Overview

- Machine and network models
- Performance metrics
- Flynn’s taxonomy
- Networked computers
- Amdahl’s law
- Multidimensional mesh models
- Sorting on 1-D arrays
- Matrix multiplication on 2D arrays
Machine Models

- Memoryless serial and parallel machines
- Serial machines: RAM & TM
- Parallel machines with memory
 - Fine- vs coarse-grained computers
 - PRAM: p RAMs with shared memory
Network and VLSI Models

- Loosely coupled computers
Performance Metrics

- Logical and algebraic circuits
 - Circuit size and depth
- RAM and TM
 - Time (no. steps) & space (no. locations)
- Parallel machines
 - Time, no. processors, & space
- Memory hierarchies
 - I/O time vs primary storage space
- Distributed computing
 - Time $T(n)$ to send length n message over single channel satisfies $T = l + nb$ where l is latency and b is bandwidth.
Flynn’s Taxonomy

- SISD (single instruction, single data)
 - Single thread of control accessing one datum on each time step
- SIMD (single instruction, multiple data)
- MISD (multiple instruction, single data)
- MIMD (multiple instruction, multiple data)
 - Multiple threads of control accessing multiple data on each time step
- The *data parallel model* realizes the SIMD style of programming. One thread of control but with many parallel operations, such as *parallel prefix*.
Networked Computers

• Such computers are modeled by a graph.
 • Vertices represent processors and edges denote connections between processors.

• Examples of important networks:
 • Trees, linear and multidimensional arrays. Examples of the latter coming.
Crude Bounds on Parallel Computing

- **Amdahl’s Law** If a fraction f of a (legacy) program’s execution time on a serial machine is parallelizable, the *speedup* S achievable by the program on a p-processor RAM satisfies the following inequality.

\[
S \leq \frac{1}{(1-f) + \frac{f}{p}}
\]

- Thus, if $f = 90\%$ (which is large), $S \leq 10$, which is not big even if p is infinite.

- **Efficient parallel programs are generally very different from efficient serial ones.**
Multidimensional Mesh Models

- Matrix-vector multiplication on a 1D systolic array.

- On each cycle S_i is equal to the sum of S_{i+1} and the product of x_i with the vertical input.
Multidimensional Mesh Models

- Systolic arrays - cells operate in synch, as shown above.

- 2D array processors have connections along NSEW axes. Toroidal connections possible.

- Higher dimensional meshes possible

- How can cells be numbered in an array?
Sorting on a 1D Array

- Bubble sort compares adjacent elements and "bubbles up" the largest elements.

```
1  2  3  4  5
2  1  4  3  5
2  4  1  5  3
4  2  5  1  3
4  5  2  3  1
5  4  3  2  1
```
Sorting on a 1D Array

- This can be implemented on a linear array whose elements are numbered 1, 2, ..., n when n is even by alternating the following operations:
 - Comparing and swapping, if necessary, i and i+1 for i odd
 - Comparing and swapping, if necessary, i and i+1 for i even
- The textbook gives a proof that this procedure correctly sorts.
Matrix Multiplication on a 2D Array

- As two values enter a cell they are multiplied and added to the current value which is 0 initially.
 - Why does this algorithm correctly compute the matrix product?
- This algorithm multiplies two $n \times n$ matrices in $4n - 2$ steps.
 - How many steps are needed to compute the last of the results and then deliver the results to the output?