The VLSI Model III

Planar Separator Theorem

Theorem Let $G = (V,E)$ be an N-vertex planar graph having non-negative vertex costs summing to $c(V)$. Then, V can be partitioned into three sets, A, B, and C, such that no edge joins vertices in A with those in B, neither A nor B has cost exceeding $2c(V)/3$, and C contains no more than $4\sqrt{N}$ vertices.

Proof We assume G connected. If not, embed it in the plane and add edges as appropriate to make it connected. Assume that it has been triangulated, that is, every face except for the outermost is a triangle.

Pick any vertex (call it the root) and perform a breadth-first traversal of G. This traversal defines a **BFS spanning tree** T of G.

Vertices in G are partitioned into the following five sets: a) $H = \bigcup_{d < l} R_d$ (high vertices close to the root), b) R_l (vertices at level l), c) $M = \bigcup_{l < d < h} R_d$ (middle vertices), d) R_h, e) $L = \bigcup_{h < d} R_d$ (low vertices).

Since L and H are subsets of the sets of vertices with levels less than and more than m, $c(L), c(H) \leq c(V)/2$. Also, by construction, $r_l, r_h \leq \sqrt{N}$.

If $R_l = R_h = R_m$ (which implies that M is empty), let $A = L$, $B = H$, and $C = R_l = R_h$. Then, C is a separator of size at most \sqrt{N} and the theorem holds. If $l \neq h$, then $h - l - 1 \geq 0$. Since each of the $h - l - 1$ levels between r_l and r_h has at least $\sqrt{N} + 1$ vertices, it follows that $h - l - 1 \leq \sqrt{N} - 1$ because these levels have $\leq N - 1$ vertices.
Planar Separator Theorem

Consider the subgraph of G consisting of the vertices in M and the edges between them. Add a new vertex v_0 to replace the vertices in $H \cup R_I$ and add an edge from v_0 to each of the vertices at level $I + 1$. This operation retains planarity and the resulting graph remains triangulated because adjacent vertices on R_{I+1} have an edge between them. Also, it defines a spanning tree T^* consisting of v_0, the new edges, and the projection of the original spanning tree to the vertices in M. T^* has radius at most \sqrt{N}.

Planar Separator Theorem

Apply Lemma of last lecture to T^* while giving v_0 zero cost. The lemma identifies three sets of vertices, A_0, B_0, and C_0, from which we delete v_0. Since $c(M) \leq c(V)$, it follows that there are no edges between vertices in A_0 and B_0, $c(A_0) = c(B_0) \leq 2c(V)/3$, and $|C_0| \leq 2 \sqrt{N}$. Let $C = C_0 \cup R_I \cup R_{I'}$. Thus, $|C| \leq 4 \sqrt{N}$.

Each of the four sets A_0, B_0, L, and H has cost at most $2c(V)/3$. If any one of them has cost more than $c(V)/3$, let it be A; let B be the union of remaining sets. If none of them has cost more than $c(V)/3$ vertices, order the sets by size and let A be the union of the fewest of these sets whose cost is at least $c(V)/3$ vertices. This procedure ensures that A has cost between $c(V)/3$ and $2c(V)/3$ which implies that B satisfies the same condition as A and theorem is established. QED

Planar Separator Theorem

Lemma Let $G = (V,E)$ be an N-vertex planar graph having non-negative vertex costs summing to $c(V)$. Then V can be partitioned into three sets, A, B, and C, such that no edge joins vertices in A with those in B, neither A nor B has cost exceeding $7c(V)/9$, $|A|$, $|B| \leq 5N/6$, and C contains no more than $K_I \sqrt{N}$ vertices, where $K_I = 4(\sqrt{2/3} + 1)$.

Lemma Let $G = (V,E)$ be an N-vertex planar graph and let c be a non-negative cost function on V with total cost of $c(V)$. Let $P \geq 2$. There are constants $2P/3 \leq q \leq 3P$ and $K_2 = 4(\sqrt{2/3} + 1)/(1 - \sqrt{5/6})$ such that V can be partitioned into q sets, A_1, A_2, \ldots, A_q such that for $1 \leq i \leq q$

\[c(V)/(3P) \leq c(A_i) \leq 3c(V)/(2P) \]

and there are sets C_i, $|C_i| \leq K_2 \sqrt{N}$, and $B_i = V - A_i - C_i$ such that no edges join vertices in A_i with vertices in B_i. QED