The Red Blue Pebble Game

The red-blue pebble game is played on a DAG.

- **(initialization)** A blue pebble can be placed on any input vertex at any time.
- **(computation)** A red pebble can be placed on (or moved to) any vertex all of whose predecessors have level-1 pebbles.
- **(pebble deletion)** A pebble can be deleted from a vertex at any time.
- **(goal)** A level-L pebble must be on each output vertex at the end of the game.
- **(input from level-k)** Level-(k-1) pebble can be placed on vertex carrying level-k pebble, 2 ≤ k ≤ L
- **(output from level-l)** For 2 ≤ k ≤ L, level-k pebble can be placed on vertex carrying

Hong-Kung Lower Bound

$T_k^{(L)}(p,G,P)$ is no. of level-k I/O ops used to pebble G with strategy P. $T_k^{(L)}(p,G) = \min_{P} T_k^{(L)}(p,G,P)$ is the I/O complexity of G.

Definition S-span of DAG G, $\rho(S,G)$, is the max number of vertices of G that can be pebbled with S red pebbles in red pebble game maximized over all initial placements of S red pebbles.

Theorem For every pebbling P of $G = (V,E)$ in the red-blue pebble game with S red pebbles, the I/O time used, $T_2^{(2)}(S,G,P)$ satisfies

$$\left\lceil T_2^{(2)}(S,G,P)/S \right\rceil \rho(2S,G) \geq |V| - |\text{In}(G)|$$
Hong-Kung Lower Bound

- The Hong-Kung bound applies to individual DAGs or types of DAGs.
- Unlike lower bounds for the red pebble game, we can’t yet derive I/O complexity lower bounds that apply to all DAGs for a function.
- We now derive a lower bound on I/O complexity for the family of algorithms \(F_n \) based on the standard algorithm for matrix-matrix multiplication in which two-input adders are used.
- These algorithms form inner products but don’t specify the order in which the additions of inner products are done.

Matrix-Matrix Multiplication

There is no loss in generality in assuming that we pebble the \(p \) product vertices before the addition vertices. Thus, we start with \(p+r \) pebbles on the vertices of one or more addition trees associated with inner products. These pebbles allow us to pebble vertices in some number \(t \) of subtrees. If \(q \) pebbles are used to pebble one subtree, the number of vertices pebbled is maximized when the \(q \) pebbles are on inputs to the subtree. Since the subtrees are binary, at most \(q-I \) vertices can be pebbled. Thus, the \(p+r \) pebbles can pebble a most \(p+r-t \) vertices in addition trees. This number is largest when \(t=1 \).

We now derive an upper bound on \(p \).

Matrix-Matrix Multiplication

Lemma For every graph in the family \(F_n \) of \(n \times n \) matrix multiplication algorithms computing \(C = AB \), the S-span satisfies \(r(S,G) \leq 2S^{3/2} \) for \(S \leq n^2 \).

Proof Let \(A = \{a_{i,j}\} \), \(B = \{b_{i,j}\} \), \(C = \{c_{i,j}\} \) for \(1 \leq i,j \leq n \)
\[c_{i,j} = \sum_k a_{i,k} b_{k,j} \]
associated with the root of an inner product tree. G in \(F_n \) has product vertices \(a_{i,k} b_{k,j} \) and 2-input addition vertices uniquely associated with \(c_{i,j} \)
Consider an initial placement of \(S \leq n^2 \) pebbles on G of which \(r \) are on addition or product vertices and \(S - r \) are on inputs in A or B, which are common to multiple inner product trees. Let \(p \) be the max no. of product vertices that can be pebbled from the inputs.

We show that at most \(p+r-1 \) vertices in the addition trees can be pebbled for a total of at most \(\pi = 2p+r-1 \) vertices pebbled.

Let \(A \) be 0-1 matrix whose \(i,j \) entry is 1 if \(a_{i,j} \) carries one of the \(S \) pebbles initially. Let \(B \) be defined the same way. Let \(C \) be matrix obtained by multiplying \(A \) and \(B \). Then \(p = \Sigma_{i,j} c_{i,j} \) is the number of product vertices that can be pebbled from initial placement of \(S \) pebbles. We show that \(p \leq \sqrt{S} (S-r) \).

Let \(A \) and \(B \) have \(a \) and \(b \) 1’s, respectively. There are at most \(a/\alpha \) rows containing at least \(\alpha \) 1’s. At most \(ab/\alpha \) 1’s in \(C \) can be formed by inner products with these rows. \(B \) has \(b \) 1’s. At most \(S \) inner products can be formed with other rows and these contribute at most \(aS \) 1’s to \(p \). \(A \) has \(a \) 1’s. Hence, \(p = ab/\alpha + aS \).
Since \(\alpha \) is unknown, we choose it to maximize \(p \), which occurs when \(\alpha = \sqrt{ab/S} \). Thus, \(p \leq \sqrt{S} (S-r) \) and \(\pi = 2p+r-1 \leq 2\sqrt{S} (S-r) + r -1 \leq 2\sqrt{S} S = 2 S^{3/2} \).
Q.E.D.
Matrix-Matrix Multiplication

Theorem Let $S \geq 3$. For every graph G in F_n computing $n \times n$ matrix multiplication $C = AB$

$$T_1^{(2)}(S,G) = \Omega(n^3)$$
$$T_2^{(2)}(S,G) = \Omega(n^3/\sqrt{S})$$

There is a pebbling strategy \mathcal{P} for G satisfying both of the following bounds simultaneously.

$$T_1^{(2)}(S,G,\mathcal{P}) = O(n^3)$$
$$T_2^{(2)}(S,G,\mathcal{P}) = O(n^3/\sqrt{S})$$

Proof The lower bound follows directly from the Hong-Kung bound. We give an algorithm that achieves the upper bound.

Proof (cont.) Assume that $r = \sqrt{(S/3)}$ divides n. Represent each matrix A, B, and C as an $n/r \times n/r$ matrix X, Y, and Z. To compute the product $C = AB$, form the product $Z = XY$. This involves inner products of rows of X with columns of Y. Each row of X corresponds to r rows of A and each column of Y corresponds to r columns of B. Treat each set of r rows of A as a row of $r \times r$ blocks. Do the same with columns of B.

Each block of A or B has at most $r^2 \leq S/3$ entries. To form an inner product of a row of X with a column of Y, read in one block from A and one from B, form their product and store the result if the first such product or add it to the previous result, if not. At most S pebbles is used for this purpose. Since each block of A is involved in n/r inner products, each element of A (and B) is involved in n/r I/O ops, giving the desired result. Q.E.D