
Tierless Programming and Reasoning for Software-Defined Networks

Tim Nelson Andrew D. Ferguson Michael J. G. Scheer Shriram Krishnamurthi
Brown University

Abstract
We present Flowlog, a tierless language for program-

ming SDN controllers. In contrast to languages with
different abstractions for each program tier—the control-
plane, data-plane, and controller state—Flowlog provides
a unified abstraction for all three tiers. Flowlog is rem-
iniscent of both SQL and rule-based languages such as
Cisco IOS and JunOS; unlike these network configuration
languages, Flowlog supports programming with mutable
state. We intentionally limit Flowlog’s expressivity to
enable built-in verification and proactive compilation de-
spite the integration of controller state. To compensate for
its limited expressive power, Flowlog enables the reuse
of external libraries through callouts.

Flowlog proactively compiles essentially all forward-
ing behavior to switch tables. For rules that maintain
controller state or generate fresh packets, the compiler
instructs switches to send the minimum amount of neces-
sary traffic to the controller. Given that Flowlog programs
can be stateful, this process is non-trivial. We have suc-
cessfully used Flowlog to implement real network appli-
cations. We also compile Flowlog programs to Alloy, a
popular verification tool. With this we have verified sev-
eral properties, including program-correctness properties
that are topology-independent, and have found bugs in
our own programs.

1 Introduction

In a software-defined network (SDN), switches delegate
their control-plane functionality to logically centralized,
external controller applications. This split provides sev-
eral advantages including a global view of network topol-
ogy, and the use of general-purpose programming lan-
guages for implementing network polices. These general-
purpose languages require an interface to the switch hard-
ware, such as OpenFlow [20], which also provides a basic
abstraction of the switch’s flow tables.

To best use this interface, recent research has produced
domain-specific languages like NetCore [21] that can be
proactively compiled to flow tables. While this exclu-
sive focus on flow tables simplifies compilation, it hurts
expressivity. NetCore, for instance, can describe a for-
warding policy, but lacks the ability to reference (let alone
change) state on the controller.

Instead, the programmer must write a multi-tier pro-
gram: a wrapper in a general-purpose language that main-
tains control-plane state and dynamically creates new,
stateless data-plane policies to describe current forward-
ing goals. The data-plane policies must also specify
which packets the switches should send to the controller,
but—due to the multi-tier, multi-language nature of these
programs—there is no structured connection between poli-
cies that describe packets the controller receives, and the
arbitrary code in a callback function that consumes them.
This gap can lead to bugs in how switches update the
controller, resulting in incorrect controller state or net-
work policies. Moreover, if packets are delivered to the
controller needlessly, performance suffers.

To better support controller programming, we have cre-
ated Flowlog, a tierless network programming language.
As in web-programming, where a program contains mul-
tiple tiers such as client-side JavaScript, a server-side
program, and a database, an SDN system also has mul-
tiple tiers: flow rules on switches, a controller program,
and a data-store for controller state. By incorporating all
of these tiers, a single, unified Flowlog program describes
both control- and data-plane behavior.

Flowlog also provides built-in support for program
verification. Because controller programs pose a single
point of failure for the entire network, verification tools
are invaluable to SDN developers. Prior SDN controller
analysis work has often focused on the switch rules them-
selves, either statically [2, 12, 19, 26] or dynamically, as
each update is sent to the switches [25]. However, most
SDN analyses focus on trace properties: statements about
the end-to-end behavior of packets in the network (e.g.,

1

a lack of routing loops). While these analyses are use-
ful, they generally must be performed with respect to a
given topology, which limits their flexibility, reusability,
and scalability. In contrast, our reasoning focuses on
properties independent of network topology.

We have limited Flowlog’s expressive power to support
both tierlessness and verification, while retaining enough
expressivity to be useful for real-world programming. A
limited language poses obvious problems for developers,
both in expressing their needs and in reusing existing code.
Flowlog therefore provides interfaces and abstractions for
interacting with external programs. Programmers are free
to invoke existing, full-featured libraries as needed, de-
pending on their analysis goals. This is in contrast to most
policy languages: in Flowlog, the restricted language it-
self forms the primary program, calling the external code
rather than being called by it. This approach has been
successful in SQL, where database queries are in the “lim-
ited” language and user-defined functions are in “full”
languages. Our work explores such a strategy for network
programming. Our contributions are:

1. We present the tierless Flowlog language (Section 3)
and demonstrate its expressive power on real-world
examples (Section 2). The language includes SQL-
like relational state. It also provides abstractions
for interaction with external code, via either asyn-
chronous events or synchronous remote tables. Sec-
tion 6 describes its implementation.

2. We show how, in spite of Flowlog’s tierless merg-
ing of data- and control-plane behavior, programs
can be proactively compiled to flow table rules (Sec-
tion 4). The compilation process extends beyond
mere packet forwarding; it also filters packets that
may trigger state updates or cause event output and
notifies the controller only as necessary.

3. We automatically compile Flowlog programs to the
Alloy [10] verifier (Section 5). We focus on analyses
that are independent of network topology, which are
especially helpful when the topology is virtual, in
flux, or unknown. We show that this process is aided
by Flowlog’s tierlessness as well as its limited ex-
pressiveness. We are able to verify properties in less
than a second with minimal developer input. This
verification support has helped us find surprising
errors in our own Flowlog programs.

2 Flowlog by Example

We introduce Flowlog with illustrative examples. These
demonstrate Flowlog’s tierless nature, along with its ex-
pressive power, concision, and ability to support real-
world development needs. We have also designed Flowlog

to be amenable to both sound (i.e., no false positives) and
complete (i.e., no bugs are missed) verification. To meet
these goals, Flowlog bans loops and recursion, and has a
logical semantics that we leverage for sound and, in many
cases, complete verification (Section 5). Moreover, no
recursion means that Flowlog programs always terminate
on each incoming event.

Stolen Laptop Detector Let us write an application to
help campus police track down stolen laptops. It must
accept signals from campus police that report a laptop
stolen or recovered, and if a stolen laptop is seen sending
packets, the program must alert the police, saying which
switch the laptop is connected to and when the packet was
seen. (For brevity, we do not demonstrate rate limiting of
alerts or restriction of alerts to edge-router traffic. Both
of these tasks can be accomplished in Flowlog.)

Without a tierless programming language, expressing
this program would require many pieces, possibly us-
ing multiple languages: a database or data structures to
manage controller state; a remote-procedure call (RPC) li-
brary, or similar solution, for handling events; and policy-
generation code that produces fresh rules on the switches
that forward traffic and check for stolen laptops on the
network. In Flowlog, all of these components share the
same abstraction. Suppose we have a table stolen that
tracks the MAC addresses of all currently stolen laptops.
Then, the heart of the program is just the following rules:

1 ON stolen_report(sto):

2 INSERT (sto.mac) INTO stolen;

3 ON stolen_cancel(rec):

4 DELETE (rec.mac) FROM stolen;

5 ON packet_in(p):

6 DO notify_police(sto) WHERE
7 sto.mac = pkt.dlSrc AND
8 sto.time = time AND
9 sto.swid = pkt.locSw AND

10 stolen(pkt.dlSrc) AND
11 get_time(time);

12 DO forward(new) WHERE
13 new.locPt != p.locPt;

The program describes several kinds behavior that appear
disparate. It: (a) adds addresses to a table when laptops
are reported stolen (lines 1–2); (b) removes addresses
when laptops are recovered (lines 3–4); (c) notifies police
when a packet appears from a stolen laptop (lines 5–11);
and (d) floods packets (lines 12–13); this trivial example
of forwarding introduces syntax which we will use later.
With Flowlog’s tierless abstraction, we express all of this
in four concise rules.

