Determining Authorship

Define Problem

Find Data

Write a set of instructions

Python

Solution

Project Gutenberg
Determining Authorship: Data

Five Books from a Famous Children’s Series

One Book from a Famous Children’s Series
Determining Authorship: Data

Five Books from a Famous Children’s Series

One Book from a Famous Children’s Series

Six Books from Two Famous Children’s Series
Discern the **Outlier**: The one book that is NOT in the series of the others.
The Federalist Papers

• 85 articles written in 1787 to promote the ratification of the US Constitution

• In 1944, Douglass Adair guessed authorship
 – Alexander Hamilton (51)
 – James Madison (26)
 – John Jay (5)
 – 3 were a collaboration

• Corroborated in 1964 by a computer analysis

Determining Authorship

Discern the **Outlier**: The one book that is NOT in the series of the others.

1 vs. 2
Stop Words are words that are filtered out in natural language processing.
Stop Words

Stop Words are words that are filtered out in natural language processing.
Stop Words

Stop Words are words that are filtered out in natural language processing

a, able, about, across, after, all, almost, also, am, among, an, and, any, are, as, at, be, because, been, but, by, can, cannot, could, dear, did, do, does, either, else, ever, every, for, from, get, got, had, has, have, he, her, hers, him, his, how, however, i, if, in, into, is, it, its, just, least, let, like, likely, may, me, might, most, must, my, neither, no, nor, not, of, off, often, on, only, or, other, our, own, rather, said, say, says, she, should, since, so, some, than, that, the, their, them, then, there, these, they, this, tis, to, too, twas, us, wants, was, we, were, what, when, where, which, while, who, whom, why, will, with, would, yet, you, your

http://www.textfixer.com/resources/common-english-words.txt
Stop Words

Stop Words are words that are filtered out in natural language processing

a, able, about, across, after, all, almost, also, am, among, an, and, any, are, as, at, be, because, been, but, by, can, cannot, could, dear, did, do, does, either, else, ever, every, few, few, for, from, get, got, had, has, have, he, her, hers, him, his, how, however, if, in, into, is, it, its, just, least, let, like, likely, may, me, might, most, must, my, neither, no, nor, not, of, off, often, on, only, or, other, our, own, rather, said, say, says, she, should, since, so, some, than, that, the, their, their, these, they, this, to, too, twas, us, wants, was, we, were, what, when, where, which, while, who, whom, why, will, with, would, yet, you, your

Why should we look at the frequencies of stop words?

http://www.textfixer.com/resources/common-english-words.txt
Determining Authorship

Discern the **Outlier**: The one book that is NOT in the series of the others.

1. Calculate the word counts of the stop words in the two books

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>across</th>
<th>after</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>1000</td>
<td>238</td>
<td>483</td>
<td>12</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>File 2</td>
<td>102</td>
<td>93</td>
<td>10</td>
<td>0</td>
<td>15</td>
<td>...</td>
</tr>
</tbody>
</table>
Determining Authorship

Discern the **Outlier**: The one book that is NOT in the series of the others.

1. Calculate the word counts of the stop words in the two books
2. Normalize to get word frequencies

	a	able	about	across	after	...
File 1	.3	.01	.003	.0027	0.006	...
File 2	0.238	0.0932	0.0034	0.0021	0.05	...
Determining Authorship

1. Calculate the word counts of the stop words in the two books
2. Normalize to get word frequencies

	a	able	about	across	after	...
File 1	.3	.01	.003	.0027	0.006	...
File 2	0.238	0.0932	0.0034	0.0021	0.05	...

3. Design a **metric** to compare the two files
 - A metric is a function that defines a **distance** between two things
Determining Authorship

1. Calculate the word counts of the stop words in the two books
2. Normalize to get word frequencies

	a	able	about	across	after	...
File 1	.3	.01	.003	.0027	0.006	...
File 2	0.238	0.0932	0.0034	0.0021	0.05	...

3. Design a **metric** to compare the two files
 - A metric is a function that defines a **distance** between two things

Write a `compareTwo(list1, list2)` function that returns a float.
Determining Authorship

1. Calculate the word counts of the stopwords.
2. Normalize to get word frequencies

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>after</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>.3</td>
<td>.01</td>
<td>.003</td>
<td>.0027</td>
</tr>
</tbody>
</table>
| File 2 | 0.238 | 0.0932 | 0.0034 | 0.0021 | 0.05 | ...

