A Polynomial-Time Approximation Scheme for Steiner Tree in Planar Graphs

Glencora Borradaile*!

Abstract

We give an O(nlogn) approximation scheme for Steiner tree
in planar graphs.

1 Introduction

The Steiner tree problem in networks is the following.
Given a graph with edge lengths, and given a subset S of
the vertices, find a minimum-length connected subgraph
that spans all vertices in S (and possibly some others).
The vertices in S are called terminals. The minimum
spanning tree problem is the special case where every
vertex in the graph is a terminal.

Steiner tree in networks is one of the most well-
studied problems in combinatorial optimization. It was
one of Karp’s original NP-complete problems, and is
now known to be max SNP-complete (Bern and Plass-
man [6]), so there is no polynomial-time approximation
scheme for the problem unless P = N P. Takahashi and
Matsuyama [16] and Kou, Markowsky and Berman [11]
presented 2-approximation algorithms. Their running
time was improved by Wu, Widmayer, and Wong [18],
Widmayer [17], and Mehlhorn [12].

For the case of terminals in a constant-dimensional
space and distances given by the Euclidean metric,
Arora [1] gave a polynomial-time approximation scheme
(the time bound is a polynomial in n, and the degree of
the polynomial depends on €), and Rao and Smith [15]
gave an O(nlogn) approximation scheme; here n de-
notes the number of terminals.

A natural generalization of Euclidean metrics in
two-dimensional space (and a natural specialization of
the class of all metrics) is the family of undirected planar
graphs with positive edge lengths. Until now, the best
known approximation for the Steiner tree problem in
planar graphs was the general 2-approximation. Here
we give an approximation scheme.

THEOREM 1.1. For any € > 0, there is an algorithm
that, given a planar graph G with edge lengths and a
set S of vertices of G, finds a Steiner tree that spans S

~ *Partially supported by an NSERC PGS-D fellowship and the
Rosh foundation.
T {glencora,claire,klein}@cs.brown.edu,
Computer Science, Brown University.
tPartially supported by NSF Grant CCF-0635089.

Department of

Claire Kenyon-Mathieu'

Philip Klein*f

and whose length is at most 1+ € times the length of the
optimal Steiner tree spanning S. The running time is
O(nlogn), where n is the number of vertices of G.

The construction uses a dynamic-programming al-
gorithm of Erickson, Monma, and Veinott [7] to find
an optimal Steiner tree in the special case where the &
terminals all lie on the boundary of a planar embedded
graph, in time O(nk® + (nlogn)k?).!

Overview Our algorithm uses a paradigm to design
approximation schemes in planar graphs with edge-
lengths, previously used by Klein [9] in the context of
the traveling-salesman problem. The first step of the
paradigm involves removing edges to define a subgraph
of the input graph that approximately preserves the
value of the optimum and that has total length at most
a constant times that of the optimum. The idea of
using such a spanner-type result for an approximation
scheme was also used by Arora, Grigni, Karger, Klein,
and Woloszyn [2], and by Rao and Smith [15]. In fact,
Rao and Smith gave a version of Theorem 1.2 for fixed-
dimensional Euclidean space.?

Formally, fix a number 0 < € < 1, and for a graph
G with edge lengths and a subset S of the vertices of G,
let OPTg(G) denote the minimum length of a Steiner
tree in G that spans S. A subgraph H of G is a Steiner-
tree spanner with respect to S if it has the following two
properties:

(spanning) There is a tree in H that spans S and has
length at most (1 + €)OPTs(G), and

(short) The total length of H is at most some function
of € times OPTg(G).

Much of the paper is devoted to proving the following
result.

TThis algorithm has been generalized by Bern [4] and by
Bern and Bienstock [5] to handle some additional special cases,
e.g. where the terminals lie on a constant number of faces.
Provan [14, 13] used the same approach to give exact and
approximate algorithms for some geometric special cases.

2Their construction was in fact more powerful, in that the
subgraph included a nearly optimal Steiner tree spanning any
subset of S.

THEOREM 1.2. There is a function f(-) such that, for
any € > 0, there is an algorithm that, given a planar
graph G with edge-lengths and a set S of vertices of
G, finds a Steiner-tree spanner whose total length is at
most f(€) times the length of the optimal Steiner tree in
G spanning S. The running time is O(nlogn), where n
is the number of vertices of G.

The function f(e) and the constant in the running
time are doubly exponential in 1/e. Consequently, the
running time of the resulting approximation scheme is
triply exponential in 1/e.

We now sketch the construction, detailed in Sec-
tion 3.2, used to prove Theorem 1.2.

We start with a planar-graph decomposition due to
Klein [10] We decompose the planar embedded graph
via shortest paths into long, skinny subgraphs called
strips. We put the strip boundaries in the Steiner-tree
spanner. Each strip is cut width-wise by shortest paths
which we call columns in this paper.

Then we choose a subset of the columns (which
we call supercolumns) using a shifting technique (as in
Baker [3]): For some large constant k depending on e,
we take every k' column, choosing the phase shift so
as to ensure that the total lengths of the supercolumns
is at most 1/k times the total length of all columns. We
put the supercolumns in the Steiner-tree spanner.