Every program has similar rules that describe how to
handle each packet; these rules are written in a syntax
reminiscent of SQL, and the semantics is correspondingly
relational. In addition, most programs will have state that
must be updated in reaction to packets and other stimuli.

2

State
Tables

Ruleset

Events

Event
Declarations

Tables Corresponding
to Events

Figure 1: Flowlog system diagram. Events are represented by
tuples in event tables. Rules interact with the entire database.

These stimuli are external events, whose implementa-
tions can be arbitrary, and whose interfaces are explicitly
declared or built in. We now describe the program dec-
larations that support these rules. (Figure 1 shows the
different components of Flowlog.)

We have already seen stolen, the internal controller
state. We expose the current time with an external
table get_time (which always contains just one entry):
1 TABLE stolen(switchid);

2 REMOTE TABLE get_time(int);

External tables are managed by arbitrary external pro-
grams; in our examples, we used OCaml programs run-
ning on the controller machine. Each table declares its
type, which is used for error-checking and optimization.

Next, we define the shape of incoming and outgoing
events. We must handle two kinds of notifications from
the police, and send them one:

1 EVENT stolen_report {mac: macaddr };

2 EVENT stolen_cancel {mac: macaddr };

3 EVENT stolen_found {mac: macaddr, swid:

switchid, time: int};

Flowlog processes incoming events one at a time. In-
coming events are placed in an identically named table,
causing dependent rules to be re-evaluated. Outgoing
events are also represented as tables, and when the ruleset
adds a tuple to such a table, Flowlog sends an event with
the tuple’s content. These tables are therefore similar to
named pipes in Unix. We require one such named pipe to
send stolen_found events to the police server:

1 OUTGOING notify_police(stolen_found)

2 THEN SEND TO 127 .0.0.1 :5050;

If a Flowlog program inserts tuples into the notify_police

table, these tuples will be transformed into stolen_found

events and sent to a process listening on 127.0.0.1:5050.
Incoming stolen_report and stolen_cancel events are au-
tomatically inserted into their identically named tables.
For instance, the stolen_report table will contain arriving

stolen_report events, and the packet_in table will hold
incoming packets. Notice we did not declare an outgo-
ing forward table. This is because Flowlog automatically
creates outgoing tables for common packet-handling be-
havior, as detailed in Table 1.

The remote table get_time is populated by querying
127.0.0.1:9091, and should be refreshed every second:

1 REMOTE TABLE get_time

2 FROM time AT 127 .0.0.1 :9091

3 TIMEOUT 1 seconds;

The TIMEOUT field (line 3) is vital for performance and
correct proactive compilation. A numeric timeout gives a
window during which the results can be cached. Flowlog
also provides a NEVER keyword, meaning the external call-
out has no side-effects, and thus its results can be cached
indefinitely. A default, empty timeout requires updating
the remote table every time the program is evaluated.

The reader may wonder whether this program can be
compiled to stateless rules and installed in switches. After
all, it contains a rule only the controller can handle, since
it involves notifying campus police. But this rule only
fires when stolen(p.dlSrc) is true, so Flowlog’s proactive
compiler instructs switches to send packets to the con-
troller only if their source-MAC field has been registered
as stolen. Furthermore, Flowlog automatically updates
the switches every time a new theft is reported; no code
to that effect is needed.

Network Information Base Next, we show how
Flowlog can be used to compute a network information
base, or NIB [15]. We begin with topology discovery,
using Flowlog’s ability to process timer notifications and
emit new packets to run an LLDP-like protocol. First, we
react to switch registration to obtain identifiers for every
port (omitting table declarations):

1 ON switch_port_in(swpt):

2 INSERT (swpt.sw, swpt.pt)

3 INTO switch_has_port;

Thus, the switch_has_port table will hold every switch-
port pair that registers. Next, we set up a 10-second event
loop (we exclude the timer declaration):

1 ON startup(empty_event):

2 DO start_timer(10, "tNIB");

3 ON timer_expired(timer)

4 WHERE timer.id = "tNIB":

5 DO start_timer(10, "tNIB");

The first rule uses Flowlog’s built-in startup event to start
the loop, and the second rule continues it. The constraint
timer.id = "tNIB" accounts for situations where multiple
timers may be in use. The same timer also causes known
switches to issue probe packets from each port:

3

INCOMING Table Corresponding EVENT (with fields) Description
packet_in packet {locSw, locPt, dlSrc, dlDst, dlTyp, nwSrc, nwDst, nwProtocol} packet arrival
switch_port switch_port {sw, pt} switch registration
switch_down switch_down {sw} switch down
E E Any incoming event E

OUTGOING Table Corresponding EVENT Description
emit packet Emit a new packet
forward packet Forward with modifications (triggered by packets only)

Table 1: Built-in INCOMING and OUTGOING tables. The locSw and locPt fields denote the packet’s (switch and port) location.

1 ON timer_expired(timer)

2 WHERE timer.id = "tNIB":

3 DO emit(new) WHERE
4 switch_has_port(new.locSw,new.locPt)

5 AND new.dlTyp = 0x1001

6 AND new.dlSrc = new.locSw

7 AND new.dlDst = new.locPt;

We use dlTyp = 0x1001 (line 5) to mark probe packets.
The current switch and port IDs are smuggled in the MAC
address fields of the probe (lines 6-7). (We omit the rule
that initiates the same probe emission process on switch
registration.)

We obtain knowledge of the switch topology from
probe reception:

1 ON packet_in(p) WHERE p.dlTyp = 0x1001:

2 INSERT (p.dlSrc, p.dlDst,

3 p.locSw, p.locPt) INTO ucST;

The table name ucST denotes under construction switch
topology; at any point, it contains a topology based on
the probes seen so far this cycle. We empty ucST on ev-
ery cycle, and maintain a switchTopology table that stores
the value of the last complete ucST before it is deleted.
Flowlog programs routinely use this strategy of build-
ing up a helper table over an execution cycle, separating
in-progress results from the last complete result set:

1 ON timer_expired(timer)

2 WHERE timer.id = "tNIB":

3 DELETE (sw1,pt1,sw2,pt2) FROM ucST WHERE
4 ucST(sw1, pt1, sw2, pt2);

5 DELETE (sw1,pt1,sw2,pt2)

6 FROM switchTopology WHERE
7 switchTopology(sw1, pt1, sw2, pt2);

8 INSERT (sw1,pt1,sw2,pt2)

9 INTO switchTopology WHERE
10 ucST(sw1, pt1, sw2, pt2);

Though Flowlog does not allow recursion (Section 3), we
can use a similar approach to compute reachability on
the network. This program computes a fresh reachability
table (ucTC, for under-construction transitive closure) as
each probe arrives:

1 ON packet_in(p) WHERE p.dlTyp = 0x1001

2 AND dstSw = p.locSw AND srcSw = p.dlSrc:

3 INSERT (srcSw, dstSw) INTO ucTC;

4 INSERT (sw, dstSw) INTO ucTC

5 WHERE ucTC(sw, srcSw);

6 INSERT (srcSw, sw) INTO ucTC

7 WHERE ucTC(dstSw, sw);

8 INSERT (sw1, sw2) INTO ucTC

9 WHERE ucTC(sw1, srcSw)

10 AND ucTC(dstSw, sw2);

The program works as follows: for every probe packet
received, it concludes that its source switch and its arrival
switch are connected (line 3). It also extends existing
reachability in both directions (lines 4–7). Finally, it must
account for packets connecting two cliques of reachability
(lines 8–10).

