Overview

- Completion of Planar Separator Theorem
Area-Time Computational Inequalities

\[C_p(f) = O(min(AT^2, A^2T)) \]

- To derive lower bounds on \(C_p(f) \) we introduce the \textit{planar separator theorem}. In its simplest form, it states that the vertices in every planar \(n \)-vertex graph can be divided into two sets with no edges between them by the removal of \(O(\sqrt{n}) \) vertices such that each set has between \(n/3 \) and \(2n/3 \) vertices.

- We use it to show that some functions have a quadratic planar circuit size in their number of inputs. The technique used is to show that a lot of information must pass from inputs to outputs.
Planar Separator Theorem

- Let $G = (V,E)$ and let $c : V \rightarrow R$ assign non-negative costs to vertices. The cost of a subset S of V is the sum of the cost of the elements of S.

Lemma If G has a rooted spanning tree of radius r, V can be partitioned into disjoint sets A, B, C such that $c(A), c(B) \leq 2c(V)/3$, no edge joins vertices in A and B, and C contains at most $2r+1$ vertices.
Planar Separator Theorem

Theorem I Let $G = (V,E)$ be an N-vertex planar graph having non-negative vertex costs summing to $c(V)$. Then, V can be partitioned into three sets, A, B, and C, such that no edge joins vertices in A with those in B, neither A nor B has cost exceeding $2c(V)/3$, and C contains no more than $4\sqrt{N}$ vertices.
Planar Separator Theorem

Proof We assume \(G \) is connected. If not, embed it in the plane and add edges as appropriate to make it connected. Assume that it has been triangulated. Pick any vertex (call it the root) and perform a breadth-first traversal of \(G \). This traversal defines a BFS spanning tree \(T \) of \(G \).
Planar Separator Theorem

A vertex v has level d in this tree if the length of the path from the root to v has d edges. There are no vertices at level q where q is the level one larger than that of all vertices ($q = 3$ in the example). Let R_d be the vertices at level d and let $r_d = |R_d|$.
Planar Separator Theorem

In Problem 12.9 it is stated that there is some level m such that the cost of vertices at levels below and above m each is at most $c(V)/2$. Let l and h, $l \leq m \leq h$, be levels closest to m that contain at most \sqrt{N} vertices. That is, $r_l, r_h \leq \sqrt{N}$. There are such levels because level 0 contains a single vertex and there are none at level q.
Planar Separator Theorem

Vertices in G are partitioned into five sets: a) $H = \bigcup_{d < l} R_d$ (high vertices close to the root), b) R_l (vertices at level l), c) $M = \bigcup_{l < d < h} R_d$ (middle vertices), d) R_h, e) $L = \bigcup_{h < d} R_d$ (low vertices).

Because L and H are subsets of the vertices with levels less than and more than m, $c(L)$, $c(H) \leq c(V)/2$. By construction, $r_l, r_h \leq \sqrt{N}$.
Planar Separator Theorem

If $R_l = R_h = R_m$ (which implies that M is empty), let $A = L$, $B = H$, and $C = R_l = R_h$. Then, C is a separator of size at most \sqrt{N} and the theorem holds. If $l \neq h$, then $h - l - 1 \geq 0$.

Since each of the $h - l - 1$ levels between r_l and r_h has at least $\sqrt{N} + 1$ vertices, it follows that $h - l - 1 \leq \sqrt{N} - 1$ because these levels have at most $N - 1$ vertices.
Planar Separator Theorem

Consider the subgraph of G consisting of the vertices in M and the edges between them. Add a new vertex v_0 to replace the vertices in $H \cup R_i$ and add an edge from v_0 to each of the vertices at level $l+1$. This operation retains planarity and the resulting graph remains triangulated because adjacent vertices on R_{i+1} have an edge between them. Also, it defines a spanning tree T^* consisting of v_0, the new edges, and the projection of the original spanning tree to the vertices in M. T^* has radius at most \sqrt{N}.
Planar Separator Theorem

Apply Lemma of last lecture to T^* while giving v_0 zero cost. The lemma identifies three sets of vertices, A_0, B_0 and C_0, from which we delete v_0. Since $c(M) \leq c(V)$, it follows that there are no edges between vertices in A_0 and B_0, $c(A_0), c(B_0) \leq 2c(V)/3$, and $|C_0| \leq 2 \sqrt{N}$. Let $C = C_0 \cup R_l \cup R_h$. Thus, $|C| \leq 4 \sqrt{N}$.
Planar Separator Theorem

Each of the four sets \(A_0, B_0, L,\) and \(H\) has cost at most \(2c(V)/3\). If any one of them has cost more than \(c(V)/3\), let it be \(A\); let \(B\) be the union of remaining sets. It follows that \(c(V)/3 \leq c(A),\) \(c(B) \leq 2c(V)/3.\)

If none of them has cost more than \(c(V)/3\), order the sets by size and let \(A\) be the union of the fewest of these sets whose cost is \(\geq c(V)/3\) vertices. This procedure ensures that \(c(V)/3 \leq c(A) \leq 2c(V)/3\) which implies that \(B\) satisfies the same condition and theorem is established. QED
Planar Separator Theorem

Theorem II Let $G = (V,E)$ be an N-vertex planar graph with non-negative vertex costs summing to $c(V)$. Then V can be partitioned into three sets, A, B, and C, such that no edge joins vertices in A with those in B, neither A nor B has cost exceeding $7c(V)/9$, $|A|, |B| \leq 5N/6$, and C contains no more than $K_1 \sqrt{N}$ vertices, where $K_1 = 4(\sqrt{(2/3)} + 1)$.
Planar Separator Theorem

Theorem III Let $G = (V,E)$ be an N-vertex planar graph and let c be a non-negative cost function on V with total cost of $c(V)$. Let $P \geq 2$. There are constants $2P/3 \leq q \leq 3P$ and $K_2 = 4(\sqrt{(2/3)} + 1)/(1 - \sqrt{(5/6)})$ such that V can be partitioned into q sets, $A_1, A_2, ..., A_q$ such that for $1 \leq i \leq q$

$$c(V)/(3P) \leq c(A_i) \leq 3c(V)/(2P)$$

and sets C_i, $|C_i| \leq K_2 \sqrt{N}$, and $B_i = V - A_i - C_i$ such that no edges join vertices in A_i with vertices in B_i.