Grigoriev’s Lower Bound

Theorem Let \(f : A^n \to A^m \) be \((\alpha, n, m, p)\)-ind. and let it be realized by an SLP over the basis \(\Omega \). Every pebbling of every DAG for \(f \) requires space \(S \) and time \(T \) satisfying the inequality

\[
\lceil \alpha(S+1) \rceil T \geq mp/4
\]

Theorem The \(n \times n \) matrix multiplication function \(C = A \times B \) over ring \(R \) is \((1,2n^2,n^2,n)\)-independent.

Corollary The time \(T \) and space \(S \) required to realize the \(n \times n \) matrix multiplication function \(C = A \times B \) over a ring \(R \) using an SLP must satisfy

\[
(S+1)T \geq n^3/4
\]

Also, \(T \leq 2n^3 \) when \(S = 3 \).

Proof Do each inner product as shown below.

Grigoriev’s General Lower Bound

Theorem Let \(f : A^n \to A^m \) have a \(w(u,v) \)-flow & be realized by SLP with operators over \(A \). Let \(b \leq m \). Then every pebbling of SLP DAG requires space \(S \) and time \(T \) satisfying \(T \geq \lceil mb \rceil (n - d) \) where \(d \) is the largest integer such that \(w(d,b) \leq S \).
Improved Matrix Multiplication Bounds

Lemma Matrix multiplication has a \(w(u,v)\)-flow, satisfying
\[
w(u,v) \geq (v \cdot (2n^2 - u)^2) / 4n^2 / 2
\]

Proof Choose variables \(X_1\) from \(A\) and \(B\) and outputs \(Y_1\) from \(C\), \(|X_1| = u\). Let \(P(k)\) denote the \(n \times n\) permutation matrix that performs a left cyclic column permutation of a matrix by \(k\) positions, \(0 \leq k \leq n-1\).

Let \(A\) and \(B\) identify by 1’s the entries of \(A\) and \(B\) that are in \(X_1\). When \(A = P(k)\), let \(B(k) = P(k)B\). When \(B = P(k)\), let \(A(k) = AP(k)\). In the first case, \(B(k)\) is the downward cyclic shift of columns of \(A\) by \(k\) columns.

Let \(C\) be then \(n \times n\) matrix whose \((i,j)\) entry is 1 if \((i,j)\) entry of \(C\) is in \(Y_1\), \(|Y_1| = v\). If either \(A(k)\) and \(C\) or \(B(k)\) and \(C\) have many elements in common, matrix multiplication has large a flow.

Improved Matrix Multiplication Bounds

Let \(D\) and \(E\) be arbitrary square binary matrices.

Then, \(D \cap E\), the “intersection” of the two, is the binary matrix that contains 1’s only where both matrices contain 1’s.

Also, \(D \cup E\), the “union” of the two, is the binary matrix that contains 1’s where either \(D\) or \(E\) has 1’s.

The following hold.
\[
|D \cup E| + |D \cap E| = |D| + |E| \tag{1}
\]

Because \(|D \cup E| \leq n^2\) for \(n \times n\) matrices, we have
\[
|D \cap E| \geq |D| + |E| - n^2 \tag{2}
\]

Since \(|D \cap E| \geq 0\), we also have
\[
|D| + |E| \geq |D \cup E| \tag{3}
\]

Note: \(|A(r) \cap C| \mid (|B(s) \cap C|) = \text{number of elements in common between } A(r) \text{ and } C(B(r) \text{ and } C)\).

Improved Matrix Multiplication Bounds

If the max of \(|A(r) \cap C| \mid (|B(s) \cap C|)\) is large, there is a large \(w(u,v)\)-flow associated with matrix mult. But,
\[
\max(|A(r) \cap C|, |B(s) \cap C|) \geq Q(r,s)/2
\]

where
\[
Q(r,s) = |A(r) \cap C| + |B(s) \cap C|
\]

We show \(Q(r,s)\) is large for some \(r\) and \(s\). From (3)
\[
Q(r,s) \geq |C \cap (A(r) \cup B(s))|
\]

From (2) we have
\[
Q(r,s) \geq |Y_1| + |X_1| - n^2 - |A(r) \cap B(s)|
\]

Applying (1) we have
\[
Q(r,s) \geq |Y_1| + |A(r)| + |B(s)| - |A(r) \cap B(s)| - n^2
\]

where \(|C| = |Y_1|, |A(r)| = |A|, |B(s)| = |B|\). Since \(|X_1| = |A| + |B|\), we have
\[
Q(r,s) \geq |Y_1| + |X_1| - n^2 - |A(r) \cap B(s)|
\]

Improved Matrix Multiplication Bounds

Again
\[
Q(r,s) \geq |Y_1| + |X_1| - n^2 - |A(r) \cap B(s)|
\]

We show there exist \(r, s\) such that \(|A(r) \cap B(s)|\) is at most \(|A||B|/n^2\) which implies there are \(r, s\) such that
\[
Q(r,s) \geq |Y_1| + |X_1| - |A||B|/n^2 - n^2
\]

Here \(|X_1| - |A||B|/n^2\) is minimized by maximizing \(|A||B|\) subject to \(|X_1| = |A| + |B|\). Since \(|A||B| \leq (|X_1|/2)^2\)
\[
Q(r,s) \geq |Y_1| - n^2(1 - |X_1|^2/2n^2) = v - (2n^2 - u)^2/2n^2
\]

From
\[
\max(|A(r) \cap C|, |B(s) \cap C|) \geq Q(r,s)/2
\]

we have the desired result.

We now show that there exist \(r, s\) such \(|A(r) \cap B(s)|\) is at most \(|A||B|/n^2\).
Improved Matrix Multiplication Bounds

Let S be

$$S = \sum_{r=1}^{n} \sum_{s=1}^{n} |A(r) \cap B(s)|$$

Since each 1 in A is aligned with each 1 in B by one of the cyclic shifts, $S = |A| |B|$. Since there must be some term that is at most equal to the average, we have

$$|A(r) \cap B(s)| \leq |A| |B|/n^2$$

from which the desired follows. ♥

Improved Matrix Multiplication Bounds

Theorem The $n \times n$ matrix multiplication (MM) function $C = A \times B$ over a ring R satisfies

$$ST^2 \geq n^6/4$$

Proof We apply the generalized Grigoriev lower bound. Consider $b \leq m = n^2$. Then every pebbling of an SLP DAG for MM requires space S and time T satisfying $T \geq \lceil n^2/b \rceil (2n^2-d)$ where d is the largest integer such that $w(d,b) \leq S$.

Since $w(u,v) \geq (v - (2n^2-u)^2/4n^2)/2$ let $b = 3S$. Then $w(d,b) \leq S$ when

$$(3S - (2n^2-d)^2/4n^2)/2 \leq S$$

This implies $(2n^2-d) \geq 2n\sqrt{S}$. Thus,

$$T \geq \lceil n^2/3S \rceil (2n^2-d) \geq 2n\sqrt{S} \lceil n^2/3S \rceil$$

$$\geq 2n\sqrt{S} (n^2 - 3S + 1)/3S$$

Now consider $S \leq n^2/27$ and $S \geq n^2/27$ with $T \geq 3n^2$ ♥