It is instructive to compare this algorithm to the stan-
dard two-rule Datalog program for transitive-closure [1, p.
274]. The extra rules arise because we are not computing
transitive-closure in the usual sense. Here, we do not have
the luxury of assuming that we possess the entire con-
nection table in advance; we must compute reachability
on-the-fly as new information arrives. This difference
leads to added complexity. In fact, an initial version of
this program lacked the final rule, and so failed to faith-
fully compute reachability in some cases; we found this
bug using our verification tool (Section 5).

Once we have network reachability, we can compute a
spanning tree for the network:

1 ON packet_in(p) WHERE p.dlTyp = 0x1001

2 AND dstSw = p.locSw AND dstPt = p.locPt

3 AND srcSw = p.dlSrc AND srcPt = p.dlDst:

4 INSERT (srcSw, srcPt) INTO ucTree

5 WHERE NOT ucTC(srcSw, dstSw)

6 AND NOT ucTC(dstSw, srcSw);

7 INSERT (dstSw, dstPt) INTO ucTree

8 WHERE NOT ucTC(srcSw, dstSw)

9 AND NOT ucTC(dstSw, srcSw);

Again, we see unsurprising parallels to distributed proto-
cols. Ordinary spanning tree algorithms have the luxury
of working with the entire graph at once, and thus are
often able to build a connected tree at every step. We do
not have that luxury here: probes may arrive in any order,
and we must build a forest of trees that, should links go
down, may not even be connected. We also must add a
pair of rules, one for each direction of the branch.

4

block ::= ON <id> (<id>) [WHERE rformula]

: rules

rules ::= rule | rule rules

rule ::= do_act | ins_act | del_act

do_act ::= DO <id> (termlist)

[WHERE rformula] ;

ins_act ::= INSERT (termlist)

INTO <id> [WHERE rformula] ;

del_act ::= DELETE (termlist)

FROM <id> [WHERE rformula] ;

term ::= <num> | <string> | <id> | <id>.<id> | ANY

termlist ::= term | term , termlist

rformula ::= <id> (termlist) | term = term |

NOT rformula | rformula AND rformula |

rformula OR rformula | (rformula)

Figure 2: Syntax of Flowlog rulesets. A program is a succes-
sion of ON blocks. Optional arguments are in square brackets.
Capitalized tokens and punctuation are reserved constants.

Of course, this spanning tree is not necessarily the
best possible one; we only compute the first such tree
to be exposed by probe packets. Better tree-generation
algorithms can be written or accessed via external code.
Numerous other data, such as the location of connected
hosts, can also be gathered, but are omitted for space.

Given a spanning tree for the network—whether it is
computed in Flowlog or obtained from external code—
we can construct a “smart” learning switch application in
Flowlog that does not suffer from the usual issues with
cyclic topologies.

Other Examples We have implemented additional ap-
plications in Flowlog, which are available in our reposi-
tory.1 These examples include an ARP proxy, a stateful
firewall, and an application (which we use in-house) to
facilitate access to Apple TV devices across subnets.

3 The Flowlog Language

As seen in Section 2, every Flowlog program contains a
declarative ruleset that governs controller behavior and
a set of declarations for the program’s state tables and
incoming/outgoing interface. Figure 2 gives the concrete
syntax of Flowlog rulesets.

Declarations A program declares EVENTs, state
TABLEs, and interfaces for INCOMING and OUTGOING ta-
bles. Most INCOMING and some OUTGOING declarations
are made automatically when events are declared. Declar-
ing a table as REMOTE informs Flowlog that the table rep-
resents a callout to external code, and that the ruleset will
not maintain that table’s state. Every event declaration
is equipped with a set of field names for that event type.

1http://cs.brown.edu/research/plt/dl/flowlog/

Every internal table and interface table is equipped with a
type, given as a vector of type names (e.g., “switchid”)—
one for each column in the table. REMOTE TABLE and
OUTGOING declarations must also be provided with addi-
tional information, as we saw in Section 2.

Rulesets A ruleset contains a set of ON blocks of rules.
While we allow multiple rules within the same ON block
for conciseness, without loss of generality we will pretend
that every rule has its own ON block. Each rule indicates
an action to be taken when the ON-specified trigger is seen:
either to INSERT or DELETE a tuple from the controller
state, or to DO an action such as forwarding a packet.
Finally, rules and triggers have an optional WHERE clause,
which adds additional constraints; these are always an
expression involving only the tables declared in TABLEs,
never those declared as INCOMING or OUTGOING. These
rules determine a function that maps controller state and
incoming events to a new state and set of outgoing events.

Each rule defines a logical implication stating that,
should its body be satisfied, its action should be as well.
Figure 3 shows how we arrive at this rule clause for each
rule. If the rule’s action is DO, then the resulting clause in-
serts tuples into the outgoing table directly. If the rule’s ac-
tion modifies an n-ary table R via the INSERT or DELETE

keywords, the clause uses n-ary helper tables Radd or Rdel,
which hold the tuples to be added to and removed from
the controller state after an event is processed.

If S is a controller state, let S↑ represent the unique
least expansion of S that satisfies all rule clauses. That is,
while S contains a table for each TABLE, S↑ also contains
ephemeral Radd and Rdel tables for each TABLE as well as
tables for each OUTGOING declaration. These OUTGOING

tables are consumed by Flowlog and dictate which outgo-
ing events it should send. The ephemeral tables for each
state table R dictate its value in the next state as follows:

Rnext = (RS \ RS↑
del) ∪ RS↑

add

In other words, INSERT overrides DELETE in Flowlog—
the next state’s R contains the pre-state’s R, minus Rdel,
plus Radd.

4 Proactive Compilation for Flowlog

While Flowlog programs receive many kinds of input—
both packets and external notifications—packets remain
the most common and time-sensitive stimuli. No software-
defined network can scale to the level required by large
networks if it sends every arriving packet to the controller
for instructions. This complicates the implementation
of a tierless SDN language; rather than simply have all
packets be processed by the controller in accordance with
the program, the Flowlog runtime is forced to solve three
related, but distinct, challenges:

5

ON IN(in) DO OUT(o1, ..., ok) WHERE rf ∀in,o1, ...ok ∃e1, ...,ek OUT (o1, ...ok)← IN(in)∧Tfmla(rf)
ON IN(in) INSERT (o1, ..., ok) INTO R WHERE rf ∀in,o1, ...ok ∃e1, ...,ek Radd(o1, ...ok)← IN(in)∧Tfmla(rf)
ON IN(in) DELETE (o1, ..., ok) FROM R WHERE rf ∀in,o1, ...ok ∃e1, ...,ek Rdel(o1, ...ok)← IN(in)∧Tfmla(rf)

(All rules existentially quantify variable occurrences that are free and not in {in,out1, ...,outk}; hence the eis.)
Tfmla(NOT f) = ¬Tfmla(f)
Tfmla(f1 AND f2) = Tfmla(f1)∧Tfmla(f2)
Tfmla(t1 = t2) = Tterm(t1) = Tterm(t2)
Tfmla(P(t1, ..., tk)) = ∃x1, ...,xk P(Tterm(t1), ...,Tterm(tk))

x1, ..., xk are the fresh variables introduced
by ANYs in the original formula.