3. Design a **metric** to compare the two files
 - A metric is a function that defines a **distance** between two things

Write a

```
compareTwo(list1, list2)
```

function that returns a float.
Determining Authorship

Download and extract \texttt{ACT2-7.zip}

Evaluate and run \texttt{testFiles('output.csv')}
Determining Authorship

Download and extract ACT2-7.zip

Evaluate and run testFiles('output.csv')

We are going to modify two things:

- compareTwo function
- Write distance matrix to a file
Determining Authorship

Download and extract ACT2-7.zip

Evaluate and run testFiles('output.csv')

We are going to modify two things:

- compareTwo function
- Write distance matrix to a file
Determining Authorship

Download and extract ACT2-7.zip
Evaluate and run testFiles('output.csv')

We are going to modify two things:
 – compareTwo function
 – Write distance matrix to a file
Frequency table in `compareTwo()`

We’re representing this:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>across</th>
<th>after</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>.3</td>
<td>.01</td>
<td>.003</td>
<td>.0027</td>
<td>0.006</td>
<td>...</td>
</tr>
<tr>
<td>File 2</td>
<td>0.238</td>
<td>0.0932</td>
<td>0.0034</td>
<td>0.0021</td>
<td>0.05</td>
<td>...</td>
</tr>
</tbody>
</table>

As a list of lists!

```
[ [.3, .1, .003, .0027, .0006,...],
  [.238, .0932, .0034, .0021, .005 ,...],
  frequencies
  ...
  ...
  ...
  ]
```
Frequency table in `compareTwo()`

We’re representing this:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>across</th>
<th>after</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>.3</td>
<td>.01</td>
<td>.003</td>
<td>.0027</td>
<td>0.006</td>
<td>...</td>
</tr>
<tr>
<td>File 2</td>
<td>0.238</td>
<td>0.0932</td>
<td>0.0034</td>
<td>0.0021</td>
<td>0.05</td>
<td>...</td>
</tr>
</tbody>
</table>

As a list of lists!

```
[ [.3, .1, .003, .0027, .0006,…],
  [.238, .0932, .0034, .0021, .005 ,…],
  ...
]
```

`frequencies[0]`
Frequency table in `compareTwo()`

We’re representing this:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>across</th>
<th>after</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>.3</td>
<td>.01</td>
<td>.003</td>
<td>.0027</td>
<td>0.006</td>
<td>...</td>
</tr>
<tr>
<td>File 2</td>
<td>0.238</td>
<td>0.0932</td>
<td>0.0034</td>
<td>0.0021</td>
<td>0.05</td>
<td>...</td>
</tr>
</tbody>
</table>

As a list of lists!

```
[ [.3, .1, .003, .0027, .0006,...],
  [.238, .0932, .0034, .0021, .005,...],
...
]
```

CSCI 0931 - Intro. to Comp. for the Humanities and Social Sciences
Frequency table in `compareTwo()`

We’re representing this:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>across</th>
<th>after</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>.3</td>
<td>.01</td>
<td>.003</td>
<td>.0027</td>
<td>0.006</td>
<td>...</td>
</tr>
<tr>
<td>File 2</td>
<td>0.238</td>
<td>0.0932</td>
<td>0.0034</td>
<td>0.0021</td>
<td>0.05</td>
<td>...</td>
</tr>
</tbody>
</table>

As a list of lists!

```
[ [.3, .01, .003, .0027, .0006, ...],
[ .238, .0932, .0034, .0021, .005 , ...],
...
frequencies[1][0]
...
... ]
```
Frequency table in `compareTwo()`

We’re representing this:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>across</th>
<th>after</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>.3</td>
<td>.01</td>
<td>.003</td>
<td>.0027</td>
<td>0.006</td>
<td>...</td>
</tr>
<tr>
<td>File 2</td>
<td>0.238</td>
<td>0.0932</td>
<td>0.0034</td>
<td>0.0021</td>
<td>0.05</td>
<td>...</td>
</tr>
</tbody>
</table>

As a list of lists!

```
[ [ .3, .1, .003, .0027, .0006, ... ],
  [ .238, .0932, .0034, .0021, .005, ... ],
  ...,
  frequencies[1][1],
  ...,
  ...,
  ...,
]
```
Your task in `compareTwo()`

We’re representing this:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>across</th>
<th>after</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>.3</td>
<td>.01</td>
<td>.003</td>
<td>.0027</td>
<td>0.006</td>
<td>...</td>
</tr>
<tr>
<td>File 2</td>
<td>0.238</td>
<td>0.0932</td>
<td>0.0034</td>
<td>0.0021</td>
<td>0.05</td>
<td>...</td>
</tr>
</tbody>
</table>

As a list of lists!

```
[ [.3, .1, .003, .0027, .0006, ...], i
  [.238, .0932, .0034, .0021, .005, ...], j
  ...
  ...
  ...
  ...
]
```
Your task in `compareTwo()`

We’re representing this:

	a	able	about	across	after	...
File 1	.3	.01	.003	.0027	0.006	...
File 2	.238	.0932	.0034	0.0021	0.05	...

