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Abstract
Data processing frameworks such as MapReduce [8] and
Dryad [11] are used today in business environments where
customers expect guaranteed performance. To date, how-
ever, these systems are not capable of providing guarantees
on job latency because scheduling policies are based on fair-
sharing, and operators seek high cluster use through statis-
tical multiplexing and over-subscription. With Jockey, we
provide latency SLOs for data parallel jobs written in SCOPE.
Jockey precomputes statistics using a simulator that captures
the job’s complex internal dependencies, accurately and ef-
�ciently predicting the remaining run time at di�erent re-
source allocations and in di�erent stages of the job. Our con-
trol policymonitors a job’s performance, and dynamically ad-
justs resource allocation in the shared cluster in order tomax-
imize the job’s economic utility while minimizing its impact
on the rest of the cluster. In our experiments in Microso�’s
production Cosmos clusters, Jockey meets the speci�ed job
latency SLOs and responds to changes in cluster conditions.

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management—Scheduling

General Terms Algorithms, Performance

Keywords deadline, scheduling, SLO, data parallel, dy-
namic adaptation, Dryad, MapReduce

1. Introduction
Batch processing frameworks for data parallel clusters such
as MapReduce [8] and SCOPE [6] on Dryad [11] are see-
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ing increasing use in business environments as part of near-
real time production systems at Facebook [5] and Microso�.
�ese frameworks now run recurring, business-critical jobs,
and organizations require strict service-level objectives (SLOs)
on latency, such as �nishing in less than one hour. Missing a
deadline o�en has signi�cant consequences for the business
(e.g., delays in updating website content), and can result in
�nancial penalties to third parties.�e outputs of many jobs
feed into other data pipelines throughout the company; long
job delays can thus a�ect other teams unable to �x the input
jobs. Operators who monitor these critical jobs are alerted
when they fall behind, and have to manually resolve prob-
lems by restarting jobs, or adjusting resource allocations.
A framework which automatically provided latency SLOs
would eliminate such manual repairs.

�e ability to meet an SLO in data parallel frameworks is
challenging for several reasons. First, unlike interactive web
requests [23], data parallel jobs have complex internal struc-
ture with operations (e.g., map, reduce, join, etc.) which feed
data from one to the other [6, 7]. Barriers, such as aggrega-
tion operations, require the synchronization of all nodes be-
fore progress can continue. Failures, be they at task, server or
network granularity, cause unpredictable variation, and par-
ticularly delay progress when they occur before a barrier.

Secondly, statistical multiplexing and over-subscription
ensure high utilization of such clusters.�is creates variabil-
ity in response times due to work performed by other jobs.
Finally, work-conserving allocation policies add variation by
providing jobswith spare resources [12, 27]. Under these poli-
cies, each admitted job is guaranteed some task slots; slots
that go unused are distributed to other jobs that have pend-
ing tasks. While this improves cluster e�ciency, job latency
varies with the availability of spare capacity in the cluster.

We provide latency guarantees for data parallel jobs in
shared clusters with Jockey, which combines a detailed per-
job resource model with a robust control policy. Given a pre-



vious execution of the job1 and a utility function, Jockeymod-
els the relationship between resource allocation and expected
job utility. During job runtime, the control policy computes
the progress of the job and estimates the resource allocation
that maximizes job utility and minimizes cluster impact by
considering the task dependency structure, individual task
latencies, and failure probabilities and e�ects.

While the resource allocator in Jockey operates on indi-
vidual jobs, we can use admission control to ensure that suf-
�cient guaranteed capacity is available to all admitted SLO
jobs. Jockey’s jobmodel can be used to checkwhether a newly
submitted job would “�t” in the cluster – that is, that all pre-
viously accepted SLO jobs would still be able to meet their
deadlines – before permitting it to run. If a submitted SLO job
does not �t in the cluster, the cluster scheduler would need to
arbitrate between the jobs to determine an allocation which
maximizes the global utility at the risk of missing some SLO
deadlines. We leave the development of such a global arbiter
as future work.

Prior approaches to providing guaranteed performance
fall into one of three classes.�e �rst class partitions clusters
into disjoint subsets and is used at companies such as Face-
book [10]. Jobs which require guaranteed performance are
run in a dedicated cluster, and admission control prevents
contention between jobs. �is class achieves guarantees by
sacri�cing e�ciency because the dedicated cluster must be
mostly idle to meet SLOs. A second class of solutions shares
the cluster, but provides priority access to SLO-bound jobs –
tasks from such jobs run when ready and with optimal net-
work placement.�is shields SLO-bound jobs from variance
due to other jobs. However, the impact on non-SLO jobs is
signi�cant: their partially complete tasks may have to vacate
resources or lose locality when a higher-priority task arrives.
In addition, this approach can only support a limited number
of SLO-bound jobs to prevent negative interference between
them. A �nal class of solutions, common across many do-
mains, models the workload and selects a static resource al-
location that ensures the deadline is met. We �nd that simple
models formore general data parallel pipelines are imprecise,
and dynamic adaptation is necessary to cope with runtime
changes in the cluster and job structure.

Our core contribution is an approach that combines a
detailed job model with dynamic control. Experiments on
large-scale production clusters indicate that Jockey is re-
markably e�ective at guaranteeing job latency – in 94 exper-
iments it missed only a single deadline, by only 3% – and that
neither the model nor control is e�ective without the other.
Jockey is successful because it (a) minimizes the impact of
SLO-bound jobs on the cluster while still providing guaran-
tees, (b) pessimistically over-allocates resources at the start to
compensate for potential future failures, and (c) can meet la-

1 Recurring jobs, which includemost SLO-bound jobs, account for over 40%
of runs in our cluster, providing ready historical data for our models.

tency SLOs without requiring guaranteed performance from
individual resources such as the cluster network and disks.

2. Experiences from production clusters
To motivate our method for guaranteeing job latency in a
production data-parallel cluster, we �rst describe the archi-
tecture of the cluster and the importance of latency SLOs.We
then show that SLOs are di�cult tomeet due to high variance
in job latency, and illustrate the causes of such variance.

2.1 Cluster Background

To gain insight into the problem, we examine a single clus-
ter in Cosmos, the data parallel clusters that back Bing and
otherMicroso� online properties. Example applications run-
ning on this cluster include generating web indices, pro-
cessing end-user clickstreams, and determining advertising
selections. Jobs are written in SCOPE [6], a mash-up lan-
guage with both declarative and imperative elements similar
to Pig [17] or HIVE [22]. A compiler translates the job into an
execution plan graph wherein nodes represent stages such as
map, reduce or join, and edges represent data�ow [7, 9, 12].
Each stage consists of one or more parallel tasks. For stages
that are connected by an edge, communication between their
tasks ranges from one-to-one to all-to-all. A barrier occurs
when tasks in a dependent stage cannot begin until every task
in the input stage �nishes. Barriers are o�endue to operations
that are neither associative nor commutative. Job data �les re-
side in a distributed �le system which is implemented using
the same servers that run tasks, similar to Hadoop’s HDFS or
the Google File System [9].�e cluster is shared across many
business groups; at any time, there are many jobs running in
the cluster and several tasks running on each server.