Tterm(c) = c
Tterm(x) = x
Tterm(x.fld) = f ld(x)
Tterm(ANY) = x f resh

Figure 3: Rule-formula to formula (Tfmla) and Rule-term to term (Tterm) transformation functions. Without loss of generality, we
provide every rule with its own ON trigger and assume that disjunction in rule bodies has been removed, resulting in multiple rules.
x f resh denotes a fresh variable.

1. It must compile a program’s forwarding behavior to
equivalent OpenFlow [20] rules whenever possible,
including references to both local and remote state;

2. it must discern which packets can trigger non-
forwarding behavior, such as emission of an event
or a state change, and produce OpenFlow rules that
send those packets—and only those packets—to the
controller; and,

3. if a rule uses features that are not supported by switch
tables (we detail these cases later), the compiler de-
termines the class of packets that must be sent to the
controller for correct handling. This situation applies
to both forwarding and non-forwarding rules.

As Section 3 demonstrated, Flowlog rules can involve
equality between packet fields, negation, database state,
and numerous other features not supported by OpenFlow.
Moreover, rules can contain existentially quantified vari-
ables that, at first glance, require searching and backtrack-
ing in the state to properly handle. Simply put, Flowlog
rules are strictly more powerful than OpenFlow 1.0 flow
rules. It is therefore reasonable to wonder: can a non-
trivial amount of Flowlog really be compiled faithfully?
This section will show it can be. Figure 4 shows the
compilation dataflow.

Our proactive ruleset compiler has three stages:

1. First (Section 4.1), it simplifies each rule and iden-
tifies the compilable forwarding rules. Both non-
forwarding rules (state updates, emission of fresh
packets, etc.) and non-compilable forwarding rules
require switches to send packets to the controller;
fortunately, these notifications can be extensively
filtered based on the program’s structure.

2. Second (Section 4.2), it partially evaluates the rule-
set at the current controller state, producing a new
ruleset that has no references to state tables. Since
the original ruleset defines a function that accepts

New NetCore Policy

Ruleset

Simplified Rules
Compilable All Others

Extract Predicate
Extract Action

Extract Predicate
Action = fwd(controller)

Preprocessing

Weakening

Partial Evaluation

Figure 4: Flowlog’s compilation process. Rules are first pre-
processed before being checked for compilability, then (if un-
compilable) weakened before being partially evaluated in the
current state. After partial evaluation, the rule is re-written as a
stateless NetCore policy.

a state and an incoming tuple and returns a set of
outgoing tuples, the resulting ruleset depends only
on the incoming tuple.

3. Finally (Section 4.3), it compiles the new ruleset
automatically to flow table rules in two steps. First,
it converts to NetCore [21], a stateless forwarding
policy language for OpenFlow. Second, it applies
NetCore’s compiler to produce flow table rules.

Example: Forwarding For intuition into the compila-
tion process, consider the following example rule.

1 ON packet_in(p):

2 DO forward(new) WHERE
3 learned(p.locSw,new.locPt,p.dlDst);

This rule says: “Forward p on a port corresponding
to its location and destination, provided the controller
has learned that correspondence”. It compiles to the

6

following rule clause:

∀p,new . f orward(new) ⇐=
learned(locSw(p), locPt(new),dlDst(p))

∧packet in(p)

Suppose the current state contains learned =
{〈1,2,3〉,〈1,3,2〉,〈1,4,3〉}. Then the learned ex-
pression in the above clause is equivalent to:

((locSw(p) = 1∧ locPt(new) = 2∧dlDst(p) = 3)∨
(locSw(p) = 1∧ locPt(new) = 4∧dlDst(p) = 3)∨
(locSw(p) = 1∧ locPt(new) = 3∧dlDst(p) = 2))

Re-written as a NetCore policy, this is just:

(filter (locSw = 1 and dlDst = 3);

fwd(2) | fwd(4)) +

(filter (locSw = 1 and dlDst = 2); fwd(3))

This policy can remain in place in flow tables until such
time as the learned table changes.

Example: State Change Flowlog provides a “see-
every-packet” abstraction. For instance, the following
program appears to execute entirely on the controller:

1 ON packet_in(p):

2 INSERT (p.locSw, p.locPt, p.dlSrc)

3 INTO learned WHERE
4 NOT learned(p.locSw, p.locPt,

5 p.dlSrc);

With the exception of Maple [32], existing languages
with this abstraction require the programmer to carefully
maintain separate logic for packet forwarding and con-
troller notifications. In contrast, the Flowlog runtime
handles controller notification automatically; the only
packets the controller needs are those that provably alter
the controller state. Flowlog’s compiler automatically
builds and deploys a NetCore policy that applies to all
such packets. For example, suppose the current state is
learned = {〈1,2,3〉,〈1,3,2〉}. The following NetCore
policy ensures the controller sees the packets it needs to,
and no more:

if not ((locSw = 1 and locPt = 2 and dlSrc = 3) or

(locSw = 1 and locPt = 3 and dlSrc = 2))

then fwd(controller)

4.1 Simplification and Compilability
Before compiling a ruleset, Flowlog removes un-
necessary variables. For example, if p is the in-
coming packet, the condition learned(p.locSw, y,

p.dlSrc) and x=p.locPt and y=x would be rewritten as

learned(p.locSw, p.locPt, p.dlSrc). This process elimi-
nates hidden dependencies, simplifying compilation.

Each rule is then subjected to a compilability check.
Table 2 lists the conditions under which a rule cannot be
compiled. If a rule fails one or more tests, it either trig-
gers an outright error or must be handled by the controller.
For instance, a rule that compares the incoming packet’s
layer-2 source and destination fields is easily expressed
in Flowlog as p.dlSrc = p.dlDst and can be checked reac-
tively by the controller, but is not supported by OpenFlow
1.0 forwarding tables.

Finally, to reduce the number of packets that must be
sent to the controller, Flowlog weakens the WHERE con-
dition of each uncompilable rule to obtain a compilable
overapproximation. A rule clause is a conjunction of lit-
erals (i.e., positive or negative assertions about state or
equality), and weakening removes objectionable literals
(Table 2) from the clause. Removing parts of a conjunc-
tion yields a new formula that is implied by the original,
so it is a sound overapproximation.

4.2 Partial Evaluation
Partial evaluation removes references to state tables within
each rule, replacing them with simple equalities involving
only constants and variables. Figure 5 defines the partial
evaluation function (Tpe), and other transformation func-
tions used below. Once partial evaluation is complete, the
compiler distributes out any disjunctions introduced by
partially evaluating positive literals, resulting in a new
set of clause formulas. This is done so new equalities
constraining the outgoing packet, if any, are immediately
available at the top level of the conjunction. (Disjunctions
coming from negative literals are left in place; this is safe
since outgoing packet fields that occur in negated table
references are forbidden.) Any clauses that were partially
evaluated to a contradiction are removed.

4.3 Extracting NetCore Policies
The policies that the proactive compiler produces have
two parts: a stateless filtering condition on packets (the
predicate) and the set of actions to apply when the pred-
icate matches. NetCore predicates support the essential
Boolean operators—or, and, not—as well as filters over
header fields and switch identifiers.

