with no higher click-through rate than his
current slot sj, that is,

s∗j = argmax{θs(vj − p−j(s)) : s ≥ sj}.

• chooses her bid b′ for the next round so as to satisfy the
following equation: θs∗

j

`

vj −p−j(s
∗
j )

´

= θs∗
j
−1

`

vj −b′
´

.

To make sure this is well-defined for the first slot, we define
θ0 = 2θ1.

Theorem 10.

1. The system defined by a repeated keyword auction in
which all the players are following the rbb strategy
has a unique fixed point at which players are bidding
according to the VCG equilibrium, i.e. the equilibrium
bids b∗j are given by Equation (1).

2. In the synchronous model the rbb strategy always con-
verges to its fixed point. The number of steps until
convergence is 2k times

O

„

k +
log(1 − γ∗)

log γ∗
+ log(1/γ∗)

v1 − vk+1

min1≤i≤k(vi − vi+1)

«

,

where γ∗ = maxi θi/θi−1.

Proof. The proof of Part 1 of the Theorem is very sim-
ilar to that of Theorem 5 (see Edelman et al.[5]). To prove
Part 2, we first bound the number of steps until the price of
slot k and the set of players who will be allocated slots have
converged. As before, we define γi = θi/θi−1.

Lemma 11. Player p prefers to target slot j rather than
slot j − 1 if and only if

(1 − γj)vp + γjpj < pj−1.

The proof of this Lemma is simple algebra and is omitted.

Lemma 12. At every round t such that t > t1 = 2 +
logγ∗((1−γ∗)(vk−vk+1)/vk+1), where γ∗ = maxi>0 θi/θi−1,
we have:

bi > vk+1 ∀i ≤ k,

bi = vi ∀i ≥ k + 1.

Proof. Let b denote the (k+1)st highest bid. By defini-
tion, b can never be more than vk+1. Suppose for some round
that b is less than vk+1. Take any player i in {1, 2, . . . , k+1}.
In the next round, i will either bid her value or target

some slot j ∈ {1, . . . k} and bid b′i = (1 − γj)vi + γjpj ≥
(1 − γ∗)vk+1 + γ∗b ≥ b + (1 − γ∗)(vk+1 − b). In either case,

(vk+1 − b′i) ≤ γ∗(vk+1 − b).

Initially vk+1 − b ≤ vk+1. How many rounds does it take
before vk+1−b < (1−γ∗)(vk−vk+1)? At most r ≤ logγ∗ ((1−
γ∗)(vk − vk+1)/vk+1). In round r + 1, bidders i ∈ {1, . . . k}
will each bid either vi > vk+1 or bid at least

b′i = (1 − γj)vi + γjpj ≥ (1 − γ∗)vk + γ∗b

≥ b + (1 − γ∗)(vk − b) > b + (1 − γ∗)(vk − vk+1)

> vk+1,

hence in either case their bids are above vk+1. In round
r+2, player k+1 will then bid vk+1 while players 1, 2, . . . , k
continue to bid above vk+1; the other players don’t get a slot,
so they bid their value, and this concludes the proof.

We now need to prove that the allocation of the k slots
players to these k players converges to a fixed point.

At any time, for any i ∈ [1, k], consider the players al-
located slots [i + 1, k]. They are called stable if their bids
and prices satisfy Equation (1), that is, the allocation is in
order of decreasing values, and if π(j) is the player currently
allocated slot j, then the last bids of those players satisfied:

bπ(j) = γjbπ(j+1) + (1 − γj)vπ(j),

for every j ∈ [i + 1, k].
If the players allocated all slots [1, k] form a stable set,

then we have reached the fixed point of the rbb strategy.
Assume that the current setting is not (yet) a fixed point

of the rbb strategy. Let A be the maximum stable set, with
associated i ≥ 2, and let B be the set of players in slots [1, i].
Let bmin denote the minimum bid from players of B.

We define a partial order over sets of players. We say that
A′ ≻ A if either A ⊂ A′ and A 6= A′, or if the smallest vp

which is in the symmetric difference of A and A′ belongs to
A′ 2. This will be our measure of progress.

In the next round, observe that, following the rbb strat-
egy, players in A still bid in the same way as before. Let
b′min be the new minimum bid from players of B, and p be
the player of B whose bid is b′min. There are three cases to
consider.