Similar to other cluster schedulers [27], our cluster em-
ploys a form of fair sharing across business groups and their
jobs. Each job is guaranteed a number of tokens, as dictated by
cluster policy, and each running task uses one token, which
is released upon task completion. For e�ciency, spare tokens
are allocated to jobs that have pending tasks. Jobs are ad-
mitted to the cluster such that the total tokens guaranteed to
admitted jobs remains bounded. While a token guarantees a
task’s share of CPU andmemory, other resources such as net-
work bandwidth and disk queue priority are le� to their de-
fault sharing mechanisms, which are either per-�ow or per-
request based.

2.2 SLOs in Data Parallel Clusters

Setting an SLO deadline depends on a number of factors,
most of which relate to the job’s purpose. At a minimum,
the deadline must be feasible: it cannot be shorter than the
amount of time required to �nish the job given an in�nite
amount of resources (i.e., the length of the critical path). Fea-
sibility can be checked with trial job executions, or estimated
using a simulator such as the one in Jockey (see Section 4.1).

Deadlines for some jobs are derived from contractual
agreements with external (non-Microso�) customers, such



as advertisers or business partners, while others are set to
ensure customer-facing online content is kept fresh and up-
to-date. In each case, missing a deadline can be �nancially
detrimental to the business, either because of a contractually-
speci�ed penalty or the associated loss of revenue. Because
�nal outputs are o�en the product of a pipeline of jobs, a
deadline on the �nal output leads to individual deadlines for
many di�erent jobs running in Cosmos.

Finally, many internal deadlines are “so�” – that is, �n-
ishing a�er four hours instead of three is undesirable, but
does not trigger a �nancial penalty. However, a single clus-
ter runs a large number of concurrent jobs, some of which
have no deadlines, some have so� deadlines, and some have
very strict deadlines. With standard weighted fair sharing, it
is di�cult to map latency objectives for each of type of dead-
line onto an appropriate weight. Directly specifying a utility
function to indicate a job’s deadline and importance alleviates
this problem for our users.

In our experiments (Section 5), we set the target deadline
based on the length of the critical path, and for seven of the
jobs, we test with two di�erent deadlines.

2.3 Variance in Job Latency

Wequantify variance in the cluster by comparing completion
times across runs of recurring jobs, such as themany produc-
tion jobs which repeatedly execute on newly arrived data. By
being mostly similar, recurring jobs provide a ready yet real
source for cross-job comparison.�e executions we examine
consist of production-cluster jobs that repeated at least ten
times each during September 2011.

Across the runs of each recurring job, we compute the
completion time’s coe�cient of variation (CoV), i.e., std ev

mean .
Table 1 shows that the median recurring job has a CoV of
0.28, and 10% of all jobs have a CoV over 0.59. While a CoV
value less than 1 is considered to be low variance, these results
imply that for half (or 10%) of recurring jobs the latency of a
sixth of their runs is > 28% (or > 59%) larger than the mean.

We �nd that the size of the input data to be processed
varies across runs of recurring jobs. To discount the impact
of input size on job latency, we further group runs of the same
job into clusters containing runs with input size di�ering by
at most 10%. Table 1 shows that much of the variation still
persists even within these clusters.

2.4 Causes of Variance

A potential cause of job latency variance is the use of spare
tokens. Recall that our cluster re-allocates tokens which are
unused by the jobs to which theywere guaranteed. To explore
this hypothesis, we compared runs of seven jobs described
in Section 5.2 with experimental runs that were restricted to
using guaranteed capacity only – the CoV dropped by up
to �ve times. While these jobs are smaller than the median
job in our cluster, and thus the speci�c decrease may not
be representative, we believe it con�rms our hypothesis that
spare tokens add variance to job latency.

Statistic Percentiles
10th 50th 90th 99th

CoV across recurring jobs .15 .28 .59 1.55
CoV across runs with inputs
di�ering by at most 10%

.13 .20 .37 .85

Table 1. �e coe�cient of variation (CoV) of completion time across runs
of recurring jobs. Variation persists across runs with similar input sizes.
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Figure 1. Dependence between jobs: 20% of jobs havemore than 20 other
jobs depending on their output. Over half of the directly dependent jobs start
within 10 minutes of the earlier job and are hence likely to stall if the earlier
job is delayed. Long chains of dependent jobs are common, andmany chains
span business groups.

�e use of spare capacity creates variance in a job’s run
time for two reasons. First, the availability of spare tokens
�uctuates because it depends on the nature of other jobs run-
ning in the cluster – if other jobs have more barriers or more
outliers due to data skew, more tokens will be spare. In the
above experiments, the fraction of the job’s vertices that ex-
ecuted using the spare capacity varied between 5% and 80%.
Second, tasks using spare tokens run at a lower priority than
those using guaranteed tokens, and thus can be evicted or
pushed into the background during periods of contention.

Task runtimes also vary due to hardware and so�ware
failures, and contention for network bandwidth and server
resources. In public infrastructures, such as EC2 and Azure,
such contention is even higher than in our cluster [13, 25].

2.5 Impact on Job Pipelines

Because many business processes consist of pipelines of mul-
tiple jobs, variance in the completion time of a single job can
have a wide impact. To quantify this impact, we examined all
jobs in our cluster over a period of three days. When a job’s
input contains data blocks written by an earlier job, we infer
a dependence. We did not track dependences due to changes
to the �lesystem (e.g., copying or renaming blocks) and use
of data outside the cluster (e.g., downloading a job’s output to
train a classi�er which is then used by other jobs).

For the 10.2% of jobs with at least one dependency, which
includesmost SLO-bound jobs, Fig. 1 quanti�es those depen-
dences.�e violet (solid) line shows that themedian job’s out-
put is used by over ten other jobs – for the top 10% of jobs,
there are over a hundred dependent jobs. �e blue (small
dashes) line shows that many directly dependent jobs start
soon a�er the completion of a job – the median gap is ten
minutes.�is means that delays in the job will delay the start



of these subsequent jobs. �e green (dash-dot line) shows
that the chains of dependent jobs can be quite long and span
di�erent business groups (red or big dash line). At business
group or company boundaries, these delays can cause �nan-
cial penalties and require manual intervention.

2.6 Lessons for Jockey

Jockey uses the number of guaranteed tokens as the mech-
anism to adjust a job’s performance because it directly ad-
dresses one source of variance in our cluster. Because our
tokens are analogous to tickets in a lottery scheduler or the
weights in a weighted fair queuing regime, Jockey’s method-
ology is directly applicable to other systems which use a
weighted fair approach to resource allocation.

Jockey uses readily available prior executions to build a
model of a recurring job’s execution. Such a model is essen-
tial to translating resource allocation into expected comple-
tion time. We will show later how Jockey makes use of prior
executions despite possible variations in input size.

3. Solutions for Providing SLOs
We consider three solutions to our goal of providing SLO-
like guarantees of job completion times in Cosmos.�e �rst
is to introduce an additional priority class in the cluster-wide
scheduler, and map di�erent SLOs onto each class. �e sec-
ond is to manually determine resource quotas for each job.
Finally, we develop a novel method to dynamically adjust re-
sources based on the job’s current performance and historical
data.