An equivalent NetCore policy for each clause is cre-
ated using the Tpred (extract predicate) and Tact (extract
action) functions defined in Figure 5. Predicate extrac-
tion only involves the incoming packet; other literals map
to the trivially true predicate all. Non-forwarding rule
clauses are always assigned the send-to-controller action.
For each forwarding rule clause, the compiler extracts
an action assertion such as “forward on port 3”. Since

7

Condition Example Explanation
(a) Forbidden new-packet field assignment new.nwProto = 5 Not allowed in OpenFlow 1.0
(b) Different fields in old-to-new assignment new.dlSrc = old.dlDst Not allowed in OpenFlow 1.0
(c) Negatively constrained new-packet field new.dlSrc != 5 or not R(new.dlSrc) Forbid packet avalanche
(d) Reflection on incoming packet in equality old.dlSrc = old.dlDst Not allowed in OpenFlow 1.0
(e) Non-assignment condition of new packet new.locPt = new.dlSrc For compilation speed
(f) Multi-way join on state tables R(3,X) and R(X,4) For compilation speed

Table 2: Situations that cause a rule to be weakened and dealt with by the controller. In a forwarding rule, (a–b) are forbidden at
compile time. The “flood” condition, new.locPt != p.locPt, is the sole exception to (c); other forms would cause a plethora of
outgoing packets. (d–f) are allowed at compile time, but force weakening of forwarding rules. By eliminating complex join conditions
from compilation (e–f), we avoid the necessity of solving a search problem to compile rules; after preprocessing, existential variables
appear in compiled rules only as placeholders for “don’t-care” positions in rule formulas.

Partial Evaluation: States×Formulas→ Formulas
Tpe(S,R(t1, ..., tn)) =

∨
〈c1,...,cn〉∈RS

(t1 = c1∧ ...∧ tn = cn)

Tpe(S, t1 = t2) = t1 = t2
Tpe(S,¬α) = ¬Tpe(S,α)

Tpe(S,β ∨ γ) = Tpe(S,β)∨Tpe(S,γ)
Tpe(S,β ∧ γ) = Tpe(S,β)∧Tpe(S,γ)

Predicate Extraction: Rule Clauses→ Pred
Tpred(old pkt. f ld = c) = fld = c

Tpred(t = c) = all

Tpred(¬α) = not Tpred(α)
Tpred(β ∧ γ) = Tpred(β) and Tpred(γ)

Action Extraction: Rule Clauses→ 2Action

Tact(newpkt.locPt = c) = {fwd(c)}
Tact(newpkt. f ld = c) = {set(fld, c)}

Tact(¬α) = /0
Tact(β ∧ γ) = Tact(β)∪Tact(γ)

Figure 5: Transformation functions used during compilation.

contradictions were removed (Section 4.2), only one such
assertion is made per clause. Clauses containing inequali-
ties of the form new.locPt != old.locPt are added to the
predicate in a final pass after the forwarding action is
extracted. Once a predicate and action has been obtained
for each clause, the compiler assembles the final policy
by generating a sub-policy for each action that filters on
the disjunction of all matching predicates, and then taking
the union of those sub-policies.

5 Verification

To verify Flowlog programs, we use the Alloy Ana-
lyzer [10]. Alloy has a first-order relational language,
which makes it a good match for Flowlog’s first-order
relational semantics. In addition, Alloy is automated and
generates counterexamples when properties fail to verify.

We have created a compiler from Flowlog rulesets to
Alloy specifications. The conversion is fully automated,
although users must provide types (e.g., IP address) for

constants used in the original program; this type informa-
tion is used for optimization. By default, the compiler
abstracts out the caching process and treats REMOTE

TABLEs as constant tables. If analysis goals involve re-
mote state, axioms about the behavior of remote code
(e.g., “the routing library always gives a viable path”) can
be added manually.

Because of tierlessness, Alloy models created from
Flowlog programs need not consider the eccentricities of
the OpenFlow protocol or individual switch rules, and so
reasoning benefits from the illusion that all packets are
processed by the controller. This simplifies the resulting
Alloy models (and improves analyzer performance), and
also makes it easier for users to express properties across
tiers. Ordinarily, for example, checking dependencies
between forwarding behavior and state change would
involve expressing the desired behavior for both packets
that reach the controller and packets handled by switches;
when reasoning about Flowlog, this split is unnecessary.

Inductive Properties An important class of program
properties, which we call inductive, take the form: “If P
holds of the controller state, then no matter what packet
arrives, P will continue to hold in the next state.” This
property serves to prove that P always holds in any reach-
able state, so long as it holds of the starting state. Many
desirable goals can be expressed in this way, and they are
often independent of network topology.

To illustrate the power of this class of properties, con-
sider our NIB example (Section 2). A piece of the NIB
program gradually computes the transitive closure of the
network topology. But does it really compute transitive
closure faithfully? As probe packets arrive, the ucTC table
needs to contain the transitive closure of the graph defined
by all the links seen so far. Figure 6 shows how to encode
this property in Alloy.

Running this analysis on an older version of the
NIB program revealed a missing rule: we had failed
to account for the case in which two mutually un-
reachable sub-networks become connected by an incom-

8

all st: State, st2: State, ev: EVpacket |

transition[st, ev, st2] and

ev.dltyp = C_0x1001 and

(st.uctc = ^(st.uctc)) implies

st2.uctc =

^(st.uctc + (ev.dlsrc -> ev.locsw))

Figure 6: Example Alloy property: “For all states (st) with
ucTC transitively closed, the program only transitions to states
(st2) with a transitively closed extension of ucTC by the arriving
probe packet (ev)’s src/dst”. Recall that the source switch ID
is in the packet’s dlSrc field. The ^ operator denotes transitive
closure in Alloy. We chose C_ to prefix constant identifiers.

Property Time(ms) B
NIB

Reachability computed correctly (4sw) 40
Reachability (with bug) 35
Spanning tree never has cycles 58 3

Timer correctly updates persistent tables 23 3

Correctly capture host location changes 65 3

Stolen Laptop
Only police can un-flag a laptop 4 3

Learning Switch
≤ 1 port learned per host per switch 14 3

Only switch failure can restart flooding 14 3

Table 3: Example properties with time to verify or find a
counterexample. The B column shows whether sufficient bounds
could be established, as described in Section 5. Alloy 4.2/3.1
GHz Core i5/8 GB RAM.

ing probe packet. That is, we were missing this rule:
1 ON packet_in(p) WHERE p.dlTyp = 0x1001

2 AND dstSw = p.locSw AND srcSw = p.dlSrc:

3 INSERT (sw1, sw2) INTO ucTC

4 WHERE ucTC(sw1, srcSw)

5 AND ucTC(dstSw, sw2);

This rule is necessary due to the subtle nature of com-
puting reachability from each probe in succession, rather
than having access to the entire table and applying recur-
sion. Alloy was able to demonstrate this bug on a network
of only four switches.

Using this method, we have successfully verified prop-
erties of (or found bugs in) multiple Flowlog programs
including the NIB, the stolen laptop alert program, and a
MAC learning switch. Table 3 lists several along with the
time they took to verify: well under a second.

Completeness Alloy performs bounded verification: it
requires a size bound for each type, which it uses to
limit the search for a counterexample. For instance, for
our NIB verification we might instruct Alloy to search
up to four switches (irrespective of the wiring between

Ruleset

Tables Corresponding
to Events

State
Tables

Events

Event
Declarations

2

1 4

New State
Tables

5

3

Compiler
(Partial Evaluation)

6

Figure 7: Flowlog’s workflow for responding to events. The
boxed portion of the diagram appeared as Figure 1.

them), three distinct MAC addresses, etc. Because of
its bounded nature, Alloy is not in general complete: it
will fail to find counterexamples larger than the given
bound. Since individual properties are a result of purpose-
specific program goals, properties and their associated
bounds must be entered manually.