1. p bids below pi. Let j ∈ [i+1, k] be the slot which was
targeted by p. By definition, p prefers slot j to slot j−
1, and so, by Lemma 11, the bid of p is less than pj−1.
By definition, the bid is (1− γj)vp + γjpj > pj , thus it
falls in the interval (pj−1, pj) and p will be allocated
slot j. Recall that π(j) ∈ A denotes the player who
was in slot j in the previous round. Since set A is
stable, by definition we have pj−1 = (1−γj)vπ(j)+γjpj .
Since this is greater than the bid of p, it follows that
vπ(j) > vp. Moreover, since p prefers slot j to slot
j+1, by Lemma 11 again, we must have (1−γj+1)vp +
γj+1pj+1 > pj = (1 − γj+1)vπ(j+1) + γj+1pj+1, and so
vp > vπ(j+1). Thus A′ = {p′ ∈ A : vp′ < vp} ∪ {p} is a
stable set, and A′ ≻ A.

2. p targeted slot i. Then p is allocated slot i, A′ =
A ∪ {p} is a stable set, and A′ ≻ A.

2This corresponds to a lexicographic ordering of the sets.



3. p targeted some slot j ≤ i− 1. Then A is still a stable
set, and bmin = pi−1 has increased: b′min = (1−γj)vp +
γjpj ≥ bmin + (1 − γ∗)(vp − bmin).

We will prove that Case 3 can only happen a bounded
number x of times, (where x depends on the θj ’s and the
vj ’s but not on the bids) before Case 1 or 2 must occur.
Thus, the maximum stable set must change at least once
every x rounds, and when that happens, it is replaced by a
set which is larger in the ≻ ordering. This implies that the
system converges to a fixed point and that the number of
rounds until convergence is bounded by 2k(x+1), hence the
Theorem.

First, a useful technical lemma.

Lemma 13. Let ε = (1/2)θk(1−γ∗) minq 6=q′ |vq−vq′ |/θ1.
If pi−1 > vp − ε and vp > pi, then player p prefers slot i to
any slot j < i.

Proof. From player p’s viewpoint, the utility of slot i
is θi(vp − pi), the utility of slot j < i is θj(vp − pj) <
θj(vp − pi−1), and the ratio is

θj(vp − pi−1)

θi(vp − pi)
≤ ε

θj

θi(vp − pi)
≤ ε

θ1

θk(vp − pi)
.

Now,

vp − pi = vp − ((1 − γi+1)vπ(i+1) + γi+1pi+1)

= (1 − γi+1)(vp − vπ(i+1)) + γi+1(vp − pi+1),

which is at least (1 − γ∗) minq 6=q′ |vq − vq′ |. Plugging this
into the previous expression proves the Lemma.

Now, let x = log1/γ∗ ((v1 − vk+1)/ε). Assume that Case 3
happens for x consecutive rounds. Let pmin be the player in

B whose value is minimum and vmin be its value. Let b
(t)
min be

the minimum bid of players in B after t rounds, 0 ≤ t ≤ x.
If p ∈ B is the player defining the minimum bid in round
t + 1, we have:

b
(t+1)
min ≥ (1 − γ∗)vp + γ∗b

(t)
min ≥ (1 − γ∗)vmin + γ∗b

(t)
min.

After x rounds, we get b
(x)
min ≥ vmin − (γ∗)x(vmin − b

(0)
min),

hence b
(x)
min ≥ vmin − (γ∗)x(vi − vk+1). Plugging in the value

of x yields b
(x)
min ≥ vmin − ε. From Lemma 13, we know that

pmin prefers slot i to any slot j < i. In the next round pmin

targets slot i and has to be the minimum bidder from B,
therefore we are now in Case 2. Thus there are at most x
occurrences of Case 3 between any two occurrences of Case
1 or Case 2, and the Theorem is proved.

5. EMPIRICAL EVALUATION
In the previous part of the paper, we showed how simple

greedy bidding strategies can lead to the VCG equilibrium.
Is this the “right” equilibrium for bidders to be shooting
for? How desirable is this outcome for the bidders and for
the search engine? In this section, we study these questions
empirically.

We first compare the search engine revenue in equilibrium
to the VCG revenue. We then compare these benchmarks
with two alternative greedy bidding strategies, both from
the perspective of search engine revenue and from the per-
spective of bidder utility.