3.1 Additional priority classes

�e �rst potential solution is to implement a third class of
tokens with a new, higher priority. Jobs with the strictest
SLOs can be allocated and guaranteed these “SuperHigh” to-
kens. �rough the combination of strict admission control,
repeated job pro�ling to determine the necessary allocation,
and a paucity of SuperHigh tokens at the cluster-scale, it is
possible to meet SLOs with this design.

However, there are numerous downsides to this approach.
When a job runs with SuperHigh tokens it increases con-
tention for local resources.�is has a negative impact on reg-
ular jobs, which can be slowed or potentially lose locality –
the bene�cial co-location of storage and computational re-
sources. Secondly, the cluster scheduler must be overly pes-
simistic about the number of SuperHigh-priority jobs which
can execute simultaneously. If too many such jobs are ad-
mitted to the cluster, the jobs will thrash and cluster good-
put will fall. Finally, the heart of this solution is to introduce
ordinal priority classes into the system, which are known to
have weak expressive power and can lead to poor schedul-
ing decisions when the system is overloaded [4]. We did not
further evaluate this solution because its use would impact
actual SLO-bound jobs in our production cluster.

3.2 Quotas for each job

A second potential solution for meeting SLO-bound jobs is
to introduce strict, static quotas with the appropriate number
of guaranteed tokens for each job. �is solution is evaluated
in Section 5.2 as Jockey w/o adaptation, and we �nd it to be
unsatisfactory for three reasons. First, as cluster conditions
change due to node failures and other events detailed later,
the number of tokens required to meet the SLO also changes.
�erefore, it would be necessary to regularly rebalance the
quotas for all such SLO jobs.

Second, we have observed that determining weights and
quotas is di�cult for many users of large clusters. To re-
duce the chance of missing an SLO, some users request too
many resources, which makes useful admission control chal-
lenging. Others request too few because they have relied on
overly-optimistic trial runs, or a tenuous bounty of spare ca-
pacity tokens in the past. To explore the ability of users to
correctly size their resource requests, we examined the guar-
anteed allocations and the maximum achieved parallelism of
production jobs during a one-month period. We found that
the maximum parallelism of one-third of the jobs was less
than the guaranteed allocation. Futhermore, the maximum
parallelism of one-quarter of the jobs reached more than ten
times the guaranteed allocation thanks to the spare capacity.

Finally, it is clear that whenmultiple SLO-bound jobs exist
in the system, the cluster’s goodput can be improved by dy-
namically re-allocating resources from jobs with slack SLOs
to those with tight SLOs.2 �is motivates the design of our
solution, along with additional requirements described next.

3.3 Dynamic resource management

In order to meet the desired SLOs in Cosmos, we developed
a dynamic resource management system, Jockey, which we
describe in detail in Section 4. Our design was guided by
the limitations of the two solutions above, the variability of
job performance described in Section 2.3, and the structure
of SCOPE programs. We also faced additional constraints
such as the need to adapt to changes in cluster availability,
delays in job submission, and changes in the SLO a�er job
initialization.

�e variability of job performance implies that the sched-
uler needs to react to changing cluster conditions, period-
ically re-allocating resources at a �ne timescale during job
execution. We discuss the sensitivity of the scheduler to this
timescale in Section 5.5. Because resource allocations are re-
calculated during the job’s execution, it is necessary to have
an accurate indicator of the job’s current progress, in addition
to a model of the job’s end-to-end latency.

�e DAG structure of jobs in Cosmos creates two chal-
lenges. A �rst is that Jockey must make decisions which re-
spect dependencies between tasks. A second is the wide vari-
ation in a job’s degree of parallelism during execution. Some
stages may be split into hundreds of tasks, while others, such

2A few Cosmos users even tried to do this by hand in the past!
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Figure 2. Architecture diagram: in the o�ine phase, we use a pro�le of
a previous run to estimate job statistics and use the simulator to estimate
completion times. During runtime, the control loop monitors the job and
uses job statistics, latency predictions and the utility function to propose the
minimum resource allocation that maximizes the utility of the job.

as an aggregation stage, are split into few tasks.�e scheduler
must allocate enough resources early in the job so that it does
not attempt in vain to speed-up execution by increasing the
resources for a later stage beyond the available parallelism.
Jockeymust also be aware of the probability and e�ect of fail-
ures at di�erent stages in the job so there is an appropriate
amount of time remaining to recover before the deadline.

4. Jockey
Jockey is composed of three components: a job simulator,
which is used o�ine to estimate the job completion time
given the current job progress and token allocation, a job
progress indicator, which is used at runtime to characterize
the progress of the job, and a resource allocation control loop,
which uses the job progress indicator and estimates of com-
pletion times from the simulator to allocate tokens such that
the job’s expected utility is maximized and its impact on the
cluster is minimized (see the architecture diagram in Fig. 2).
We describe these components in more detail in the follow-
ing three sections, and address limitations of our approach in
Section 4.4.

4.1 Job Completion Time Prediction

In order to allocate the appropriate number of tokens tomeet
an SLO, Jockey must be able to predict the job’s comple-
tion time under di�erent token allocations given the current
progress. �is is challenging because the system has to con-
sider all remaining work in the job and the dependencies be-
tween stages. We consider two methods for this prediction:
an event-based simulator, and an analytical model inspired
by Amdahl’s Law. Based on our evaluation in Section 5.3, we
use the simulator approach in the current version of Jockey.

Job simulator and the o�ine estimation

�e job simulator produces an estimate of the job comple-
tion time given a particular allocation of resources and job
progress.�ese estimates are based on one or more previous
runs of the job, from which we extract performance statistics
such as the per-stage distributions of task runtimes and ini-
tialization latencies, and the probabilities of single andmulti-

ple task failures.�e job simulator takes as input these statis-
tics, along with the job’s algebra (list of stages, tasks and their
dependencies), and simulates events in the execution of the
job. Events include allocating tasks to machines, restarting
failed tasks and scheduling tasks as their inputs become avail-
able. �is simulator captures important features of the job’s
performance such as outliers (tasks with unusually high la-
tency) and barriers (stages which start only when all tasks
in dependent stages have �nished), but does not simulate all
aspects of the system, such as input size variation and the
scheduling of duplicate tasks. We discuss the accuracy of the
simulator in Section 5.3.

A basic implementation of the resource allocation con-
trol loop could invoke the simulator during each iteration by
marking the completed tasks and simulating forward. �en,
for each resource allocation under consideration, multiple
simulations could be used to estimate the distribution of
completion times and thus the expected utility given that
allocation. However, depending on the number of alloca-
tions considered and the size of the job, these simulations
could take a long time and add a signi�cant delay to the con-
trol loop.�erefore, we develop a method that only uses the
simulator o�ine, precomputing all information necessary to
accurately and quickly allocate resources.

For each SLO job,we estimateC(p, a)– a randomvariable
denoting the remaining time to complete the job when the
job has made progress p and is allocated a tokens. In the
control loop, we use these precomputed values to select an
appropriate allocation. We present an approach to compute
the job progress p in Section 4.2.

We estimate the distribution ofC(p, a) by repeatedly sim-
ulating the job at di�erent allocations. From each simulation,
say at allocation a that �nishes in time T , we compute for
all discrete t ∈ [0, T] the progress of the job pt at time t
and the remaining time to completion tc = T − t. Clearly,
tc = C(pt , a), i.e., the value tc is one sample from the distri-
bution ofC(pt , a). Iterating over all t in a run and simulating
the job many times with di�erent values of a provides many
more samples, allowing us to estimate the distribution well.
Because the logic in the simulator is close to that of the real
system, these estimates approximate real run times well.