Fortunately, for many common types of analyses, we
can exploit prior work [23] to compute (small) size
bounds that are sufficient to find a counterexample, should
one exist. All but one of the properties we verified is
amenable to this technique; the exception is reachability,
because the technique does not support transitive-closure
(Table 3). Yet broad experience with Alloy indicates that
many bugs can be found with fairly small bounds (e.g.,
four switches for our transitive-closure bug). Moreover,
bounds on other objects (e.g., non-switches) can still be
produced for all the inductive properties that we tested.

6 Implementation and Performance

The current Flowlog implementation uses OpenFlow
1.0 [20] and Frenetic [5] for packet-handling, Thrift RPC
(thrift.apache.org) for orchestrating events and re-
mote state, and the XSB [28] Prolog engine for evaluation.
Flowlog is implemented in OCaml.

Figure 7 sketches the controller’s workflow. When an
event arrives (1) the controller converts it into a tuple
and places it in the appropriate input table via XSB’s
assert command (2). Then, for each outgoing and state-
modification table, the controller queries XSB to obtain a
set of outgoing tuples (3) which are converted to events
(4). Then each state-modification tuple is asserted or

9

retracted to result in the new state (5). Finally, proactive
compilation (6) is performed on the new state, producing
a NetCore policy.

External Events Flowlog evaluation is triggered by a
general set of events; the runtime must watch for more
than just packet arrivals. For instance, the runtime sends
an event to the controller whenever a switch registers or
goes down, and as seen in Section 2, external applications
may also interact with Flowlog through events. Our hypo-
thetical campus police-officer informs Flowlog to register
a stolen laptop by using a small application (around 100
lines, most of which is boilerplate) that uses Thrift to send
an asynchronous message to Flowlog.

Remote Tables and Caching Flowlog rules reference
a database of relational facts. As seen in Section 3, ta-
bles can be declared either as local or remote. A local
table is managed internally by the controller (via assert

and retract statements to XSB), while a remote table
is merely an abstraction over callouts to external code.
Like events, these callouts use Thrift RPC to interact with
external code. Unlike events, callouts are synchronous.
Callouts have the form of an ordinary state-referencing
formula, R(t1, ..., tn), but each ti must be either a constant
value or a variable. After Flowlog queries the correct
external application, the reply contains a set of tuples of
constants—one constant for each variable in the query.

Although the rules see no distinction between local
and remote tables, in practice it would be impractical
or impossible to obtain entire remote tables (such as an
infinitely large table that represents the addition of num-
bers). Therefore, Flowlog obtains tuples from external
code only when they are needed by a rule. A naı̈ve imple-
mentation could simply obtain remote tuples every time
they were required; however, that would mean forwarding
rules could not be compiled if they referred to external
code. Instead, we cache remote tuples for the declared
time-to-live. Since we maintain the remote cache in XSB,
when it comes time to react to an event, the controller
handles remote and local state in exactly the same way:
via XSB.

When an event arrives, we invalidate cached tuples
whose time-to-live has expired. If the expired tuples were
used in a compiled policy, we force an update of the
cache and provide switches with the new policy. Exter-
nal programs are expected to not update their internal
state or otherwise provide inconsistent results within the
TIMEOUT values of their Flowlog definitions.

Handling Overlapping Rules In some SDN applica-
tions, switches will forward a packet on the data plane
and also send it to the controller. If we kept the pre-

compilation ruleset unmodified on the controller, this
could lead to packet duplication due to the compiled for-
warding rules: packets would be forwarded once by the
switch tables, and forwarded again by the same rule’s
action on the controller.

Since the compilability of a rule is independent of con-
troller state, we can determine which rules these are at
program startup. We then leave these rules out of what
we pass to XSB, and disallow the controller from taking
duplicate actions. However, since there is a delay between
the controller’s state change and corresponding rules be-
ing installed on the switches, this is not a perfect solution:
packets may be in-transit during deployment of the new
policy. This issue is not unique to Flowlog, and has been
noted by others [26].

Performance and Scalability Flowlog is proactively
compiled to switch rules whenever possible. From the traf-
fic forwarding perspective, therefore, Flowlog is largely
dependent on what is supported in switch hardware. We
have confirmed experimentally that, as one would hope,
the controller receives no unnecessary packets. For in-
stance, a Flowlog learning switch never sends the con-
troller a packet once that packet’s source location is
learned, and eventually the controller is not burdened
at all. Packet-counts were confirmed by both ifconfig

counters and packet events seen by Flowlog. We used
ping packets and a Mininet [16]-hosted virtual network
to simulate network traffic. We tested on tree topologies
with 3 and 7 switches as well as a cyclic 3-switch topol-
ogy to test controller robustness, and have begun testing
on larger topologies as well.

Because forwarding in Flowlog is as fast as hardware
allows, one scalability question remains: since Flowlog
compiles the controller state into NetCore policies, how
does this scale as the controller’s database grows? The
size of the NetCore policy we produce depends on how
table references appear in the ruleset. The compiler pro-
duces a policy fragment for each rule, whose size is pro-
portional to the number of clauses generated by partial
evaluation (Section 4.2). Partial evaluation replaces state
table references in each rule with the disjunction of every
matching tuple in that table. The largest number of clauses
produced by a rule that references tables R1 through Rk is
|R1|× · · ·× |Rk|, which is the best achievable in the worst
case. (This ensues because we don’t need to lift negated
disjunctions, a technical detail that we lack space to de-
scribe.) We also simplify the resulting policies, which
further reduces their size in practice. To convert policies
to flow-table rules, we rely upon NetCore’s optimizing
compiler [21].

To evaluate the quality of the NetCore policies our com-
piler produces, we ran a Flowlog learning-switch program,
using dpctl dump-flows to count the maximum num-

10

ber of table entries it produced on per switch. We then
did the same with the OCaml learning-switch module in
the Frenetic repository. The Frenetic example produced a
maximum of 25 rules per switch for the 3-switch tree and
81 rules per switch for the 7-switch tree. Our program
initially produced 40 rules and 108 rules respectively. The
increased number of rules was because Flowlog did not
make use of OpenFlow’s built-in flood action, whereas
the OCaml program did. After adding an optimization
to our learning-switch program that forced the use of the
flood action, we saw the same number of table entries as
with the Frenetic version. This indicates that our compiler
can match the scalability of existing programs that use
NetCore.

7 Related Work

Our work here draws on a prior workshop paper [24]. The
previous version mentioned, yet did not describe or imple-
ment, external events and state. Our proactive compiler,
conversion to Alloy, topology-independent verification,
and implementation are also new. We compare other
SDN programming languages side-by-side with Flowlog
in Table 4, and discuss each in detail below.

FML [9] provides a stateful, rule-based idiom for for-
warding policies. It too disallows recursion and admits
negation. FML can read from, but not modify, the under-
lying system state. It responds to new flows reactively,
whereas Flowlog proactively compiles to switch tables
whenever possible. FML does not provide abstractions
for external code, and does not address verification.