Next, for each strip and each pair of consecutive su-
percolumns within that strip, we focus on the subgraph
enclosed by the supercolumns and the strip boundaries.
We designate as portals [1] a constant number of vertices
along the strip boundaries at regular intervals. Finally,
for each subset S’ of the portals, using the algorithm
from [7] we find an optimal Steiner tree of S’ in the
subgraph and add it to the Steiner-tree spanner.

2 Approximation Scheme

Now we sketch the approximation scheme of Theo-
rem 1.1, using the framework of [9] as it applies to the
Steiner tree problem.

Spanner step: Find a Steiner-tree spanner H of G
according to Theorem 1.2.

Thinning step: Applying a Baker-type shifting tech-
nique [3] to the planar dual of H as in [10], select
a set C of edges of H whose total length is at most
1/f(e) times the weight of H (where f is the func-
tion given in Theorem 1.2), and such that the graph
K obtained from H by contracting edges of C' has
branch-width at most 2(f(e) + 1).

Dynamic-programming step: Use dynamic pro-
gramming (see, e.g., [8]) to find the optimal
solution in K.

Lifting step: Convert the optimal solution found in
the previous step to a solution for H by incorpo-
rating some of the edges of C.

Analysis of running time. According to Theo-
rem 1.2, the spanner step takes O(nlogn) time for fixed
€. Thinning and lifting take O(n) time. The dynamic-
programming step takes time O(c/(9)n). Thus the over-
all algorithm takes O(nlogn) time for fixed e.

3 Proof of Theorem 1.2

3.1 Preliminaries For a graph G, let distg(-,-) de-
note the shortest path distance. We omit the subscript
when it is clear which graph is intended.

For a path P, we denote the first vertex of P by
start(P) and the last vertex by end(P). A vertex of
P other than start(P) and end(P) is internal to P.
For vertices z,y on P, we denote by P[z,y] the z-to-y
subpath of P. We denote by P(z,y) the path obtained
from P[x,y] by omitting the first vertex x and the last
vertex y. P(z,y] and P[z,y) are similarly defined.

A subgraph H of a graph G is also considered a
subset of the edges of G. The set of vertices of G that
are endpoints of edges in H is denoted V(H).

The boundary of a planar embedded graph H is
the set of edges bounding the infinite face. An edge
is strictly enclosed by the boundary of H if the edge
belongs to H but not to the boundary of H.

For an assignment £ (-) of lengths to edges and a set
A of edges, we use £ (A) to denote) 4 £ (e).

3.2 Construction Let G be a planar embedded
graph with positive edge-lengths £(-), and let S be a
set of vertices. The algorithm consists of seven steps.
Steps 1 through 3 of the algorithm to build a spanner
for (G, S) are identical to the first three steps in Klein’s
construction [10] of a subset spanner.

Step 1: Cutting the graph open The first step is
to find a 2-approximate Steiner tree T spanning S in
G. Viewed as a planar embedded graph, the single face
of T is an Euler tour that traverses each edge once in
each direction. Let (G; be the planar embedded graph
obtained by duplicating each edge of T and introducing
multiple copies of vertices, so as to transform this
Euler tour into a simple cycle enclosing no vertices and
bounding a single face. Change the embedding to take
this face to be the infinite face of GG;. This process is
illustrated in Figure 1.

LeMmMA 3.1. (Klein [10])

¢ (boundary of G1) < 40PTs(G).

This first step can be done in O(nlogn) time [12,
17, 18].

Figure 1: The process of cutting open a graph along
a tree: duplicate edges, replicate vertices and creating
a new face (the shaded face). For example, the bold
edges form a 2-approximate Steiner tree that we cut
open. The light solid edges form the minimum-length
Steiner tree: in the resulting graph, these edges form a
forest.

Step 2: Breaking the graph into strips The
second step is to decompose G into strips. Let H be
the boundary of Gy. Let Hlx,y] denotes the unique
nonempty counterclockwise z-to-y subpath of H.? We
use a recursive algorithm.

Find?* vertices z,y on H such that

o (14 e)distg, (z,y) < ¢ (H[z,y]), and

o (1+e)distg, (2/,y) > £ (H[x',y']) for every 2/, ¢ in
Hz,y] such that ' Zx ory #y

Let B be a shortest path from = to y in G;. Then
the subgraph enclosed by H|x,y] U B is called a strip.
The path B is called the blue boundary of the strip.
The path H|[z,y] is called the red boundary of the strip,
and is denoted R. We think of the blue boundary as
the upper boundary and the red boundary as the lower
boundary. With this orientation, we direct R and B
from left to right.

Recursively decompose the subgraph of G; enclosed
by BU H — H[z,y] into strips (if this subgraph is
nontrivial).

LEMMA 3.2. Inequality (10), Klein [10] ~ The total
length of all the boundary edges of all the strips is at
most (e~! + 1) times the length of H.

Klein [10] shows that the strip decomposition of an n-
vertex planar graph can be found in O(nlogn) time.

3Tf ¢ = y then H[z,y] is defined to be H.
4Such a pair of vertices always exists since choosing z = y
satisfies the first condition.

Step 3: Finding short paths crossing the strips
We have decomposed G into strips. Next, for each
strip we find short paths crossing the strip. We call
these short paths columns in this paper. Consider a
strip, and let R and B be its red and blue boundaries.