Amdahl’s Law

Rather than using the simulator above, we can use amodi�ed
version of Amdahl’s Law [1] to estimate the job’s completion
time given a particular allocation. Amdahl’s Law states that
if the serial part of a program takes time S to execute on
a single processor, and the parallel part takes time P, then
running the program with N processors takes S + P/N time.
In our case, we let S be the length of the critical path of the
job and P be the aggregate CPU time spent executing the job,
minus the time on the critical path. To estimate the remaining
completion time of a jobwhen allocated a tokens, we evaluate
the above formula with N = a.



To use Amdahl’s Law in our resource allocation loop, we
need to estimate the total work remaining in the job, Pt , and
the length of the remaining critical path, St , while the job is
running. For each stage s, let fs be the fraction of tasks that
�nished in stage s, ls be the execution time of the longest
task in stage s, Ls be the longest path from stage s to the
end of the job and Ts be the total CPU time to execute all
tasks in stage s. Note that the last three parameters can be
estimated from prior runs before the job starts, and fs can
easily be maintained by the job manager at run time. Now,
St = maxstage s∶ fs<1(1 − fs)ls + Ls and Pt = ∑stage s∶ fs<1(1 −
fs)Ts . In words, across stages with un�nished tasks fs < 1,
we estimate the total CPU time that remains to be Pt and the
longest critical path starting from any of those stages to be St .

4.2 Job Progress Estimation

As introduced above, we use a progress indicator to capture
the state of the job and to index into C(p, a), the remaining
time distributions that were pre-computed from the simula-
tor. �e progress indicator should faithfully re�ect the work
that has happened and the work that remains. In particu-
lar, it should account for parallel stages whose tasks can �n-
ish in any order, tasks that di�er widely in completion time,
and stages that di�er in their numbers of tasks. Furthermore,
tasks sometimes fail, requiring previous output to be recom-
puted, and the indicator should re�ect such events as well.

A job progress indicator can integrate several characteris-
tics of a running job. Examples include the fraction of com-
pleted tasks in each stage, the aggregate CPU time spent exe-
cuting, the relative time when a particular stage is started or
completed, and the length of the remaining critical path. We
built six progress indicators that use di�erent subsets of these
aspects. Here we describe the progress indicator that worked
best in our experiments. See Section 5.4 for description and
evaluation of the remaining indicators.

�e totalworkWithQ indicator estimates job progress to be
the total time that completed tasks spent enqueued or execut-
ing. Based onpast run(s) of the job, we compute for each stage
s, the total time tasks spend executing Ts and enqueued Qs .
At runtime, given fs , the fraction of tasks in stage s that are
complete, the progress estimate is∑stage s fs(Qs + Ts).

�is indicator is simple. In particular, it assumes that tasks
in the same stage have similar queuing and running times and
ignores potentially useful information such as the intra-task
progress, dependencies between future stages, barriers, and
the length of remaining critical path. However, our goal is to
design an indicator that is an e�ective index into the C(p, a)
distributions computed in Section 4.1. Our experience (see
Sections 5.2 and 5.4) shows that this indicator performs better
in Jockey than more complex indicators across a wide range
of conditions.

4.3 Resource Allocation Control Loop

�e goal of the resource allocation control loop is to imple-
ment a policy which maximizes the job’s utility and mini-

mizes its impact on the cluster by adjusting the job’s resource
allocation.�ere are four inputs to the control loop:

1. fs , the fraction of completed tasks in stage s
2. tr , the time the job has spent running
3. U(t), the utility of the job completing at time t. A typical
utility function used in our environment would be nearly
�at until the job deadline, drop to zero some time a�er
the deadline and, in some cases, keep dropping well below
zero to penalize late �nishes.

4. Either the precomputed C(p, a) distributions, Qs and
Ts , for each stage s (when using the simulator-based ap-
proach), or the precomputed ls , Ls , and Ts for each stage
s (when using the Amdahl’s Law-based approach).

�e policy’s output is the resource allocation for the job.
�e basic policy logic periodically observes the job’s progress

and adapts the allocated resources to ensure it �nishes with
high utility. First, it computes the progress p using a job
progress indicator. Next, the expected utility from allocat-
ing a tokens is computed as follows: given progress p and
the time the job has been running tr , the expected utility is
Ua = U(tr + C(p, a)). Finally, the minimum allocation that
maximizes utility is Ar = argmina{a ∶ Ua = maxb Ub}.

Inaccuracies in predicting job latencies and the non-
deterministic performance of the cluster can cause the raw
allocation Ar to under- or over-provision resources, or oscil-
late with changes. To moderate these scenarios, Jockey inte-
grates three standard control-theory mechanisms:

1. Slack: To compensate for inaccuracy in the job latency
estimate (by the simulator or Amdahl’s Law), we multiply
the predictions from C(p, a) by a constant factor S . For
example, with slack S = 1.2, we would add an additional
20% to the predictions.

2. Hysteresis: To smooth oscillations in the raw allocation,
we use hysteresis parametrized by α. In particular, we
adapt As

t – the smoothed allocation at time t – as follows:
As

t = As
t−1 + α(Ar − As

t−1). Whereas a value of α = 1 im-
plies that the allocation immediately jumps to the desired
value, for α ∈ (0, 1) the gap between the allocation and
the desired value reduces exponentially with time.

3. Dead zone: To dampen noise in the job progress indica-
tor, we add a dead zone of length D, i.e., shi� the utility
function le�wards by D and change allocations only if the
job is at least D behind schedule. For example, with D = 3
minutes, a deadline of 60 minutes is treated as a deadline
of 57 minutes, and the policy won’t act unless the job is at
least 3 minutes delayed.

Our results in Section 5 show the need for dynamic adap-
tation. We also report on the incremental contributions due
to each of the above techniques. In Section 5.5 we perform
a sensitivity analysis of parameter choices, and �nd that the
slack, hysteresis, and dead zone parameters havewide operat-



ing regimes. Values for these parameters can be set in advance
with the aid of Jockey’s simulator: slack can be set based on
simulator’s margin of error when compared with actual job
executions, values for hysteresis and dead zone can be deter-
mined experimentally with a simulated control loop. While
the simulator does not perfectly reproduce the actual dynam-
ics of the cluster and jobs, it provides guidance when adjust-
ing these settings.

4.4 Limitations and Future Work

As described here, Jockey makes local decisions to ensure
each job �nishes within the SLOwhile using as few resources
as necessary. We plan to extend Jockey to reach globally op-
timal allocations when managing multiple SLO-bound jobs.
Doing so requires an additional inter-job arbiter that dynam-
ically shi�s resources from jobs with low expected marginal
utility to those with high expected marginal utility.

At this time, Jockey is only capable of meeting SLOs for
jobs it has seen before. We consider this a reasonable limi-
tation since most of the business-critical jobs are recurring.
For non-recurring jobs, a single pro�le run is enough to gen-
erate accurate job completion estimates, as demonstrated in
Section 5.2. Extending Jockey to support novel jobs, either
through sampling or other methods, is le� for future work.