Frenetic [5] is a functional-reactive (FRP) language
that responds to fine-grained network events. While Fre-
netic was originally reactively compiled, it has since been
extended with proactive compilation for stateless Net-
Core [21] policies. State and interaction with external
code must be managed by OCaml wrapper applications.
Frenetic also includes switch-based events and rich query
constructs; Flowlog lacks abstractions for queries, yet
provides more general events. Verification of full Frenetic
programs has not been addressed, although Gutz, et al. [8]
use model-checking to prove slice isolation properties of
NetCore policies. Our runtime is currently implemented
atop Frenetic’s OCaml library and uses NetCore’s opti-
mizing compiler. Guha et al. [7] have created a verified
compiler for a subset of NetCore; our compiler has only
been tested, not proven correct.

Pyretic [22] implements NetCore [21] in Python, and
introduced sequential composition of network programs.
Though we do not address program composition explicitly,
sequential and parallel composition are roughly analogous
to Flowlog’s relational join and union, respectively. Since
its initial publication, Pyretic has been extended with
proactive compilation. Verification of Pyretic programs

has not been discussed.
Flog [11] is stateful and rule-based. It allows recur-

sion but not explicit negation in rule bodies; negation is
implied in some cases by rule-overriding. Flog has no
notion of callouts or external events unrelated to packets,
and the paper does not address verification. Flog works
at the microflow level, whereas Flowlog is proactive.

Procera [31] is another FRP SDN language. As Procera
is embedded in Haskell, programs have access to general
state and external callouts. Procera allows programs to
react to external events, but does not directly support
issuing events or external queries. Like Frenetic, Procera
provides query functionality that Flowlog does not. To our
knowledge, Procera programs have not been verified, and
it is unclear whether the flow constraints they generate
are proactively compiled.

Nlog [14], a rule-based configuration language, is part
of a larger project on network virtualization. When system
state changes, an Nlog program dictates a new virtual
forwarding policy. Nlog’s inability to modify controller
state means that it is not “tierless”. Like Flowlog, Nlog is
also proactively compiled to flow tables, and our relational
abstraction for callouts is similar to Nlog’s. Verification
of Nlog programs has not been discussed.

Maple [32] is a controller platform that unifies control-
and data-plane logic; Flowlog goes further by also in-
tegrating controller state, creating a tireless abstraction.
Unlike in Flowlog, Maple programs are compiled reac-
tively, and have not been verified.

A number of other rule-based languages also merit
discussion, although they were not built for SDNs and
do not compile to flow tables. NDLog [17] and Over-
Log [18] are declarative, distributed programming lan-
guages. In these languages, each tuple in the relational
state resides on a particular switch. This is in contrast to
the single controller state assumed by Flowlog. These lan-
guages support recursion as in ordinary Datalog. Wang,
et al. [33] verify NDLog programs via interactive theo-
rem provers, and some of the properties they verify are
topology-independent. Our compiler to Alloy requires
far less user effort and is simplified by Flowlog’s lack of
recursion. Alvaro, et al. [3] present Dedalus, a variant
of Datalog with a notion of time. Our treatment of state
change is similar to theirs, except that theirs is compli-
cated by recursion. Active networking [30] is a forerunner
of SDN where packets carry programmatic instructions
for switches. Like SDN, active networking has inspired
language design efforts. One such is ANQL [27], a SQL-
like language for defining packet filters and triggering
external code. Flowlog echoes ANQL’s view of packets
as entries in a database, but supports more general exter-
nal stimuli. Verification of ANQL has not been discussed.

There is also a rich landscape of related SDN verifi-
cation. Canini, et al. [4] find bugs in Python controller

11

Language Type State Rec? Neg? Compilation Reasoning? Callouts
Flog [11] Rule-Based 3 3 7 Reactive 7 7

FML [9] Rule-Based 3 7 3 Reactive 7 7

Frenetic [5] FRP 3pol 7 3 Reactive 7 7

Frenetic OCaml Environment Functional 3PL 3PL 3 via NetCore 7PL 3PL
NetCore [21] DSL 7 7 3 Proactive 3 7

Nlog [14] Rule-Based 3 7 7 Proactive 7 3

NOX [6] Imperative 3PL 3PL 3 Manual 7PL 3PL
Procera [31] FRP 3 7 3 Unclear 7 7

Pyretic [22] Imperative 3pol 3PL 3 Proactive 7 3PL

Flowlog Rule-Based 3 7 3 Proactive 3 3

Table 4: SDN language comparison. Rec? and Neg? mean recursion and negation, respectively. A 3 means that a feature is
present and a 7 that it is not; 3PL denotes that a feature’s presence is due to embedding in a Turing-complete programming language.
In the State? column, 3pol indicates that maintaining a stateful forwarding policy is possible, but that general state requires
wrappers in a Turing-complete language. In the Reasoning? column, a 7PL indicates that sound reasoning is made non-trivial by
Turing-completeness, and a 7 means that verification has not been attempted.

programs. Their work required the creation of a purpose-
built model-checker. Although their tool successfully
finds bugs, it is limited by the undecidability of Python
code analysis. Flowlog’s expressivity is deliberately lim-
ited to avoid this concern. Skowyra et al. [29] use model-
checking to find bugs in SDN programs sketched in their
prototyping language, but focus solely on verification, not
execution. Other reasoning tools [2, 8, 13, 19, 25, 34] an-
alyze a fixed, stateless forwarding policy, either statically
or at runtime. Including transitions between states, as we
do, is necessarily more complex.

8 Discussion and Conclusion

To our knowledge, Flowlog is the first tierless SDN pro-
gramming language, the first stateful rule-based language
for SDNs that proactively compiles to flow-table rules,
and the first such language to provide rich interfaces to
external code. Tierlessness simplifies the process of SDN
programming and simultaneously enables cross-tier veri-
fication of the SDN system.

Since tierlessness precludes manual handling of flow-
table rules, automatic flow-table management is neces-
sarily a key part of any tierless SDN language. There
are other such strategies besides proactive compilation;
a prototype version of Flowlog simply sent all packets
to the controller. However, a proactive approach mini-
mizes controller interaction and thus shows that a tierless
language can be performant.

In order to support efficient, proactive compilation and
verification, we opted to limit Flowlog’s expressive power.
Even with these limitations, we have built non-trivial
applications. Moreover, events and remote tables allow
Flowlog programs to access, when necessary, external
code in languages of arbitrary power.

Future Work It is possible to strengthen Flowlog with-
out abandoning our limitations on expressive power. We
plan to migrate to a newer version of OpenFlow soon,
which removes several uncompilable constructs in Ta-
ble 2. Flowlog’s general event framework could support
a query system like that seen in Frenetic [5] and other
languages. Flowlog’s relational idiom supports the ad-
dition of new features. For instance, we have recently
added address masking (e.g., matching packets coming
from 10.0.0.0/24) to Flowlog by taking advantage of the
fact that masks are simply relations over IP addresses.

There are also several promising directions to take
verification in Flowlog. For instance, we suspect that
Flowlog’s restrictions could enable the sound and com-
plete use of techniques like symbolic execution for verify-
ing trace properties. Another important analysis, change-
impact—which describes the semantic consequences of
a program change—is undecidable for general-purpose
languages, yet is decidable for Flowlog.

Acknowledgments We thank the anonymous review-
ers for their comments. We are grateful to Daniel J.
Dougherty, Kathi Fisler, Rodrigo Fonseca, Nate Foster,
Arjun Guha, Tim Hinrichs, Jonathan Mace, Sanjai Narain
and others at Applied Communication Sciences, Joshua
Reich, and David Walker, for discussions and feedback.
We are grateful to Jennifer Rexford for several enlighten-
ing conversations, for shepherding this paper, and for her
trenchant analysis of drinking styles. We thank the Alloy,
Frenetic, and XSB teams for excellent software that we
could build upon. This work is partially supported by
the NSF. Andrew Ferguson is supported by an NDSEG
Fellowship. Michael Scheer was supported by a Brown
University Undergraduate Research Award.