We select vertices rg,7r1,... inductively as follows.
Let r9 be the left endpoint common to R and B. For
1=1,2,..., find the vertex r; on R such that
° (1 —I—G)diStGl (7’1', B) < diStR(Ti, Tifl) —|—diStG1 (Tifl, B),
and
e (1 + e)distg, (z, B) > distg(z, ri—1) + distg, (ri—1, B)
for every x in R[r;—1,7;).

For i = 0,1,2,..., column Cj; is defined to be a
shortest path from r; to B. Note that Cj is a path
with no edges since ry belongs to B. We also include as
a column the no-edge path starting and ending at the
rightmost vertex common to R and B.

Figure 2: (a) The first strip is created by a path
(dashed) connecting x to y. The distance between
every pair of vertices, 2’ and g’, between z and y on
the boundary is well approximated by the boundary
distance. We recurse on the shaded face. (b) A graph
is divided into strips (by the dashed lines). One strip
is shaded and enlarged in (c). Columns (vertical lines)
are taken from the set of shortest paths from the lower,
red boundary R (dashed) to the upper, blue boundary
B (solid).

LEMMA 3.3. Lemma 5.2, Klein [10] The sum of the
lengths of the columns in a strip is at most e 4 (R).

It is easy to find all the columns in O(nlogn) time.

Step 4: Selecting supercolumns, dividing each
strip into panels Let k = 16¢ 2(1 + ¢ !). For each
strip, we select a subset of the columns of that strip
as follows. Let Cy,C4,...,Cs be the columns. For
i=0,1,....,k—1, let C; = {C; j =i (modk)}.
Let i* = minarg; £(C;). We designate the columns in
C;~ as supercolumns.

LEMMA 3.4. The sum of lengths of the supercolumns in
a strips is at most 1/k times the sum of the lengths of
the columns in the strip.

We have decomposed (G into strips. The super-
columns of a strip further decompose that strip into
subgraphs called panels. Namely, for each pair of con-
secutive supercolumns of a strip, the subgraph of the
strip bounded by those supercolumns is a panel. The
boundary of a panel P consists of the left supercolumn
C1(P), the right supercolumn C3(P), a subpath R(P)
of the red boundary of the strip, and a subpath B(P) of
the blue boundary of the strip. We refer to these pieces
of the boundary as C1, C5, R, B when the choice of the
panel P is clear.

Each panel P possesses the following panel proper-
ties:

1. For every pair z,y of vertices in B, distg(z,y) <
(14 e)distp(x,y).

2. For every pair x,y of vertices in R, distr(z,y) <
(14 e)distp(z,y).

3. There exist vertices rg, 71,72, ...,7rs on R such that
r < k and, for every 1 < ¢ < s, for every vertex
x on R, for * = max{i : r; is left of x in R}, we
have

distr(z, 7+) + dist p(rs=, B) < (1 + €)distp(z, B).

Step 5: Selecting portals For each panel P, we
designate some of the boundary vertices as portals. Let
h = h(e) be a function to be determined later, and let
7(P) = Z(R(P))J}ZE(B(P))'

We select portals among the vertices of R induc-
tively as follows. The first portal is the leftmost vertex
Vet 0f R. Inductively, let w be the vertex on R imme-
diately to the right of the last portal designated, and
designate as the next portal the rightmost vertex v of
R such that ¢ (R[w,v]) < 7(P). Finally, the rightmost
vertex vrignt of R is also designated as a portal.

For each portal v except for viesr and vrigne, the
length of the subpath of R from the previous portal
to v is more than 7(P). Hence the number of portals is
less than 2 + ¢ (R)/7(P).

We similarly define portals on B. The total number
of portals on R and B is less than 4 + (¢(R) +
£(B))/7(P). We obtain the following portal properties:

e representative: For any vertex u on R, there is
a portal v such that ¢(R[u,v]) < 7(P). For
any vertex w on B, there is a portal v such that
€ (Blu,v]) < 7(P).

e cardinality: The number of portals on the boundary
of the panel is at most h + 4.

Step 6: Finding Steiner trees For each panel P
and for each subset S of portals on that panel, find
an optimal S-spanning Steiner tree in the panel using
the algorithm of Erickson et al. [7] mentioned in the
introduction, where the lengths of edges of Cy(P)
and C3(P) are reassigned zero. Since the number of
terminals of each Steiner-tree problem solved here is a
constant, the time for this sixth step is O(nlogn).

Step 7: Putting it together The spanner H is
defined as the union of the following: (1) the edges of
the approximate Steiner tree T', (2) the edges of all strip
boundaries, (3) the edges of all supercolumns, and (4)
the edges of all Steiner trees found in Step 6.

The running time of the construction is O(nlogn).

3.3 The shortness property

LEMMA 3.5. The total length of edges in all strip
boundaries is at most 4(e~! + 1) OPTg(G).

Proof. Combine lemmas 3.1 and 3.2. O

The length of each Steiner tree constructed in Step
6 is at most £(R) + ¢(B). There are at most h + 4
portals, so the number of Steiner trees is at most 2714
Thus the total length of all edges in these Steiner trees
is at most 2"+4(¢ (R)+/ (B)). Summing over panels and
using Lemma 3.5 and the fact that each strip boundary
edge occurs in at most two strips gives a bound of at
most 2"+48(1 + e 1)OPTs(G).