Jockey is agnostic to small changes in the input size of the
job and in the execution plans. Large changes to either are
visible to Jockey and can be treated as new jobs; i.e., train new
completion time distributions based on the changed runs.
In practice, we build Jockey’s o�ine distributions using the
largest observed input because Jockey automatically adapts
the allocation based on the actual resource needs during the
lifetime of the job.

We acknowledge that Jockey cannot recover from serious
failures or degenerate user code. For example, if running the
job on the entire cluster would not meet the SLO, Jockey is of
little use. However, such cases are rare, and for common fail-
ures Jockey can meet deadlines by running the job at appro-
priately higher parallelism. In either case, Jockey will attempt
tomeet the SLOby continuously increasing the amount of re-
sources guaranteed to the job until the model indicates that
the deadline will be met, the job completes, or a hard limit is
reached.

A few enhancements to the current design are also under
consideration. Additional input signals to the control loop,
such as the size of the input data, progress within running
tasks, and cluster-wide performance metrics, could improve
adaptivity. Additional control knobs such as the aggressive-
ness of mitigating stragglers [2], the OS priority of tasks, and
the bandwidth shares of network transfers, could broaden
what Jockey can do to meet SLOs. Finally, rather than use
progress indicators, e�cient ways to integrate the simulator
with the online phase, perhaps as a less frequent control loop,
could provide more precise control over job progress.

5. Evaluation
In this section, we �rst evaluate the ability of Jockey to meet
job latency SLOs in various scenarios: di�erent deadlines,
changes in cluster conditions, and changes in deadlines dur-
ing job runtime. �en, we evaluate Jockey’s three compo-
nents: the latency prediction, the progress indicators, and the
sensitivity of the control loop to changes in its parameters in
Sections 5.3, 5.4, and 5.5.

5.1 Methodology

We evaluate Jockey on 21 production jobs; these were all the
recurring jobs of a business group inMicroso� that were nei-
ther too short to use in our evaluation, nor too big for the
guaranteed cluster slice available to our experiments. We use
a single production run of these jobs as input to the simula-
tor (Section 4.1) to pre-compute the completion time distri-
bution (C(p, a)) and other statistics (ls , Ls , Ts , and Qs). Ex-
perimental runs were performed using a modi�ed job man-
ager that implements progress indicators and adapts alloca-
tions dynamically (Sections 4.2 and 4.3). We perform more
detailed analysis for a subset of these jobs; their character-
istics are in Table 2 and stage dependency structure is illus-
trated in Fig. 3.

�e analysis and experiments were performed on a large-
scale cluster running production workloads with an average
utilization of 80% and a number of compute nodes in the high
thousands. Each node is a commodity, multi-core machine
with tens of GBs of RAM. �ere are approximately 40 ma-
chines per rack, connected by a network oversubscribed by a
small factor.

For most jobs, we evaluate Jockey’s ability to meet a dead-
line of 60minutes. For the detailed subset, we used two di�er-
ent deadlines – the longer always twice the shorter. A dead-
line of d minutes translates to a piecewise-linear utility func-
tion going through these points: (0, 1), (d , 1), (d + 10,−1),
(d + 1000,−1000). �is means that the utility drops signif-
icantly a�er the deadline. We ran at least three experiments
for each combination of job, deadline and policy. In total, we
report results from more than 800 experiments.

Our evaluation metrics are as follows: 1) did the job com-
plete before the speci�ed deadline?, 2) how much earlier or
later did the job �nish compared to the deadline?, and 3) what
was the impact on the rest of the cluster for jobs that met the
deadline?Wemeasure the job’s impact using the notion of or-
acle allocation. For a deadline of d minutes and a job that re-
quires aggregateCPU time ofTminutes, the oracle allocation
is O(T , d) = ⌈T/d⌉ tokens. �is is the minimum allocation
required in theory to �nish the job in d minutes. �is esti-
mate is optimistic since it assumes the total work is known in
advance, and the job can continuously run at a parallelism of
O(T , d) (that is, it is agnostic to the job’s structure). However,
it is a good baseline for comparing di�erent resource alloca-
tion approaches.�e job’s impact on the cluster is measured
as the fraction of job allocation requested by the policy that



stat A B C D E F G
vertex runtime median [sec] 16.3 4.0 2.6 6.1 8.0 3.6 3.0
vertex runtime 90th percentile [sec] 61.5 54.1 5.7 25.1 130.0 17.4 7.7
vertex runtime 90th percentile [sec] (fastest stage) 4.0 3.3 1.7 1.4 3.9 3.3 1.6
vertex runtime 90th percentile [sec] (slowest stage) 126.3 116.7 21.9 72.6 320.6 110.4 68.3
total data read [GB] 222.5 114.3 151.1 268.7 195.7 285.6 155.3
number of stages 23 14 16 24 11 26 110
number of barrier stages 6 0 3 3 1 1 15
number of vertices 681 1605 5751 3897 2033 6139 8496

Table 2. Statistics of seven jobs used in evaluation.

(a) job A (b) job B (c) job C (d) job D (e) job E (f) job F (g) job G

Figure 3. Stage dependencies of seven jobs used in evaluation. Each node represents a stage in a job; blue, triangular nodes are stages with full shu�e. Sizes
of the nodes are proportional to the number of vertices in the stage, and edges represent stage dependencies (top to bottom). In this visualization, a typical
MapReduce job would be represented by a black circle connected to a blue triangle.

is above the oracle allocation. See Fig. 6 for examples of the
oracle allocation.

In our experiments, we re-run the resource allocation con-
trol loop (Section 4.3) each minute and use the totalwork-
WithQ progress indicator.We use a slack of 1.2 to accommo-
date the inaccuracy of job latency prediction, hysteresis pa-
rameter of 0.2 to smooth the requested resource allocation,
and a dead zone of 3 minutes. We discuss Jockey’s sensitivity
to these values in Section 5.5, and compare progress indica-
tors in Section 5.4.

We compare Jockey – based on predictions from the job
simulator and adapting allocations at runtime – with three
other policies. Jockey w/o adaptation uses the job simulator to
�nd an a priori resource allocation that maximizes job util-
ity, but does not adapt allocations during job runtime. Jockey
w/o simulator does adapt but uses the simpler Amdahl’s Law-
based model of the job. Finally, we compare against the max
allocation policy which guarantees all the resources avail-
able (in these experiments, 100 tokens) to �nish the SLO-
bound job as quickly as possible.

While the max allocation policy is able to meet all of the
SLO deadlines, as shown below, it is not a practical policy to
use. Because it guarantees all allocated resources to each job,
it is not possible to run more than one job at a time using
the max allocation policy. Because the maximum parallelism
of Dryad jobs varies, running one job at a time would cre-
ate “valleys” before the barrier stages, during which the re-
sources would be underutilized (indeed, this problem would
beworse for those jobswhich cannotmake use of all allocated
resources at any point). Filling those valleys with additional
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Figure 4. Comparison of average allocation above the oracle allocation
and fraction of missed deadlines for each policy.

jobs naturally requires a dynamic allocation policy, as we de-
velop with Jockey.

