Problem 7.28

Show that if P = NP we can factor integers in polynomial time.

- Consider the language
 \[L = \{ \langle n, a, b \rangle | n \text{ has a factor } p \text{ in the range } a \leq p \leq b \} \]
 - \(L \) is obviously in NP, since the factor can serve as the certificate.
 - Since we're assuming P=NP, there is a polynomial algorithm that decides the above language.
 - Repeated applications of the algorithm allow us to divide our search space in half each time by asking “Is there a factor in the range \((a, a + b/2)\)?” If there isn’t we know there is a factor in the other range.
 - The total number of times we have to apply the algorithm is equal to \(\log n \), or in other words \(O(k) \) if \(k \) is the number of bits of \(n \). So a polynomial number of applications of this algorithm allows us to isolate one factor.
 - Since there are at most \(O(k) \) factors as well (the maximum number of factors occurring when \(n \) is simply a product of 2s), we can find all the factors in polynomial time.

Problem 7.29

Show that if P = NP, a polynomial time algorithm exists that, given a boolean formula \(\phi \), actually produces a satisfying assignment for \(\phi \) if it is satisfiable.

- If P = NP, then there is a deterministic TM D that solves SAT in polynomial time.
- Consider the following algorithm:
 \(B = “ \text{On input } \phi, \text{ where } \phi \text{ is a boolean formula of variables } x_1, x_2, x_3, \ldots, x_k “ \)
 1. Run D on \(\phi \). If \(\phi \) is not satisfiable, reject. Otherwise
 2. For \(i \) from 1 to \(k \)
3. Replace all the x_is in ϕ with 1, and simulate D on that.
4. If D accepts, permanently overwrite x_i with 1, otherwise overwrite x_i with 0.

- Notice that this algorithm is definitely in P, since k (the number of variables), is of course $\leq n$. Thus the “for loop” and D make it $O(k) \cdot O($ time of D $) = \text{polynomial} \times \text{polynomial} = \text{polynomial}$

- Notice also that the algorithm is accurate. It only gets to the “for loop” if it knows that the formula is satisfiable. For each x_i, if D rejects, then it’s absolutely certain that it must accept some assignment of a value to x_i, and there only are two assignments...

Problem: NP \neq CoNP implies P \neq NP

This is easily shown by arguing the contrapositive. If $P = NP$, then CoNP = NP.

- If $P=NP$, then since P is closed under complement, so is NP. That is, if we have a machine that decides a language in NP, there exists a P machine that decides the same language. We can decide that complement of that language in polynomial time as well by switching the accept and reject states of the P machine (Note: switching the accept and reject states of an NP machine does not necessarily give you a machine that decides the complement).