Together, the total length of the Steiner-tree span-
ner is at most OPTg(G) times 4(1+¢e7 1) +e+2"+7(1+
€~1). This proves the short property of Theorem 1.2.

The remainder of the paper is devoted to proving
the spanning property of the Steiner-tree spanner.

3.4 The spanning property.

LEMMA 3.6. The sum over all panels of the lengths of
all the supercolumns is at most § OPTg(G).

Proof. Combine lemmas 3.1, 3.2, 3.3, 3.4 and definition
of k. O

The key to proving the spanning property is the
following theorem, proved in Section 4.

THEOREM 3.1. Let P be a plane graph satisfying the
panel properties, with boundary C; UC2 URUB. Let F
be a set of edges strictly enclosed by the boundary of P.
There is a forest F of P with the following properties:

1. If two vertices of V(RUB) are connected in F' then
they are connected in F'.

2. The number of wvertices in V(R U B) that are
endpoints of edges of F'— (R U B) is at most a(e).

3. L(F) < (1+ce)l (F)

Here ¢ is an absolute constant and a(e) is a certain
function of €.

Now we show how to use Theorem 3.1 to prove the
spanning property.

Let T* be an optimal Steiner tree in G spanning
S. Considering Step 1 of the spanner construction, map
each edge of T to an edge in GG1, choosing one of the two
duplicate edges arbitrarily when the edge of T* happens
to also be an edge of T. Let F* be the resulting set of
edges of G1.

Consider Step 4 of the spanner construction. For
each panel P, let F(P) denote the set of edges of
F* that are strictly enclosed by the boundary of P
together with the edges of C1(P) and C3(P). Apply
Theorem 3.1 with € = ¢/3¢ to obtain a forest F'(P) such
that £ (F(P)) < (1+)¢ (F(P)).

Let Q(P) denote the set of vertices of V(R(P) U
B(P)) that are endpoints of edges of F(P) — (R(P) U
B(P)). Note that |Q(P)| < a(e). For each vertex ¢ €
Q(P), let p(q) denote the subpath of R or B (whichever
contains ¢) connecting ¢ to the nearest portal. Note
that £ (p(q)) < 7(P), so we have

Y. Le(@) < 1QP)T(P)

qeQ(P)
< af. LEP) ?)e (B(P))
d(P)
= 200

where we define h(e) =
L(R(P))+L(B(P)).

Let Fy(P) denote F(P)UJ{p(q) :
have

- a(e) and d(P) =
g € Q(P)}. We

LE(P) < LEP)+ Y o))

q€Q(P)
a(p)
< (1+¢€/3)(F(P))+
(L /3L (FP) + 5
For each connected component C' of Fy(P), there
is an optimal Steiner tree Fo(P) found in Step 6 that
connects the portals in V(C). By construction, the
edges of Fo(P) lie in the spanner. Let Fy(P) denote
the union of these Steiner trees. By optimality of the

Steiner trees,
> L)
c

L(FL(P))

C(F3(P))

IN

IN

Let F3(P) = Fo(P) U U{p(q) : g € Q(P)}. Since the
paths p(q) lie in R(P) and B(P), all the edges of F5(P)
lie in the spanner. We have

C(F3(P)) < (1+¢/3)0(F(P)) +

For a vertex x internal to one of the supercolumns
C1(P) and C3(P), define zp to be the red vertex of
that supercolumn. If z is in V(R(P)U B(P)), on the
other hand, define xtp = x. Note that in either case
xp € V(R(P)U B(P)).

Let Fy(P) = F5(P) U(F* N (R(P) U B(P))).

CLAIM. Suppose x and y are vertices of V(C1(P) U
C3(P) U R(P) U B(P)) that are connected in F* N P.
Then xp and yp are connected in Fy(P).

Proof. (For notational simplicity, we omit “(P)” in the
proof.) Since Fj includes the edges of F* N (R U B), it
suffices to prove the claim for the case where the z-to-y
path in F* N P contains no edges of RU B. Because F'
contains C; and Cs, there is an x p-to-yp path in F' that
contains no edges of RUB. By Theorem 3.1, there is an
xp-to-yp path in F. Combining this path with p(zp)
and p(yp) yields a path in F; between the portal closest
to xp and the portal closest to yp, and hence a path in
F5 with the same endpoints. Combining this path with
p(xp) and p(yp) yields an zp-to-yp path in Fj. O

Now let T = {Jp Fi(P) where the union is over all
panels.

CLAIM. The subgraph of G consisting of edges of T
connects every pair of vertices of S.

Proof. Consider a pair of vertices of S. There is a path
in the optimal Steiner tree T* between them. This path
decomposes into minimal paths between the vertices of
the 2-approximate Steiner tree T. Each such path in
turn is a path D in G; between boundary vertices of
G1. The path D in GGy decomposes into subpaths where
each subpath lies entirely within a panel P. Consider
such a subpath, and let x and y be its start and end
vertices. Then there is a corresponding xp-to-yp path
in Fy(P). We show that combining these paths yields a
path in T with the same endpoints as D.