12

References
[1] ABITEBOUL, S., HULL, R., AND VIANU, V. Foundations of

Databases. Addison-Wesley, 1995.

[2] AL-SHAER, E., AND AL-HAJ, S. FlowChecker: Configuration
analysis and verification of federated OpenFlow infrastructures.
In Workshop on Assurable and Usable Security Configuration
(2010).

[3] ALVARO, P., MARCZAK, W. R., CONWAY, N., HELLERSTEIN,
J. M., MAIER, D., AND SEARS, R. Dedalus: Datalog in time
and space. In Datalog Reloaded 2010 (2010), pp. 262–281.

[4] CANINI, M., VENZANO, D., PEREŠÍNI, P., KOSTIĆ, D., AND
REXFORD, J. A NICE way to test OpenFlow applications. In
Networked Systems Design and Implementation (2012).

[5] FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO,
C., REXFORD, J., STORY, A., AND WALKER, D. Frenetic: A
network programming language. In International Conference on
Functional Programming (ICFP) (2011).

[6] GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., CASADO, M.,
MCKEOWN, N., AND SHENKER, S. NOX: Towards an operating
system for networks. ACM Computer Communication Review 38,
3 (July 2008), 105–110.

[7] GUHA, A., REITBLATT, M., AND FOSTER, N. Machine-verified
network controllers. In Programming Language Design and Im-
plementation (PLDI) (2013).

[8] GUTZ, S., STORY, A., SCHLESINGER, C., AND FOSTER, N.
Splendid isolation: A slice abstraction for software-defined net-
works. In Workshop on Hot Topics in Software Defined Networking
(2012).

[9] HINRICHS, T., GUDE, N., CASADO, M., MITCHELL, J., AND
SHENKER, S. Practical declarative network management. In
Workshop: Research on Enterprise Networking (WREN) (2009).

[10] JACKSON, D. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, April 2006.

[11] KATTA, N. P., REXFORD, J., AND WALKER, D. Logic program-
ming for software-defined networks. In Workshop on Cross-Model
Design and Validation (XLDI) (2012).

[12] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header
space analysis: Static checking for networks. In Networked Sys-
tems Design and Implementation (2012).

[13] KHURSHID, A., ZHOU, W., CAESAR, M., AND GODFREY, P. B.
VeriFlow: Verifying network-wide invariants in real time. In
Workshop on Hot Topics in Software Defined Networking (2012).

[14] KOPONEN, T., AMIDON, K., BALLAND, P., CASADO, M.,
CHANDA, A., FULTON, B., GANICHEV, I., GROSS, J., GUDE,
N., INGRAM, P., JACKSON, E., LAMBETH, A., LENGLET, R.,
LI, S.-H., PADMANABHAN, A., PETTIT, J., PFAFF, B., RA-
MANATHAN, R., SHENKER, S., SHIEH, A., STRIBLING, J.,
THAKKAR, P., WENDLANDT, D., YIP, A., AND ZHANG, R.
Network Virtualization in Multi-tenant Datacenters. In Networked
Systems Design and Implementation (2014).

[15] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J.,
POUTIEVSKI, L., ZHU, M., RAMANATHAN, R., IWATA, Y.,
INOUE, H., HAMA, T., AND SHENKER, S. Onix: a distributed
control platform for large-scale production networks. In Operating
Systems Design and Implementation (2010).

[16] LANTZ, B., HELLER, B., AND MCKEOWN, N. A network in
a laptop: Rapid prototyping for software-defined networks. In
Workshop on Hot Topics in Networks (2010).

[17] LOO, B. T., CONDIE, T., GAROFALAKIS, M. N., GAY, D. E.,
HELLERSTEIN, J. M., MANIATIS, P., RAMAKRISHNAN, R.,
ROSCOE, T., AND STOICA, I. Declarative networking. Commu-
nications of the ACM 52, 11 (2009), 87–95.

[18] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS, P.,
ROSCOE, T., AND STOICA, I. Implementing declarative overlays.
In Symposium on Operating Systems Principles (2005).

[19] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GOD-
FREY, P. B., AND KING, S. T. Debugging the data plane with
Anteater. In Conference on Communications Architectures, Proto-
cols and Applications (SIGCOMM) (2011).

[20] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. OpenFlow: Enabling innovation in campus
networks. ACM Computer Communication Review 38, 2 (Mar.
2008), 69–74.

[21] MONSANTO, C., FOSTER, N., HARRISON, R., AND WALKER,
D. A compiler and run-time system for network programming
languages. In Principles of Programming Languages (POPL)
(2012).

[22] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing software-defined networks. In Net-
worked Systems Design and Implementation (2013).

[23] NELSON, T., DOUGHERTY, D. J., FISLER, K., AND KRISHNA-
MURTHI, S. Toward a more complete Alloy. In International
Conference on Abstract State Machines, Alloy, B, and Z (2012).

[24] NELSON, T., GUHA, A., DOUGHERTY, D. J., FISLER, K., AND
KRISHNAMURTHI, S. A balance of power: Expressive, analyzable
controller programming. In Workshop on Hot Topics in Software
Defined Networking (2013).

[25] PORRAS, P., SHIN, S., YEGNESWARAN, V., FONG, M., TYSON,
M., AND GU, G. A security enforcement kernel for OpenFlow
networks. In Workshop on Hot Topics in Software Defined Net-
working (2012).

[26] REITBLATT, M., FOSTER, N., REXFORD, J., SCHLESINGER,
C., AND WALKER, D. Abstractions for network update. In
Conference on Communications Architectures, Protocols and Ap-
plications (SIGCOMM) (2012).

[27] ROGERS, C. M. ANQL - an active networks query language. In
International Working Conference on Active Networks (2002).

[28] SAGONAS, K., SWIFT, T., AND WARREN, D. S. XSB as an
efficient deductive database engine. In International Conference
on the Management of Data (1994).

[29] SKOWYRA, R., LAPETS, A., BESTAVROS, A., AND KFOURY,
A. Verifiably-safe software-defined networks for CPS. In High
Confidence Networked Systems (HiCons) (2013).

[30] TENNENHOUSE, D. L., SMITH, J. M., SINCOSKIE, W. D.,
WETHERALL, D. J., AND MINDEN, G. J. A survey of active
network research. IEEE Communications Magazine (1997).

[31] VOELLMY, A., KIM, H., AND FEAMSTER, N. Procera: A lan-
guage for high-level reactive network control. In Workshop on
Hot Topics in Software Defined Networking (2012).

[32] VOELLMY, A., WANG, J., YANG, Y. R., FORD, B., AND HU-
DAK, P. Maple: Simplifying SDN Programming Using Algorith-
mic Policies. In Conference on Communications Architectures,
Protocols and Applications (SIGCOMM) (2013).

[33] WANG, A., BASU, P., LOO, B. T., AND SOKOLSKY, O. Declar-
ative network verification. In Practical Aspects of Declarative
Languages (2009).

[34] XIE, G. G., ZHAN, J., MALTZ, D. A., ZHANG, H., GREEN-
BERG, A., HJALMTYSSON, G., AND REXFORD, J. On static
reachability analysis of IP networks. In IEEE Conference on
Computer Communications (2005).

13