5.1 Experimental Setup
In all experiments, we define the keyword auction as fol-

lows: we use three slots and four players. Following the
study of Feng et al.[6], we choose the click-through rates as
a geometrically decreasing sequence by θi = δi−1 for some
value of δ between 0 and 1, and plot our results as a func-
tion of δ. We take the average of 150 instances where for
each instance, the values of the four players are each inde-
pendently chosen from a normal distribution with mean 500
and deviation 200.

To analyze a bidding strategy, for each of the 150 in-
stances, the simulated strategy is run for 75 rounds from
starting bids of 1 for all players, except for ab (defined later),
which is run for 150 rounds from starting bids equal to the
minimum player value. All experiments are run in the syn-
chronous model of bidding.

5.2 Revenue in GSP Equilibria
How much revenue does GSP bring to search engines,

compared to the revenue generated by the VCG mechanism?
Figure 1 plots the average, over instances, of the ratio be-

tween the revenue in some Nash equilibrium of GSP and the
VCG revenue. Since GSP has many different Nash equilib-
ria, we consider three extreme points: the maximum rev-
enue Nash equilibrium, the minimum revenue Nash equi-
librium, and the maximum revenue Nash equilibrium when
the bidders are debt-averse, i.e. never bid above their value.
Kitts et al.[8] show evidence that bidders usually follow a
debt-averse bidding strategy.

From these experiments, we conclude the following: the
equilibrium revenue of GSP is within ±40% of the VCG
revenue, unless δ is close to 1 and bidders are willing to
bid above their value. This should be contrasted with Part
1 of Theorem 16, where we exhibit an example of a GSP
equilibrium with revenue much smaller than the VCG rev-
enue: our simulations indicate that such an example is an
anomaly.

We also see the following interesting behavior: If bidders
are debt-averse, then in equilibrium GSP generates at most
15% more revenue than VCG. Since being debt-averse seems
a very likely behavior on the part of rational bidders, this
indicates that choosing GSP over VCG may not have a huge
impact on revenue. The influence of debt-averse behavior
on the maximum revenue is rigorously justified in Part 3 of
Theorem 16.

5.3 Balanced Bidding Strategies: BB and RBB
We next demonstrate the frequency of non-convergence of

bb shown in Theorem 6 part 2. Figure 2 plots the probabil-
ity that bb converges. (When δ > .95, it takes much longer
for the system to reach a fixed point or a cycle, and our sim-
ulations did not always enable us to reach that point, and
so we plot two curves representing lower and upper bounds
to the convergence probability.) This figure indicates that
the non-convergent example in Theorem 6 is not patholog-
ical: The non-convergence of bb is a practically observed
phenomenon which occurs for a significant fraction of in-
stances. One contribution of this paper is to suggest that
the bidders use rbb rather than bb, since it gets to the
same fixed point and has the advantage of always converg-
ing. However, players might wonder about the effect on their
utility. To study this, we take one special player p and fix
his value at 500, while the values of the other players are
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Figure 2: Convergence of BB

each independently chosen from a normal distribution with
mean 500 and deviation 200. We then plot, as a function
of δ, the ratio between player p’s utility under rbb and his
utility under bb.

We see in Figure 3, that when δ < .6, player p’s utility
in rbb is only about 90% of the utility he would get in bb.
Interestingly, as δ approaches 1, this is reversed: when δ
is close to 1, rbb yields better utility than bb. We expect
this to be due to the frequent non-convergence of bb in this
regime. It is claimed [6] that in practice the click-through
rates are fit well by a geometric sequence with δ about .7,
and in that range rbb and bb yield about the same revenue.

Note that our result is robust: we have observed that
changing the value of the player under focus from 500 to
400 or to 600 (so as to make him an either relatively lower
valued player or relatively higher valued player) does not
change the graph significantly.

5.4 Other Greedy Bidding Strategies: CB and
AB

So far we have focused on bb and rbb, but it is conceivable
that a bidder could obtain a higher revenue by following
some other strategy. In this section we examine two other

greedy bidding strategies, one that is often considered and
another that is its natural complement. In the following we
let εprice be a suitably small bid increment, for example 1¢.
5.4.1 Competitor Busting

A popular bidding strategy used in practice is known as
competitor busting [13]. This strategy is also referred to as
anti-social or vindictive bidding [2, 15], and may be used by
as many as 40% of the bidders on Yahoo! [15]. The idea
is that a player bids as high as possible while retaining her
desired slot, in order to make competitors pay as much as
possible and exhaust their advertising resources.