Consider two consecutive subpaths 81 and (2 of
D, one in panel P; and one in panel P,. Let v; and
~2 be the corresponding paths in Fy(Py) and Fy(P).
Let = be the vertex common to the two paths, i.e.
x = end(B;) = start(fz). If z is internal to a column,
then xp, is the red vertex of that column, and the same
is true for xp,, so xp, = xp,. This shows that v;
concatenated with v, is a path.

Now consider the first subpath 3 of D, and the panel
P in which it lies. The first vertex x = start(/) belongs
to the boundary of G; and hence cannot be an internal
vertex of a column, so xp = x. The same argument
applies to the last vertex of the last subpath of D. This
proves that the concatenation of the paths in Fy(P) is
a path with the same start and end vertices as D. 0O

We have ¢ (F*) = OPTg(G). Write F* = Ff U F¥,
where we define F}* to be the set of edges of F™* internal
to strips, and we define F5 to be the set of edges of F™
belonging to strip boundaries. It remains to bound the
length of 7.

0(T)
= ((JFu(P))
P

= ((JFs(P)uU (F* N (R(P)UB(P))))

= ((JF(P) +e(JF n(R(P)UB(P))

3 ((1 + %)e (F(P)) + @) +O(FY)

P

IN

by our upper bound on ¢ (F5(P)).
Next we bound each of the two sums separately.

S e (F(P))
P
< LED Y (E(CLUP)) +L£(Ca(P)))
P
< L(F)+ ;OPTs(G)

by Lemma 3.6. Finally,

IN

> @ 58((1 +1)OPTs(G)
5

IN

§OPTS(G)

by Lemma 3.2 and the fact that each strip-boundary
edge belongs to at most two panels, and where we define
gle) =24(e7 1 +1).

Combining these inequalities and using € < 1, we
obtain £ (T) < (1 + €)OPTg(G), proving the spanning
property.

4 Proof of the structure theorem

In this section we prove Theorem 3.1. We consider a
planar embedded graph graph G bounded by R, Ci,

B, and C5 and satisfying the panel properties, and a
forest Fy. We show how to modify Fj to get a forest
that preserves the connectivity of Fy among vertices in
in RU B and has length at most 1 + ce times the total
length of Fy. For this proof, we refer to the vertices in
R U B as terminals.

A vertex of B is designated blue, and a vertex of
R not in B is designated red. Let T be a tree in G.
An edge e of T is a spine edge if the two connected
components of T'— {e} both contain both blue vertices
and red vertices.

LEMMA 4.1. For each tree T, the spine edges of T form
a simple path.

We call this simple path a spine.

A vertex is a spine vertex if it is the endpoint of a
spine edge. If a bichromatic tree T contains no spine
edges, designate as the spine vertex some vertex v such
that each component of T'— {v} is monochromatic.

For a tree T, define a good path to be a simple path
in T containing at least one edge and containing no
spine edges and no edges of R U B. A spine vertex v
is red-attached if there is a good wv-to-red path. If v
is red-attached, the v-rooted off-spine red subtree is the
tree formed by the union of all the good v-to-red paths.
Note that all the leaves of an off-spine red subtree are
red vertices. Blue-attached and off-spine blue subtree
are defined similarly.

A run is a maximal subpath P of a spine such that
at least one of the following properties holds:

1. no internal vertex of P is red-attached, or

2. no internal vertex of P is blue-attached.

B

L2 ‘ Ll

Figure 3: Here is a tree spanning blue vertices on B and
red vertices on R in a panel. Each edge of the shaded
path is a spine edge.

We carry out the modifications to Fj in four stages,
producing, in turn, Fy, F3, F3, and Fjy, with the
following properties.

1. For i = 1,2,3, each tree T of F; — R U B contains
both red and blue vertices.

3

2. F5 has at most ¢;e¢™° runs.

3. For i = 3,4, the number of off-spine subtrees in F;
is at most €1 4 6 times the number of runs in Fs.

4. Each off-spine subtree of F; has at most cé/ “ leaves.

In the above c¢1, co, and c3 are small absolute constants.

Let F = F,. In carrying out the modifications,
we only remove an edge if the edge belongs to a cycle.
Hence if two vertices of V(R U B) are connected in F,
they are connected in F. By combining Properties 2-4,
we infer that the number of leaves of off-spine trees is at
most ¢1(e”* + 6_3)0;)/6. Property 1 implies that every
terminal that is an endpoint of an edge of F' — (R U B)
is a leaf of an off-spine tree. Finally, we also show that
((F) < (14ce)l (F) for some constant ¢. Thus F fulfills

the requirements of Theorem 3.1.

Achieving the first property

Let T be a monochromatic tree of Fy— RUB and suppose
without loss of generality that T" has red vertices but no
blue vertices. Let x and y be the left and rightmost
vertices of T" on R. Then T must have length at
least dist(z,y). Since R is an approximately short
path, ¢(R[z,y]) < (1 + e)dist(z,y). Replacing T in
Fy with R[z,y] produces a forest spanning the same
set of terminals as Fy. Repeat this process for every
monochromatic tree of F to obtain a forest F; with
Property 1.

Achieving the second property

Define a red terminal v to be a red junction of a forest F'
if there are two edges of R incident to v and both of them
are spine edges of F'. Define blue junction similarly.