5.2 SLO-based Resource Allocation

Fig. 4 summarizes our experiments; there are more than 80
runs per policy. �e x-axis shows the fraction of job alloca-
tion above the oracle allocation; the y-axis shows the fraction
of experiments that missed deadlines. In both cases, lower
values are better. Jockey misses the deadline in one experi-
ment (see below for an explanation), and has a low impact
on the rest of the cluster. Jockey w/o adaptation has a slightly
higher impact on the cluster, but misses many more dead-
lines because of its inability to adapt to cluster changes. Jockey
w/o simulator, which usesAmdahl’s Law to estimate job com-
pletion times, achieves the lowest impact on the cluster, but
misses many deadlines. �is is because the simple analytic
model of the job leads to imprecise predictions of the com-
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Figure 5. Le�, CDFs of job completion times relative to the speci�ed deadline for di�erent policies. Right, detail of the upper-right corner.

pletion time. Finally, the max allocation policy meets every
deadline by signi�cantly over-provisioning the job – poten-
tially starving other jobs in the cluster. Further, when mul-
tiple SLO-bound jobs must run simultaneously, this policy
provides no bene�ts.

Fig. 5 presents the experimental results inmore detail.�e
x-axis on the graph represents the job completion time rela-
tive to the speci�ed deadline; values below 100% represent
experiments that met the SLO, values above 100% (right of
the dashed black line) are experiments that did not. Notice
that jobs using the max allocation policy �nish signi�cantly
before the deadline – the median such job �nishes approxi-
mately 70% early – which translates to a large impact on the
rest of the cluster; jobs under the other three policies �nish
much closer to the deadline. Finally, notice that using dy-
namic resource allocation in Jockey (solid line) further re-
duces the variance in latency compared to Jockey w/o adap-
tation (dotted line), which uses a �xed allocation of tokens.

On the right in Fig. 5, we see that while both Jockey w/o
simulator and Jockey w/o adaptation miss the same fraction
of deadlines, the late jobs using Jockey w/o simulator �nish
much earlier post-deadline. �e median late job of Jockey
w/o simulator �nishes only 1% late, while the median late job
of Jockey w/o adaptation �nishes 10% late. �is shows that
even though Amdahl’s Law provides less accurate latency
predictions than the simulator, dynamic allocation causes
jobs to �nish close to the deadline. See Fig. 6 for detailed
examples of experiments using our simulation-based policy.

Adapting to changes in cluster conditions

Because Jockey is dynamic, it is robust to inaccurate latency
predictions and can respond to changes in cluster conditions.
For example, a �xed allocation calculated using a model of
job performance (such as a simulator), can be too low tomeet
the deadline, as demonstrated above. In our experiments, the
Jockey w/o adaptation policymisses the SLO deadline in 18%
of experiments, even though this policy uses the same slack
factor of 1.2 as our dynamic policy experiments.

One reason such o�-line predictions are inaccurate is that
cluster conditions change. Because access is shared and other
jobs run concurrently, use of network and CPU resources
varies over time. Further detail from the experiment in which
Jockey misses the SLO illustrates these variations.

(a) job F, 45-minute deadline: as described in the text, the actual job
took twice as much time to execute due to an overloaded cluster. Our
policy realized the slower progress and started adding resource early.
In the end, the job �nished only 3% late.

(b) job E, 45-minute deadline: policy started adding resources a�er
it noticed a particular stage was taking longer to complete.

(c) job G, 60-minute deadline: policy over-provisioned the job at the
beginning and released resources as the deadline approached.

Figure 6. �ree examples of dynamic resource allocation policy experi-
ments.�e blue line is the raw allocation based on the job’s utility and current
progress, the black line is the allocation set by the policy, the red line is the
number of vertices running, and the green line is the oracle allocation.

statistic training job 1 job 2
total work [hours] 12.7 23.5 18.5
queueing median [sec] 5.8 6.8 6.9
queueing 90th perc. [sec] 8.4 11.6 11.4
latency median [sec] 3.6 5.8 5.2
latency 90th perc. [sec] 17.4 36.6 27.1

Table 3. For job F, comparing themetrics of the training job used to create
the C(p, a) distributions in the simulator with two actual runs, jobs 1 and
2. Both the runs require more work; job 1 needs almost twice as much work
to complete. Jockey notices the slow-down and allocates extra resources at
runtime to �nish job 2 on time and job 1 �nishes only 90s late.



We compare the training execution that was used to com-
pute the completion distributions, C(p, a), with two actual
runs of the same job when controlled by Jockey. In Table 3,
job 1 is the run thatmissed the deadline, whereas job 2met the
deadline. Fig. 6(a) plots the timelapse of how Jockey adapted
during job 1. Notice that the total amount of work required
to �nish both jobs is higher than their training runs, with job
1 needing almost twice the total work. �e median and 90th
percentile of vertex queueing and execution latencies are also
higher. In spite of this, Jockey added enough resources to �n-
ish job 2 on time. From Fig. 6(a), we see that Jockey noticed
job 1 to be slower and added resources (blue line on top),
missing the deadline by only 90 seconds. Figures 6(b) and (c)
show other types of adaptations. In the former, Jockey iden-
ti�es a stage taking more time than usual and increases the
allocation. In the latter, the job �nishes faster than usual, and
Jockey frees resources to be used by other jobs.

Adapting to changes in deadlines

An important feature of dynamic resource allocation is that
it can adapt to changing job deadlines by adding more re-
sources to meet a stricter deadline, or vice versa.�is is cru-
cial when multiple SLO-bound jobs must be run since we
might need to slow a job to ensure a more important job �n-
ishes on time. While arbitrating among multiple SLO-bound
jobs is not Jockey’s focus, we view changes in deadlines as a
mechanism to ensure the on-time completion of individual
jobs as used by a future multi-job scheduler.�e success of a
such a scheduler thus depends on Jockey’s ability to success-
fully adapt to changing deadlines. Finally, although extending
a deadline does not require any change in resources in order
to meet the new, longer deadline, by decreasing the amount
of guaranteed resources, Jockey can make more guaranteed
resources available for future SLO-bound jobs.

For each of the seven jobs, we performed three separate
experiments in which, ten minutes a�er start of the job, we
cut the deadline in half, doubled the deadline or tripled the
deadline, respectively. In each run, Jockey met the new dead-
line. In the runs where we lowered the deadline by half, the
policy had to increase resource allocation by 148% on aver-
age. In the runs where we doubled or tripled the deadline,
the policy released 63% or 83% (respectively) of the allocated
resources on average. See two example runs in Fig. 7.

5.3 Job Latency Prediction Accuracy

While our policy can adapt to small errors in latency esti-
mates, larger errors can lead to signi�cant over-provisioning
or under-provisioning of resources. To evaluate the accuracy
of the end-to-end latency predictions made by the simula-
tor and Amdahl’s Law, we executed each of the seven jobs
three times at eight di�erent allocations. We initialized the
variables for both our predictors, the simulator andmodi�ed
Amdahl’s Law, based on jobs at one allocation and estimated
their accuracy at predicting latency for other allocations. In
practice, we care about the worst-case completion time, so we

(a) Deadline changed from 140 to 70 minutes. �e policy adjusted
the resource allocation (black line) to meet the new deadline.

(b) Deadline increased from 20 to 60 minutes. �e policy released
more than 90% of the resources and still met the new deadline.