Definition 14. The Competitor-Busting greedy bidding
strategy (cb) is the strategy for a player j that, given b−j

• next targets the slot s∗j which maximizes her utility
(greedy bidding choice), that is,

s∗j = argmax{θs(vj − p−j(s)) : s ≥ sj}.

• chooses her next bid as b′ = min{vj , p−j(s
∗
j−1)−εprice}.

Convergence issues for cb are much more serious than for
bb: in general, the cb strategy does not have a fixed point!
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Indeed, a player p in slot i will only have non-negligible util-
ity if the player in slot i+1 cannot raise her bid any further,
because it is equal to her value. In this case, unless the situ-
ation is degenerate, p will prefer to move to a different slot,
which will in turn lead other players to want different slots.

Thus, the only fixed point for cb is when all players are
bidding their values and those bids happen to be a Nash
equilibrium for the GSP strategy. Bids equal to the values
form a Nash equilibrium if and only if θi(vi−vi+1) ≥ θj(vi−
vj+1) for each i and j > i; for a random instance, these
constraints are satisfied with significant probability when δ
is close to 0.

Indeed, Figure 4 confirms this finding. Like in Figure 2,
we plot two curves, which are lower and upper bounds on
the probability of convergence. (The space between the two
curves corresponds to instances that have neither converged
nor begun to cycle). We see that cb frequently converges
when δ is small, and rarely converges when δ is large.

Given that cb is a well-known strategy, the auctioneer
might wonder how much revenue he obtains if every player
followed the cb strategy. Figure 5 compares the revenue
obtained from running GSP with the players following cb,
with the revenue which would have been obtained from run-
ning VCG (with VCG revenue normalized to 1). This is
good news for the auctioneer: If the players follow the cb

strategy, then the auctioneer’s revenue is higher than the
VCG revenue, by up to 20%. Accordingly, player utility
goes down.

5.4.2 Altruistic Bidding
Since competitor busting primarily benefits the auction-

eer, the players might consider trying a completely different
approach: altruism. A natural complement to the competi-
tor busting strategy, where players try to hurt other bidders
as much as possible, the altruistic strategy has players bid-
ding as low as possible to win their desired slot.

Definition 15. The Altruistic greedy strategy (ab), is
the strategy for a player j that, given b−j

• next targets the slot s∗j which maximizes her utility
(greedy bidding choice), that is,

s∗j = argmax{θs(vj − p−j(s)) : s ≥ sj}.

• chooses her next bid as b′ = min{vj , p−j(s
∗
j ) + εprice}.

If there is no slot giving positive utility, bid vj .

Convergence issues for ab are even more serious than for
cb: the ab strategy has no fixed points when the θi’s are
separated.

The auctioneer might worry about how much revenue he
would obtain if every player followed the ab strategy. As
can be seen in Figure 6, there is indeed cause for worry: ab

produces very low revenue, much less than the VCG revenue,
where again VCG revenue is normalized to 1. It would be
interesting to see if there are any auctions in practice where
players were bidding in this way.

5.5 Theoretical results
The following Theorem compares the auctioneer revenue

obtainable by the GSP mechanism to the revenue which
could have been obtained by using the VCG mechanism in-
stead.

Theorem 16. 1. For every K > 0, there exists a key-
word auction and a Nash equilibrium of the GSP mech-
anism whose revenue is at most 1/K times the revenue
of the VCG mechanism, and moreover, every bidder i
bids bi ≤ vi.

2. For every K > 0, there exists a keyword auction and
a Nash equilibrium of the GSP mechanism whose rev-
enue is at least K times the revenue of the VCG mech-
anism.

3. If every bidder i bids bi ≤ vi (ie. is debt-averse), then
for every keyword auction and Nash equilibrium of the
GSP mechanism, the revenue is at most α∗ times the
VCG revenue, were α∗ = maxi θi/(θi − θi+1).