Define a witness path for a forest U to be an R-to-B
path P containing no edges of RUB such that P neither
starts nor ends at a junction.

Our goal in this section is to modify Fj so as to
bound the number of runs. We use the following lemma.

LEMMA 4.2. For any forest F', the number of runs is
at most the mazimum number of vertex-disjoint witness
paths.

Proof. Let S be a spine of F. Arbitrarily orient S. For
each run M belonging to S, we select a witness path
Py;. The path Pp; does not use the first vertex of M.
It follows that the witness paths are vertex-disjoint.
Let M be a run, and let w be its last vertex. There are
three cases.

Case I: Some internal vertex v of M is red-attached.
Then w must be blue-attached. Define Py, as the

concatenation of (1) a red-to-v path through a v-rooted
off-spine red subtree, (2) the v-to-w subpath of M, and
(3) a w-to-blue path through a w-rooted off-spine blue
subtree.

Case II: Some internal vertex of M is blue-attached.
This case is similar to Case 1.

Case III: No internal vertex of M is either red-attached
or blue-attached. In this case, w must be both red-
attached and blue-attached. Define Py; as a red-
to-w path through a w-rooted off-spine red subtree,
concatenated with a w-to-blue path through a w-rooted
off-spine blue subtree. 0

It remains to modify F; so as to bound the maxi-
mum number of vertex-disjoint witness paths.
Let P be a maximum set of vertex-disjoint witness

AR\
LA A

Figure 4: A maximum set of vertex-disjoint witness
paths, indicated as light lines.

Lo

R

Recall the vertices rg,r1,79,...,7s discussed in the
third of the panel properties. For each i, if there is a
vertex z in {start(P) : P € Py} that lies in the interval
R[ri,rit1), let x; be the rightmost such vertex. If there
is no such vertex, let x; = r;.

We obtain F, from F; by adding the edges of
U; R[ri, ;] and removing just enough edges not in R
to make Fy acyclic. Refer to Figure 5 for an illustration
of the construction of Fj.

First we show that ¢(F3) < (1 + €)¢((F1). By a
panel property, ¢ (R[r;,x;]) < e - z;-to-blue distance.
If ¢(R[r;,z;]) > O then there is a path in P; whose
length is at least the x;-to-blue distance. This shows
Zi 14 (R[Ti, Il]) S el (Fl)

Let P2 be a maximum set of vertex-disjoint witness
paths in F>. We show that |Ps| < 6(k + 1) by showing
that, for each i, there are at most two witness paths
starting at vertices in R[r;, 2;] and at most four starting
at vertices in R(x;, 7i41)-

Fix 4, and consider R[r;,z;]. Suppose F» has (at
least) three witness paths Q1,Q2, Qs (ordered left to
right by the positions on R of their start vertices)
all starting in R[r;, z;]. Then R[start(Q1),start(Qs)]

fi lis1

@

v w\ ;
(b)

Figure 5: Construction of the forest F» that satisfies the
second property. (a) A part of Fy with witness paths
(light) with red vertices between r; and 7,11 on R. (b)
The construction adds the light dashed path to F» and
removes edges to ensure Fb is a forest. There is only
one witness path left.

consists of spine edges since each component of F» —
R[start(Q1), start(Qs)] contains both red and blue ver-
tices (namely the endpoints of (7 and Qs3). Hence
each vertex in R(start(Q1),start(Qs)) is a red junction,
which contradicts the choice of the start of Q2. Thus
F has at most two witness paths that start in R[r;, z;].

Let S be the set of witness paths in Py whose start
vertices are in R(z,7;41). Assume for a contradiction
that |S| > 5. Let A be the set of paths in P; that
intersect paths in S. Every witness path in F5 is a
witness path in Fi, so P1 US — A is a set of disjoint
witness paths in Fj. Since P; is maximum, |A| > 5. By
choice of x, none of the paths in A start in the interval
R(z,7i11), so each starts either to the left of = or to the
right of r;11. Hence either three or more start to the left
of & or three or more start to the right of r;;1. Assume
the latter without loss of generality, and let A1, Ao, Ag
be the three paths in right-to-left order of their start
vertices on R.

Let S8’ be the subset of paths in S that intersect
A, As, Az, I |S/| < 3 then Py U {Al,Ag,Ag,} -8
would be a vertex-disjoint set of witness paths in F5 of
size greater than |Ps|, a contradiction. Hence |S’| > 3.
Let S1, 52,53 be three paths in &', in right-to-left order
of their start vertices on R.

Now S; and S; must intersect at least two of
Ay, Ag, As (using the fact that |P;] is maximum). Be-
cause start(Sz2) is right of start(S7), Se must intersect
Az and hence also A; (because start(A;) is between
start(S2) and start(Asz)). Since start(Ss) is right of
start(Ss2), S3 must intersect A; and Ay. Now there is
a cycle in F; consisting of subpaths of S, S3, A1, and
As between the vertices V(A2) NV (S2), V(A2)NV(S)3,
V(A1)NV(S2), and V(A1) NV (Ss). Since F; is a forest,
this is a contradiction.

This gives us a total of 6(k + 1) < cie~3 witness
paths in F, for a small constant ¢; and so Fb has

Property 2.