As a list of lists!

```
[ [.3, .1, .003, .0027, .0006, ...], i
  [.238, .0932, .0034, .0021, .005, ...], j
  ...
  ...
  ...
  ...
]```
Your task in compareTwo() 

We’re representing this:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>able</th>
<th>about</th>
<th>across</th>
<th>after</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>File 1</td>
<td>.3</td>
<td>.01</td>
<td>.003</td>
<td>.0027</td>
<td>0.006</td>
<td>...</td>
</tr>
<tr>
<td>File 2</td>
<td>0.238</td>
<td>0.0932</td>
<td>0.0034</td>
<td>0.0021</td>
<td>0.05</td>
<td>...</td>
</tr>
</tbody>
</table>

As a list of lists!

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\hline
\text{a} & \text{able} & \text{about} & \text{across} & \text{after} & \text{...} \\
\hline
\text{File 1} & .3 & .01 & .003 & .0027 & 0.006 & ... \\
\text{File 2} & 0.238 & 0.0932 & 0.0034 & 0.0021 & 0.05 & ... \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\hline
\text{File 1} & [.3, .1, \boxed{.003}, .0027, .0006, ...], i \\
\text{File 2} & [.238, .0932, \boxed{.0034}, .0021, .005, ...], j \\
\hline
\end{array}
\]

... 

... 

... 

... 

]
Determining Authorship

Download and extract `ACT2-7.zip`

Evaluate and run `testFiles('output.csv')`

We are going to modify two things:

- `compareTwo` function
- Write distance matrix to a file
One way of doing it

\[ \text{len of frequencies}[i] = \text{len of any other frequencies}[j] = \text{len of word list} \]

```python
val = 0.0

for word in range(0, len(frequencies[i])):
 freqsI = frequencies[i]
 freqsJ = frequencies[j]
 val = val + abs(freqsI[word] - freqsJ[word])

return val
```
“How a Computer Program Helped Reveal J. K. Rowling as Author of A Cuckoo’s Calling”

Run testFiles('output.csv')

This matrix looks kind of familiar...
Distance Matrix

This matrix looks kind of familiar...

Instead of printing to the screen, write it to a file in CSV (comma-separated value) format.

```python
myNum = 1
myFile = open('output.csv','w')
myFile.write('this is an output file\n')
myFile.write(str(myNum))
myFile.write('\n')
myFile.close()
```
Distance Matrix

This matrix looks kind of familiar...
Instead of printing to the screen, write it to a file in CSV (comma-separated value) format.

```python
myNum = 1
myFile = open('output.csv','w')
myFile.write('this is an output file\n')
myFile.write(str(myNum))
myFile.write('\n')
myFile.close()
```

this is an output file
1
This matrix looks kind of familiar...

Instead of printing to the screen, write it to a file in CSV (comma-separated value) format.