Proof. Part 1: Here is an example showing that the rev-
enue to the auctioneer from a GSP equilibrium may be arbi-
trarily smaller than that the revenue from the VCG equilib-
rium. The example is for a two-slot auction, where θ1 = 1
and θ2 = 1

2
. The GSP revenue is 2θ1 + (1/2)θ2 = 2.25

whereas the VCG revenue is (x+1/2)θ1+(1/2)θ2 = x+(3/4).

A GSP equilibrium much smaller than VCG
player value bid slot won GSP pr. VCG pr.

1 x + 1 x + 1 1 2 x + 1
2

2 x 2 2 1
2

1
2

3 1 1 – 0 0

Part 2: Here is an example showing that the revenue to
the auctioneer from a GSP equilibrium may be arbitrarily
larger than that the revenue from the VCG equilibrium. The
example is for a two-slot auction, where θ1 = 1 and θ2 = 1

2
.
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A GSP equilibrium much larger than VCG
player value bid slot won GSP pr. VCG pr.

1 x x 1 (x + 2)/2 3
2

2 2 (x+2)
2

2 1
2

1
2

3 1 1 – 0 0

These examples rely on player values that are arbitrar-
ily separated. The second example was constructed using
the following expression due to Varian [11], which gives the
payments that achieve the maximum Nash revenue.

θipi =
X

j>i

vj−1(θj − θj+1) (3)

Compare this with the VCG payments:

θipi =
X

j>i

vj(θj − θj+1) (4)

Observe that if the values are close to each other, the max-
imum revenue from a Nash equilibrium is close to the VCG
revenue. For example, if vi+1 ≥ αvi, then the payments
from (3) are at most a factor of 1/α from the payments of
(4).

Note that the second example showing a Nash revenue
larger the VCG revenue has the second player bidding much

more than his value and so is not debt-averse as we defined
in Section 5.2. Under the more realistic debt-averse assump-
tion we have the third part of this theorem.

Part 3: Let RM be the maximum debt-averse Nash rev-
enue. Note that the payment of i, pM

i , is at most vi+1.
If pM

i > vi+1, as all players are bidding at most their val-
ues, there would not be enough winners to fill the top i
slots. Thus the maximum risk-free Nash equilibrium rev-
enue is RM ≥

P

1≤i≤k θivi+1. On the other hand, the VCG

payment of i is θip
VCG
i ≥ (θi − θi+1)vi+1. Thus the total

VCG revenue is at most
P

θip
VCG
i ≥

P

(θi − θi+1)vi+1 =
P

(θi − θi+1)θivi+1/θi ≥ RM/α∗ as required.

6. REFERENCES
[1] Asdemir, K. Bidding patterns in search engine

auctions. In Second Workshop on Sponsored Search
Auctions (2006), ACM Electronic Commerce.

[2] Brandt, F., and Weiss, G. Antisocial agents and
vickrey auctions. In Proceedings Of The 8th Workshop
on Agent Theories Architectures (2001).

[3] Clarke, E. H. Multipart pricing of public goods.
Public Choice 11 (1971), 17–33.



1

.8

.6

.4

.2

0

0 0.2 0.4 0.6 0.8 1

R
ev

en
u
e

δ

Figure 6: AB total revenue (VCG=1)

[4] Edelman, B., and Ostrovsky, M. Strategic bidder
behavior in sponsored search auctions. In First
Workshop on Sponsored Search Auctions (2005), ACM
Electronic Commerce.

[5] Edelman, B., Ostrovsky, M., and Schwarz, M.

Internet advertising and the generalized second price
auction: Selling billions of dollars worth of keywords.
To appear in American Economic Review, 2006.

[6] Feng, J., Bhargava, H. K., and D.M., P.

Implementing sponsored search in web search engines:
Computational evaluation of alternative mechanisms.
INFORMS Journal on Computing (2006).
Forthcoming.

[7] Groves, T. Incentives in teams. Econometrica 41
(1973), 617–631.

[8] Kitts, B., Laxminarayan, P., LeBlanc, B., and

Meech, R. A formal analysis of search auctions
including predictions on click fraud and bidding
tactics. In First Workshop on Sponsored Search
Auctions (2005), ACM Electronic Commerce.

[9] Kitts, B., and Leblanc, B. Optimal bidding on
keyword auctions. Electronic Markets (2004), 186–201.