Achieving the third property

F, has at most c;e 2 runs. We modify F; obtaining F3

so that for each of Fy’s runs there are at most e ! + 6
off-spine subtrees in F5. The modifications preserve
Property 1.

Consider in turn each run S of a spine of F. The
start and end vertices of S are each roots of at most one
red off-spine tree and one blue off-spine tree, for a total
of four off-spine trees. Now consider the internal vertices
of S. Assume without loss of generality that no internal
vertex of S is blue-attached. Suppose that S contains at
least e~ ! + 2 red-attached vertices. In this case, we will
perform a modification of the sort depicted in Figure 6.
The operation will reroute the spine and eliminate all
but at most e~ + 2 of the off-spine subtrees. Let as be
the sum of (a) the length of the subpath of S consisting
of its internal vertices, and (b) the total length of the
off-spine subtrees rooted at these vertices. We will show
that, for a constant ¢, the increase in length is bounded
by ce - as. (Thus the overall length increase due to all
such modifications is at most ce £ (Fy).)

Before

After

Figure 6: The spine (bold path) is redirected along
theo leftmost path of an off-spine subtree (bold dashed
path), along R (light path) and along the reverse of the
rightmost path of another off-spine subtree (bold dashed
path) allowing us to remove the off-spine trees between
these two.

Let T1,...,Ts be the off-spine red subtrees rooted
at vertices of S, ordered left to right by the positions on
R of their leaves. Let R’ be the minimal subpath of R
containing all these leaves. Consider the path from the
leftmost vertex of R’ that goes along T} to its root, then
along the spine, then down T to the rightmost vertex
of R'. By a panel property, the length of this path times
1+e€is at at least £ (R’), so (14+€)ag > £ (R) (This fact
is used in Case II below.)

Say a subtree T; is light if its weight is less than
e {(R) and is heavy otherwise. Let L = {i
T; is light}. Let

{ (minL)—1+4+s— (maxL) if L#0
s

otherwise

Figure 7: The path P is obtained by traversing the
leftmost path of Ty, 1 to the root, then along the spine
to the root of Tiaxr, then down the rightmost path.
The subpath of spine traversed is S’. Because of a panel
property, the subpath of R between the start and end
of P is almost as short as P.

Case I: 7 > e ! + 2. In this case, the operation
depicted in Figure 6 is applied to T7 and Ts. This op-
eration retains the leftmost path of 77 and the right-
most path of Ts, and adds the subpath R/, and these
paths now become part of the spine. The operation
removes all other edges of 77 and Ty, and all edges in
Ts,...,Ts_1. The connectivity between the leaves of the
T;’s and the spine is preserved because of the addition
of R'. The resulting decrease in weight is at least

s—1

D T) —¢(R) =

=2

(' et (R)) - (R)
> 0

Case II: 7 < e ! + 2 In this case, the operation
depicted in Figure 6 is applied to Tiinr and Tpaxr.
This operation retains the leftmost path P, of Tiiny
and the rightmost path P, of Tyaxz, and adds the
subpath R[end(P;),end(P2)]. The operation removes all
other edges of Tiyinz and Tiyax 1, and removes all edges
in T1+minL; T2+minL; ey T71+maxL- The operation
also removes the subpath S’ of the spine from the root
of Tiinr to the root of Tiax . The operation leaves at
most e ' + 2 off-spine subtrees.

Consider the path P obtained (as shown in Figure 7
by traversing P; in reverse (towards S), then traversing
the subpath S’, then traversing P, back to R. Note that
L(P) =L(P)+ £(S") + £(P;). By a panel property,
£(R[end(Py),end(P,)]) < (14 €)¢(P). The increase in
length due to this operation is

£(Rlend(P;),end(P2)]) — £ (S")
< L+ (P)+L(S) +L(P2) — ()
< 2e(1+e)l(R)+el(S)
Clearly the length of the subpath of S consisting of its

internal vertices is at least ¢(S’). This shows ag >
£(S’). By the fact mentioned before the case analysis

began, (1+€)ag > £ (R'). Combining these inequalities
shows that the increase in length due to the operation
is at most ce ag for some constant c.

Achieving the fourth property

Let T be a off-spine subtree of F3 that is rooted at a
spine vertex and whose leaves are terminals on (without
loss of generality) R.

As long as there exists a vertex with at least three
children, carry out the following step. Let u be a vertex
of T with at least three children such that w has no
such ancestor in T'. let T, be the subtree of T rooted
at u and replace T, with (1) the subpath R’ of R that
spans all terminals of T;, and (2) the shortest u-toR’
path (Figure 8 (a)).

Let T” be the tree thereby obtained. Every vertex
has at most two children in 7.

Partition the edges of T’ into super-edges, defined
as follows: a super-edge is a maximal path in 7" whose
internal vertices all have degree 2 in T'. Partition
the super-edges into levels according to the number
of super-edges traversed when going from the root to
the beginning of the super-edge. There exists a level
i € {1,...,e '} such that the sum of the costs of the
super-edges at level ¢ is at most el (77).

Let U be the set of all vertices which are start
vertices of super-edges of T" at level 7. For each u € U,
let T! be the subtree of T rooted at u, and replace T,
with (1) the subpath R’ of R spanning all terminals of
T) and (2) the shortest u-to-R’ path (Figure 8 (b)).