Figure 7. Examples of two experiments with changing deadlines.
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compare the largest prediction from either predictor to the
slowest run at each allocation. Across jobs and allocations,
the average errors of the simulator and Amdahl’s Law were
9.8% and 11.8%, respectively; see details in Fig. 8. Amdahl’s
Lawhas high error at low allocations, but performsmuch bet-
ter at higher allocations, where the job’s runtime is closer to
the length of the critical path.

While the average error of Amdahl’s Law is only slightly
higher than the simulator’s, Jockey w/o simulator missed 16%
of the deadlines.�e explanation of most of these SLO viola-
tions is that the policy using Amdahl’s Law initially allocated
too few tokens and was unable to catch-up during job run
time. Also, the job simulator captures the variance of the end-
to-end job latency due to outliers and failures, and therefore
creates a safety bu�er to make sure SLOs can be met despite
this variance.

5.4 Job Progress Indicators

When dynamically allocating resources to a job, having an
accurate prediction of end-to-end job latency is not enough;
the control policy also needs an accurate estimate of job’s
progress in order to index into the remaining time distri-
butions. Jockey uses totalworkWithQ, which uses the total



queueing and execution time of completed vertices, to esti-
mate job progress (Section 4.2).

Here, we describe a few other progress indicators we con-
sidered: totalwork computes progress as the fraction of the
total execution time of completed vertices; vertexfrac uses
the total fraction of vertices that completed; cp uses the frac-
tion of the job’s remaining critical path; the minstage and
minstage-inf indicators use the typical start and end times of
the individual stages relative to the job. If tbs and tes are the
relative start and end times of stage s, minstage infers these
values from the previous run of the job while minstage-inf
uses a simulation of the job with no constraint on resources
and hence focusses on the critical path. Both estimate job
progress as the stage furthest from when it typically com-
pletes, i.e., minstage s∶ fs<1{tbs + fs(tes − tbs )}, where fs is the
fraction of vertices completed in stage s.

To evaluate these indicators, we measure how accurately
they predict the end-to-end job latency during the runtime
of a job.When Jockey calls the control loop at time t a�er the
start of the job, the progress indicator estimates progress to be
pt , which is indexed into the remaining time distribution and
a completion time estimate is calculated as Tt = t +C(pt , a).
We compare the Tt obtained from di�erent indicators with
the actual time at which the job �nishes.

�e values of the progress indicator (normalized to range
from 0 to 100) and the estimated completion times Tt for
two of the progress indicators are shown in Fig. 9. An unde-
sirable characteristic of a progress indicator is getting stuck
(ie., reporting constant values) even when the job is making
progress. We see that the CP indicator is stuck from t=20min
to t=40min causing Tt to increase during this period. Such
behavior confuses the control policy into assuming that the
job is not making progress and increases the job’s resource
allocation even though the job may �nish on time with the
existing allocation. An ideal indicator would generate Tt = D
when enough resources are available, where D is the job du-
ration, for all times t; the more Tt diverges from D, the more
the control policy has to unnecessarily adjust the resource al-
location of the job.

We compare these indicators using twometrics; the longest
constant interval, i.e., the longest period, relative to the du-
ration of the job, when the progress indicator was constant
and the average △T , which measures the oscillations in the
Tt estimates and is computed as the average of ∣Tt −Tt+1∣ rel-
ative to the duration of the job.�e larger the value of either
metric, the greater opportunity for needless oscillations in
allocations. See the comparison in Table 10.

�e totalworkWithQ indicator, which incorporates the
duration and queueing time of vertices in each stage, per-
forms best. �e minstage, minstage-inf and CP indicators,
which consider the structure of the job, perform signi�cantly
worse because their progress estimates are based on the stage
which hasmade the least progress, and do not re�ect progress
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Figure 9. �e totalworkWithQ (le�) and CP (right) progress indicators
for job G.�e solid lines (le� axes) show the estimated worst-case job com-
pletion times Tt , the dashed lines (right axes) correspond to the values of the
progress indicator.

indicator △T longest constant interval
totalworkWithQ 2.0% 8.5%
totalwork 2.3% 9.3%
vertexfrac 2.2% 10.1%
CP 3.0% 15.2%
minstage 3.3% 19.9%
minstage-inf 3.9% 26.7%

Figure 10. Comparison of progress indicators.
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Figure 12. Sensitivity of the slack parameter. Top, the fraction of jobs that
met the SLO and the fraction of job allocation above the oracle allocation.
Bottom, average of �rst, last andmedian allocations during each experiment,
and average of total machine hours allocated by the policy.

in other stages. TotalworkWithQ considers progress in all
running stages, and thus increments more smoothly.

5.5 Sensitivity Analysis

To evaluate the control loop’s sensitivity, we adjusted its pa-
rameters and ran each of the seven jobs three timeswith a sin-
gle deadline a�er each adjustment.�e baseline here is Jockey
with default parameter values.�e results are summarized in
Fig. 11. Running our policy with no hysteresis and no dead
zone, results in meeting only 57% of the SLOs, while using
the hysteresis with no dead zone, meets 90% of the SLOs. Us-
ing hysteresis is clearly crucial; without it, the allocation �uc-
tuates too much in each direction. When it drops too much



experiment

baseline 95% -14% 35% 52.9

no hysteresis, no deadzone 57% -2% 25% 49.7

no deadzone 90% -9% 30% 50.3

no slack, less hysteresis 76% -5% 27% 44.9

5-min period 95% -22% 35% 45.7

minstage progress 100% -16% 34% 48.2

CP progress 95% -16% 31% 44.9

met SLA latency vs. deadline allocation above oracle median allocation

Figure 11. Results of sensitivity analysis.�e baseline results are a subset of results reported in Section 5.2.

because of this oscillation, Jockey cannot catch-up later. We
tried running with no slack, but instead use an increased
value of the hysteresis parameter to let Jockey adapt more
quickly when jobs fall behind. Here, on average, Jockey allo-
cated too few tokens at the start of the job and missed 24% of
the deadlines. Next, changing the period at which adaptation
happens from one to �ve minutes still met 95% of the dead-
lines. But, for jobs that were over-provisioned, Jockey did not
quickly reduce the allocation, resulting in jobs �nishing 22%
before the deadlines (compared to 14% in our baseline). We
also ran Jockey using the minstage and CP indicators, which
met 100% and 95% of the deadlines (respectively), and had
a similar impact on the cluster as the baseline. As shown in
Section 5.4, these indicators have some undesirable proper-
ties as inputs to a control loop, but these experiments suggest
that with hysteresis, they can still perform well in practice.

Results for di�erent slack values are presented in Fig. 12,
based on 21 runs for each value.�e only SLO violations oc-
curred in experiments without slack; adding even 10% slack
was enough to meet the SLOs. Adding more slack led to jobs
�nishing well before the deadline and having a larger im-
pact on the rest of the cluster because it directly causes over-
allocation of resources.�is can be seen in the increasing ini-
tial and median job allocations as slack is increased.

Results for di�erent values of the hysteresis parameter are
presented in Fig. 13. For each value of the parameter and
each of the seven jobs, we ran three experiments. Only three
experiments did not meet the SLO; two at the lower extreme
value – 0.05, high smoothing – and one at the upper extreme
– 1.0, no smoothing. Overall, experiments with higher values
of the hysteresis parameter �nished closer to the deadline
and had slightly less impact on the rest of the cluster, but
the maximum allocation requested by the policy was much
higher than with greater smoothing.