```python
myNum = 1
myFile = open('output.csv','w')
myFile.write('this is an output file\n')
myFile.write(str(myNum))
myFile.write('\n')
myFile.close()
```

this is an output file
1
Generating the file

# For each file, create a string row with all the values in the corresponding list row in distMatrix, with commas in between
for i in range(0,len(FILE_LIST))
    row = '' + FILE_LIST[i]

    # Loop through the columns in the current list row
    for val in distMatrix[i]:
        row = row + ',' + str(val)

    # At this point, we created our string row.
    # We want to write this row into our csv
    outFile.write(row)

    # Need a newline at the end of each string row
    outFile.write('
')

# Finalize the new file by closing it
outFile.close()
Distance Matrix

This matrix looks kind of familiar...
Instead of printing to the screen, write it to a file in CSV (comma-separated value) format.

Open the CSV file in Google Spreadsheets. Use conditional formatting to look for patterns.

Do Task 5
What’s Your Answer?

Discern the **Outlier**: The one book that is NOT in the series of the others.

<table>
<thead>
<tr>
<th>File</th>
<th>Title</th>
<th>Series</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>file1.txt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>file2.txt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>file3.txt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>file4.txt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>file5.txt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>file6.txt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What’s Your Answer?

Discern the **Outlier**: The one book that is NOT in the series of the others.

<table>
<thead>
<tr>
<th>File</th>
<th>Title</th>
<th>Series</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>file1.txt</td>
<td>Wonder Wizard of Oz</td>
<td>Oz</td>
<td></td>
</tr>
<tr>
<td>file2.txt</td>
<td>Alice’s Adventures in Wonderland</td>
<td>Alice in Wonderland</td>
<td></td>
</tr>
<tr>
<td>file3.txt</td>
<td>Dorothy and the Wizard in Oz</td>
<td>Oz</td>
<td></td>
</tr>
<tr>
<td>file4.txt</td>
<td>Emerald City of Oz</td>
<td>Oz</td>
<td></td>
</tr>
<tr>
<td>file5.txt</td>
<td>Royal Book of Oz</td>
<td>Oz</td>
<td></td>
</tr>
<tr>
<td>file6.txt</td>
<td>Glinda of Oz</td>
<td>Oz</td>
<td></td>
</tr>
</tbody>
</table>
The Wizard of OZ

• About 40 Books, written by 7 different authors

Lyman Frank Baum (1856-1919)

Ruth Plumly Thompson

Published in 1921

http://www.ssc.wisc.edu/~zzeng/soc357/OZ.pdf
What’s Your Answer?

Discern the **Outlier**: The one book that is NOT in the series of the others.

<table>
<thead>
<tr>
<th>File</th>
<th>Title</th>
<th>Series</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>file1.txt</td>
<td>Wonder Wizard of Oz</td>
<td>Oz</td>
<td>Lyman Frank Baum</td>
</tr>
<tr>
<td>file2.txt</td>
<td>Alice’s Adventures in Wonderland</td>
<td>Alice in Wonderland</td>
<td>Lewis Carroll</td>
</tr>
<tr>
<td>file3.txt</td>
<td>Dorothy and the Wizard in Oz</td>
<td>Oz</td>
<td>Lyman Frank Baum</td>
</tr>
<tr>
<td>file4.txt</td>
<td>Emerald City of Oz</td>
<td>Oz</td>
<td>Lyman Frank Baum</td>
</tr>
<tr>
<td>file5.txt</td>
<td>Royal Book of Oz</td>
<td>Oz</td>
<td>Ruth Plumly Thompson</td>
</tr>
<tr>
<td>file6.txt</td>
<td>Glinda of Oz</td>
<td>Oz</td>
<td>Lyman Frank Baum</td>
</tr>
</tbody>
</table>
## What’s Your Answer?

<table>
<thead>
<tr>
<th>File</th>
<th>Title</th>
<th>Series</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>file1.txt</td>
<td>file1.txt</td>
<td>file2.txt</td>
<td>file3.txt</td>
</tr>
<tr>
<td>file1.txt</td>
<td>0.16824579</td>
<td>0.08785724</td>
<td>0.08832557</td>
</tr>
<tr>
<td>file2.txt</td>
<td>0.16824579</td>
<td>0.1688084</td>
<td>0.1623172</td>
</tr>
<tr>
<td>file3.txt</td>
<td>0.08785724</td>
<td>0.1688084</td>
<td>0.07196412</td>
</tr>
<tr>
<td>file4.txt</td>
<td>0.08832557</td>
<td>0.1623172</td>
<td>0.07196412</td>
</tr>
<tr>
<td>file5.txt</td>
<td>0.13960696</td>
<td>0.18100267</td>
<td>0.11099609</td>
</tr>
<tr>
<td>file6.txt</td>
<td>0.10485192</td>
<td>0.17304682</td>
<td>0.07941847</td>
</tr>
</tbody>
</table>

Busted!
Stuff to do

• Think about Project 2 ideas for your proposal
  – Initial proposal due tomorrow
  – Revised proposal due on April 3

• Revisit the activities we did to get more practice with Python
Tools you’ve learned

• Reading and writing files (ACT 2-2, 2-7)
• String processing: split(), find(), etc. (ACT 2-2, 2-6)
• Lists and dictionaries (ACT 2-5)
• Iterating over data: two approaches to for-loops (HW 2-4)
• Summaries statistics like counts, averages, min/max (ACT 2-3)