Figure 8: (a) and (b) Replacing the tree rooted at u
with R[z,y] and a path of length dist(u, R) is cheap.

Let T be the tree thereby obtained. Since each
vertex of T" has at most two children, and 7" has at
most 1/¢ levels, T” has at most 2'/<t1 vertices of degree
1 on R. Thus T” satisfies Property 4.

Now we analyze the increase in cost.

First, we analyze the increase in cost when going
from T to T'. Consider a single replacement step. Note
that T, has cost equal to the distance from u to R’ plus
the length of R’. Since u has at least three children in
T, it must be that T, contains three disjoint paths from
u to R: a path Py, to the leftmost terminal x reached,
a path Ppr to the rightmost terminal y reached, and a
path Py to some terminal in the middle (Figure 8(a)).
Note that ¢ (Pr) + ¢ (Pr) must be at least the distance
between z and y, which is at least £ (R')/(1+ €) by one
of the panel properties. Moreover, ¢ (Pys) > dist(u, R).
It follows that the length of the set T, of edges removed
is at least £(R’)/(1 + €) + dist(u, R’), which in turn
is least 1/(1 + €) times the length of the replacement
paths. Summing over all replacements, we infer that
(T < (14 ¢€)e(T).

Second, we analyze the increase in cost when going
from T’ to T”. Let p be a super-edge from u to v.
Since u has at least three children, it must be that T},
contains three disjoint paths: a path Pr from u to the
leftmost terminal x reached, a path Pgr from u to the
rightmost terminal y reached, and a path Py from v to
some terminal in the middle (Figure 8(b)). We have:
(Pr) + £ (Pg) > dist(z,y) > £(R")/(1 + €). Moreover,
£(Pyr) > dist(v, R') > dist(u, R') — ¢ (p). Thus:

0(T)) > C(R)/(1+¢€) +dist(u,R') —£(p)
> U(T,)/(L+e) = L(p).
Summing, we get that £ (T") < £(T")(1+¢e)+> L (p) <
L(THY(1+e)+ el (T),s0 b (T") < (1+4e)(T).

Repeating this process for every off-spine subtree of
F3 gives a forest F) satisfying Property 4. It is clear
that the process does not increase the number of off-
spine trees or create monochromatic trees.

References

[1] S. Arora. Polynomial-time approximation schemes for
euclidean TSP and other geometric problems. JACM,
45(5):753-782, 1998.

[2] S. Arora, M. Grigni, D. Karger, P. Klein, and
A. Woloszyn. A polynomial-time approximation
scheme for weighted planar graph TSP. In 9th SODA,
pages 33-41, 1998.

[3] B. Baker. Approximation algorithms for NP-complete
problems on planar graphs. JACM, 41(1):153-180,
1994.

[4] M. Bern. Faster exact algorithms for steiner trees in
planar networks. Networks, 20:109-120, 1990.

[5] M. Bern and D. Bienstock. Polynomially solvable
special cases of the steiner problem in planar networks.
Annals of Operations Research, 33:405-418, 1991.

[6] M. Bern and P. Plassmann. The Steiner problem with
edge lengths 1 and 2. IPL, 32:171-176, 1989.

[7] R.E. Erickson, C. L. Monma, and A. F. Veinott. Send-
and-split method for minimum concave-cost network
flows. Mathematics of Operations Research, 12:634—
664, 1987.

[8] I. Hicks, A. Koster, and E. Kolotoglu. Branch and tree
decomposition techniques for discrete optimization. In
J. Smith, editor, TutORials 2005, INFORMS TutO-
Rials in Operations Research Series, chapter 1, pages
1-29. INFORMS Annual Meeting, 2005.

[9] P. Klein. A linear-time approximation scheme for
planar weighted TSP. In 46th FOCS, pages 647—647,
2005.

[10] P. Klein. A subset spanner for planar graphs, with
application to subset TSP. In 38th STOC, pages 749—
756, 2006.

[11] L. Kou, G. Markowsky, , and L. Berman. A fast
algorithm for Steiner trees. Acta Informatica, 15:141—
145, 1981.

[12] K. Mehlhorn. Approximation algorithm for the Steiner
problem in graphs. IPL, 27(3):125-128, 1988.

[13] J. S. Provan. An approximation scheme for finding
steiner trees with obstacles. SIAM Journal on Com-
puting, 17:920-934, 1988.

[14] J. S. Provan. Convexity and the steiner tree problem.
Networks, 1988.

[15] S. Rao and W. Smith. Approximating geometrical
graphs via "spanners” and ”"banyans”. In ACM Sym-
posium on Theory of Computing, pages 540-550, 1998.

[16] H. Takahashi and A. Matsuyama. An approximate so-
lution for the steiner problem in graphs. Mathematica
Japonicae, 24:571-577, 1980.

[17] P. Widmayer. A fast approximation algorithm for
Steiner’s problem in graphs. In Graph-Theoretic Con-
cepts in Computer Science, volume 246 of LNCS, pages
17-28. Springer Verlag, 1986.

[18] Y. Wu, P. Widmayer, and C. Wong. A faster approx-
imation algorithm for the Steiner problem in graphs.
Acta informatica, 23(2):223-229, 1986.