5.6 Summary

Our evaluation on a large-scale production cluster shows
that Jockey can reliably meet job latency SLOs; in 94 experi-
ments that ran Jockeymissed one deadline by 3%due tomuch
higher load on the cluster at that time.Without the simulator,
or without dynamic resource adaptation, Jockey performed
signi�cantly worse. While the max-allocation policy met all
SLOs, Jockey had 3× less impact on the rest of the cluster,
which allowsmore SLO-bound jobs to be run simultaneously.
We also demonstrated that Jockey can dynamically adapt to
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Figure 13. Sensitivity of the hysteresis parameter. Top, fraction of jobs
that met the SLO, fraction of allocations above the oracle, and job latencies
relative to deadlines. Bottom, average of median, max and last allocations
during each run, and average of total machine hours Jockey allocated.

changing job deadlines, which allows us to trade resources
between multiple jobs based on their utilities.

Jockey’s success chie�y derives from an accurate model of
the job, one that captures the remaining execution time as a
function of resource allocation and job progress. However,
when the model is not 100% accurate, standard techniques
from control theory (such as hysteresis and adding slack)
can partially compensate for the inaccuracy. We show in our
sensitivity analysis that, without these techniques, Jockey’s
approach performs much worse.

Nonetheless, in certain cases, the job execution can sig-
ni�cantly diverge from the model and the control loop could
either overprovision the job (taking resources from other
jobs) or underprovision it (allocating too few resources and
missing the SLO). �is could happen if the inputs of the job
change substantially – resulting in a more expensive execu-
tion – or if the whole cluster is experiencing performance
issues, such as an overloaded network. In these cases, we
could quickly update the model by running the simulator at
runtime, or simply fall back on weighted fair-sharing once
the control loop detects large errors in model predictions.



6. RelatedWork
Job scheduling and resource management are not new prob-
lems, and there has been much related work in these areas.
Jockey builds upon recent work on performance indicators
and improvements inMapReduce-like clusters, as well as pre-
vious work in grid computing and real-time systems.

6.1 Performance in data parallel clusters

Jockey is most closely related to the Automatic Resource In-
ference andAllocation forMapReduce Environments project
(ARIA), which also proposes a method to allocate resources
in a large-scale computational framework for meeting so�
deadlines [24]. Both the ARIA work and our own feature a
control loop which estimates the job’s progress, uses past ex-
ecution pro�les to predict the completion time, and adjusts
the resources assigned to the task to meet the target deadline.

However, Jockey di�ers from ARIA in several important
ways. First, the ARIA project was developed for map-reduce
frameworks which feature only three computational phases:
a Map phase, a Shu�e phase, and a Reduce phase; the frame-
work used here supports directed acyclic graphs (DAGs)
of arbitrarily long pipelines of independent and dependent
stages. Second, the ARIA authors develop analytic equations
which estimate each stage’s completion time, similar to the
Amdahl’s Law-based approach we consider. But, as noted
above, we found simulations to be more accurate for pre-
dicting future progress in DAGs because they incorporate
the e�ects of vertex outliers, failures and barriers. �ird, the
approach described here is robust to changes in the cluster
conditions or the deadlines or the amount of job’s input. Our
experiments show that slack, hysteresis and a dead zone are
necessary for meeting SLOs in a production setting. Finally,
the experiments here are more realistic.�ey are performed
on a large shared production cluster with all the allied noise
and a wide variety of bottlenecks. ARIA used a dedicated
cluster of 66 nodes without any network bottleneck. Hence,
we believe Jockey is a better match for production DAG-like
frameworks such as Hive [22], Pig [17], and Ciel [16]

To predict the completion time of a running job, Jockey
must estimate the job’s current progress. Our approach is in-
formed by the ParaTimer progress indicator [15], which is
most similar to the vertexfrac function which we �rst con-
sider. As discussed above, the vertexfrac design was not the
best method for Jockey because it incorrectly indicates a lack
of progress during long-running stages with a low degree of
parallelism, and because it can be overly optimistic about fail-
ures and data skew [15]. When developing Jockey, we found
it to bemore e�ective to slow a job running ahead of deadline
due to prior pessimism about failures, rather than attempt to
speed-up a job which is running behind.

As a side-e�ect of predictably meeting SLOs, Jockey de-
creases the variance in job completion latencies. �is goal is
shared with work on reducing such variance directly, such as
Mantri [2] and Scarlett [3].�e approach taken by Jockey, to

automatically adjust resource allocations in response to pre-
dicted �uctuations in latency, is complementary to this earlier
work. While we have not yet studied the e�ect of combining
these approaches, we believe that such a combinationwill fur-
ther improve Jockey’s ability to meet SLOs.

6.2 Deadlines in grid and HPC workloads

�e Amdahl’s Law-like approach described in Section 4.1 is
inspired by the value-maximizing, deadline-aware scheduler
for animation rendering tasks by Anderson et al. [4], which
they term the disconnected staged scheduling problem (DSSP).
�e approach developed estimates the amount of resources
required to complete the task using two quantities: the ag-
gregate CPU time (the time to complete the job on a single
processor), and the length of the critical path (the time to
complete the job on an in�nite number of processors).

Finally, Sandholm and Lai have explored the relationship
between a job’s weight in a fair-sharing scheduler and the
chance of meeting a given deadline in both grid-computing
environments [19, 20] and MapReduce-like contexts [21].
Jockey automatically makes these weight decisions based on
the utility curve submitted by the user, whereas Sandholm
and Lai’s methods price the system’s resources based on ag-
gregate demand and permit users to allocate resources based
on their own budgets and deadlines.

6.3 Deadlines in real-time workloads

Previous work on real-time systems has advocated dynamic
resource management to perform admission control [26],
meet deadlines [18] and maximize aggregate utility [14], as
Jockey does for data parallel clusters. Jockey di�ers by oper-
ating at a signi�cantly larger scale, managing larger computa-
tional jobs with longer deadlines, and adjusting the resource
allocation during a job’s execution, rather than only between
repeated executions of the same job. Jockey also uses a sim-
ulator to estimate a distribution of job completion times for
a given allocation of resources, rather than rely upon an an-
alytic model of the critical path.

7. Conclusion
In today’s frameworks, providing guaranteed performance
for pipelines of data parallel jobs is not possible on shared
clusters. Jockey bridges this divide. To do so, it must com-
bat varying availability and responsiveness of resources, two
problems which are compounded by the dependency struc-
ture of data parallel jobs. By combining detailed job models
with robust dynamic adaptation, Jockey guarantees job laten-
cies without over-provisioning resources. Such “right-sizing”
of allocations lets Jockey successfully run SLO-bound jobs –
it met 99% of the SLOs in our experiments – in a cluster si-
multaneously runningmany other jobs – Jockey only needed
25% more resources than the theoretical minimum.

When a shared environment is underloaded, guaranteed
performance brings predictability to the user experience;



when it is overloaded, utility-based resource allocation en-
sures jobs are completed according to importance. Jockey
brings these bene�ts to data parallel processing in large-scale
shared clusters.
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