[10] Lahaie, S. An analysis of alternative slot auction
designs for sponsored search. In EC ’06: Proceedings
of the 7th ACM conference on Electronic commerce
(New York, NY, USA, 2006), ACM Press,
pp. 218–227.

[11] Varian, H. Position auctions. To appear in
International Journal of Industrial Organization, 2006.

[12] Vickery, W. Counterspeculation, auctions and
competitive sealed tenders. Journal of Finance (1961),
8–37.

[13] Web-Cite. Shooting the moon and budget busting
with overture’s auto-bidding, April 2003.

[14] Zhang, X. Finding edgeworth cycles in online
advertising auctions. MIT Sloan School of
Management, Working Paper, 2005.

[15] Zhou, Y., and Lukose, R. Vindictive bidding in
keyword auctions. In Second Workshop on Sponsored
Search Auctions (2006), ACM Electronic Commerce.

APPENDIX

Proof Sketch of Theorem 6, Part 3.
At time t, we say that a player p is activated if p is the
player who updates his bid while the other bidders repeat
their previous bids.

Lemma 17. Let T be a certain function of n, k, (θi), (vj).
For every starting configuration, there exists a sequence of
player activations, of length at most T , such that the result-
ing configuration is a fixed point.

Proof. Consider an arbitrary starting configuration. To
construct the sequence, the idea is to emulate the proof of
Theorem 10.

First, we emulate the proof of Lemma 12 as follows. Re-
peatedly activate all the players 1, . . . , k + 1 until each of
them bids at least vk+1. In other words, if one of the play-
ers in [1, k] have a current bid < vk+1, we activate all the
players 1, . . . , k+1 one at a time. By Lemma 12 after a total
of at most k + 1)t1 activations all players [1, k + 1] bid at
least vk+1, where t1 as defined in Lemma 12. Now if there
are some players in [k+2, n] who are not bidding their value,
activate one of these players so that will now bid their value.
The conclusion of Lemma 12,



bi > vk+1 ∀i ≤ k
bi = vi ∀i ≥ k + 1

will hold after at most (k + 1)t1 + n − k + 1 activations.
From that point on until the end of the sequence, players
[k + 1, n] will not be activated again. The rest of the se-
quence is partitioned into phases, corresponding to stable
sets, defined as in the proof of Theorem 10. A stable set
stays the same throughout a phase. To define the sequence
during a phase, let A be the current stable set, [i + 1, k] be
the slots occupied by the player of A, and B be the set of
players occupying slots [1, i]. Let pmin be the player in B
whose value is minimum, vmin be its value, and pi−1 be the
price of slot i − 1.

Consider the three cases enumerated in the proof of The-
orem 10. We repeatedly activate the player currently in slot
i until either Case 1 or Case 2 occurs, or pi−1 > vmin − ε,
where ε is defined as in Lemma 13. We then activate player
pmin. At this point, Case 1 or Case 2 must occur, a new
stable set is defined, and the phase ends. This completes
the definition of the sequence.

We now need to bound the length of the constructed se-
quence of player activations, independently of the starting
configuration and bids.

In the initial part players [1, k + 1] are activated at most
t1 times and players [k + 2, n] are activated at most once.
Thus this part has length at most (k + 1)t1 + n − k + 1.

It is also easy to see, as done in the proof of Theorem 10,
that the stable set in the next phase will be larger in the ≻
order, hence there will be at most 2k phases, ending with a
fixed point.



To bound the length of a phase, it is again easy to see
that during a phase, bmin can only increase; moreover, when
a player p is activated for several times, the new value of b′min

must be larger than the value of bmin during the time of his
previous activation by at least b′min ≥ bmin + (1 − γ∗)(vp −
bmin), precisely the same inequality as in the analysis of Case
3 in the proof of Theorem 10. Since we must have repetitions
of choices of player at least once every k activations, if we
define x as in proof of Theorem 10, it follows that after at
most xk activations we are ready to activate pmin and end
the phase.

Hence the length T of the sequence is at most n + 3k
plus k times the bound in Theorem 10, Part 2, which is
independent of the starting configuration.

With this Lemma, it is easy to complete the proof of
Theorem 6: In a random sequence, at every step we have
probability at least 1/n to choose the next activation as in
Lemma 17, hence the sequence will occur after about nT

steps on average, and in any case, it will occur with proba-
bility 1 after a finite time. This proves convergence.


